Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31337821
PubMed Central
PMC6650505
DOI
10.1038/s41598-019-47059-x
PII: 10.1038/s41598-019-47059-x
Knihovny.cz E-zdroje
- MeSH
- extracelulární matrix chemie MeSH
- hydrogely chemie MeSH
- iridoidy * MeSH
- karbodiimidy aplikace a dávkování MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie MeSH
- proliferace buněk fyziologie MeSH
- pupečník cytologie MeSH
- regenerace nervu fyziologie MeSH
- tkáňové inženýrství MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-ethyl-3-(3-(diethylamino)propyl)carbodiimide MeSH Prohlížeč
- genipin MeSH Prohlížeč
- hydrogely MeSH
- iridoidy * MeSH
- karbodiimidy MeSH
Extracellular matrix (ECM) hydrogels, produced by tissue decellularization are natural injectable materials suitable for neural tissue repair. However, the rapid biodegradation of these materials may disrupt neural tissue reconstruction in vivo. The aim of this study was to improve the stability of the previously described ECM hydrogel derived from human umbilical cord using genipin and N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), crosslinking at concentration of 0.5-10 mM. The hydrogels, crosslinked by genipin (ECM/G) or EDC (ECM/D), were evaluated in vitro in terms of their mechanical properties, degradation stability and biocompatibility. ECM/G, unlike ECM/D, crosslinked hydrogels revealed improved rheological properties when compared to uncrosslinked ECM. Both ECM/G and ECM/D slowed down the gelation time and increased the resistance against in vitro enzymatic degradation, while genipin crosslinking was more effective than EDC. Crosslinkers concentration of 1 mM enhanced the in vitro bio-stability of both ECM/G and ECM/D without affecting mesenchymal stem cell proliferation, axonal sprouting or neural stem cell growth and differentiation. Moreover, when injected into cortical photochemical lesion, genipin allowed in situ gelation and improved the retention of ECM for up to 2 weeks without any adverse tissue response or enhanced inflammatory reaction. In summary, we demonstrated that genipin, rather than EDC, improved the bio-stability of injectable ECM hydrogel in biocompatible concentration, and that ECM/G has potential as a scaffold for neural tissue application.
2nd Medical Faculty Charles University Prague Czech Republic
Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czech Republic
Institute of Macromolecular Chemistry of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347. doi: 10.1146/annurev.bioeng.5.011303.120731. PubMed DOI
Geller HM, Fawcett JW. Building a bridge: engineering spinal cord repair. Exp Neurol. 2002;174:125–136. doi: 10.1006/exnr.2002.7865. PubMed DOI
Bellamkonda R, Ranieri JP, Bouche N, Aebischer P. Hydrogel-based three-dimensional matrix for neural cells. J Biomed Mater Res. 1995;29:663–671. doi: 10.1002/jbm.820290514. PubMed DOI
Kubinova S, Sykova E. Biomaterials combined with cell therapy for treatment of spinal cord injury. Regen Med. 2012;7:207–224. doi: 10.2217/rme.11.121. PubMed DOI
Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater. 2017;49:1–15. doi: 10.1016/j.actbio.2016.11.068. PubMed DOI PMC
Kubinova S. Extracellular matrix based biomaterials for central nervous system tissue repair: the benefits and drawbacks. Neural Regen Res. 2017;12:1430–1432. doi: 10.4103/1673-5374.215249. PubMed DOI PMC
Crapo PM, et al. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials. 2012;33:3539–3547. doi: 10.1016/j.biomaterials.2012.01.044. PubMed DOI PMC
Medberry CJ, et al. Hydrogels derived from central nervous system extracellular matrix. Biomaterials. 2013;34:1033–1040. doi: 10.1016/j.biomaterials.2012.10.062. PubMed DOI PMC
Koci Z, et al. Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues. Tissue Eng Part C Methods. 2017;23:333–345. doi: 10.1089/ten.TEC.2017.0089. PubMed DOI
Tukmachev D, et al. Injectable Extracellular Matrix Hydrogels as Scaffolds for Spinal Cord Injury Repair. Tissue Eng Part A. 2016;22:306–317. doi: 10.1089/ten.TEA.2015.0422. PubMed DOI PMC
Ghuman H, et al. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater. 2017;63:50–63. doi: 10.1016/j.actbio.2017.09.011. PubMed DOI PMC
Yu XX, Wan CX, Chen HQ. Preparation and endothelialization of decellularised vascular scaffold for tissue-engineered blood vessel. J Mater Sci Mater Med. 2008;19:319–326. doi: 10.1007/s10856-007-3157-8. PubMed DOI
Schoen FJ, Harasaki H, Kim KM, Anderson HC, Levy RJ. Biomaterial-associated calcification: pathology, mechanisms, and strategies for prevention. J Biomed Mater Res. 1988;22:11–36. PubMed
Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215–2231. doi: 10.1016/S0142-9612(00)00148-4. PubMed DOI
Speer DP, Chvapil M, Eskelson CD, Ulreich J. Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res. 1980;14:753–764. doi: 10.1002/jbm.820140607. PubMed DOI
Sung HW, Chang WH, Ma CY, Lee MH. Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res A. 2003;64:427–438. doi: 10.1002/jbm.a.10346. PubMed DOI
Sung HW, Huang RN, Huang LL, Tsai CC, Chiu CT. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res. 1998;42:560–567. doi: 10.1002/(SICI)1097-4636(19981215)42:4<560::AID-JBM12>3.0.CO;2-I. PubMed DOI
Sung HW, Liang IL, Chen CN, Huang RN, Liang HF. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin) J Biomed Mater Res. 2001;55:538–546. doi: 10.1002/1097-4636(20010615)55:4<538::AID-JBM1047>3.0.CO;2-2. PubMed DOI
Macaya Daniel, Ng Karen K., Spector Myron. Injectable Collagen-Genipin Gel for the Treatment of Spinal Cord Injury: In Vitro Studies. Advanced Functional Materials. 2011;21(24):4788–4797. doi: 10.1002/adfm.201101720. DOI
Wassenaar JW, Braden RL, Osborn KG, Christman KL. Modulating In Vivo Degradation Rate of Injectable Extracellular Matrix Hydrogels. J Mater Chem B. 2016;4:2794–2802. doi: 10.1039/C5TB02564H. PubMed DOI PMC
Jiang T, et al. Preparation and characterization of genipin-crosslinked rat acellular spinal cord scaffolds. Mater Sci Eng C Mater Biol Appl. 2013;33:3514–3521. doi: 10.1016/j.msec.2013.04.046. PubMed DOI
Wang Y, et al. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep. 2016;6:24779. doi: 10.1038/srep24779. PubMed DOI PMC
Li Y, Li L, Holscher C. Therapeutic Potential of Genipin in Central Neurodegenerative Diseases. CNS Drugs. 2016;30:889–897. doi: 10.1007/s40263-016-0369-9. PubMed DOI
Zeeman R, et al. Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials. 1999;20:921–931. doi: 10.1016/s0142-9612(98)00242-7. PubMed DOI
Pieper JS, Oosterhof A, Dijkstra PJ, Veerkamp JH, van Kuppevelt TH. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate. Biomaterials. 1999;20:847–858. doi: 10.1016/S0142-9612(98)00240-3. PubMed DOI
Hanthamrongwit, M., Reid, W. & Grant, M. Chondroitin-6-sulphate incorporadted into collagen gels for the growth of human keratinocytes: the effect of cross-linking agents and diamines. Biomaterials, 775–780 (1996). PubMed
Buijtenhuijs, P. et al. Tissue-engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagenand-elastin-based scaffolds. Biotechnol Appl Biochem, 41–49 (2004). PubMed
Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials. 2002;23:1205–1212. doi: 10.1016/S0142-9612(01)00235-6. PubMed DOI
Ungerleider JL, et al. Extracellular Matrix Hydrogel Promotes Tissue Remodeling, Arteriogenesis, and Perfusion in a Rat Hindlimb Ischemia Model. JACC Basic Transl Sci. 2016;1:32–44. doi: 10.1016/j.jacbts.2016.01.009. PubMed DOI PMC
Yan LP, et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res A. 2010;95:465–475. doi: 10.1002/jbm.a.32869. PubMed DOI
Satake K, Okuyama T, Ohashi M, Shinoda T. The Spectrophotometric Determination of Amine, Amino Acid and Peptide with 2,4,6-Trinitrobenzene 1-Sulfonic Acid. J Biochem-Tokyo. 1960;47:654–660. doi: 10.1093/oxfordjournals.jbchem.a127107. DOI
Spang MT, Christman KL. Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater. 2018;68:1–14. doi: 10.1016/j.actbio.2017.12.019. PubMed DOI PMC
Ma B, Wang X, Wu C, Chang J. Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater. 2014;1:81–89. doi: 10.1093/rb/rbu009. PubMed DOI PMC
Yang G, et al. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep. 2018;8:1616. doi: 10.1038/s41598-018-20006-y. PubMed DOI PMC
Zaviskova K, et al. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair. J Biomed Mater Res A. 2018;106:1129–1140. doi: 10.1002/jbm.a.36311. PubMed DOI
Delgado LM, Bayon Y, Pandit A, Zeugolis DI. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng Part B Rev. 2015;21:298–313. doi: 10.1089/ten.TEB.2014.0290. PubMed DOI PMC
Macaya DJ, Hayakawa K, Arai K, Spector M. Astrocyte infiltration into injectable collagen-based hydrogels containing FGF-2 to treat spinal cord injury. Biomaterials. 2013;34:3591–3602. doi: 10.1016/j.biomaterials.2012.12.050. PubMed DOI
Ghuman H, et al. ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate. Biomaterials. 2016;91:166–181. doi: 10.1016/j.biomaterials.2016.03.014. PubMed DOI PMC
Gelman RA, Williams BR, Piez KA. Collagen fibril formation. Evidence for a multistep process. The Journal of biological chemistry. 1979;254:180–186. PubMed
Krupa Petr, Vackova Irena, Ruzicka Jiri, Zaviskova Kristyna, Dubisova Jana, Koci Zuzana, Turnovcova Karolina, Urdzikova Lucia Machova, Kubinova Sarka, Rehak Svatopluk, Jendelova Pavla. The Effect of Human Mesenchymal Stem Cells Derived from Wharton’s Jelly in Spinal Cord Injury Treatment Is Dose-Dependent and Can Be Facilitated by Repeated Application. International Journal of Molecular Sciences. 2018;19(5):1503. doi: 10.3390/ijms19051503. PubMed DOI PMC
Pollock K, et al. A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol. 2006;199:143–155. doi: 10.1016/j.expneurol.2005.12.011. PubMed DOI
Cocks G, et al. Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons. Stem Cell Res Ther. 2013;4:69. doi: 10.1186/scrt220. PubMed DOI PMC
Anderova M, et al. Transplantation of embryonic neuroectodermal progenitor cells into the site of a photochemical lesion: immunohistochemical and electrophysiological analysis. J Neurobiol. 2006;66:1084–1100. doi: 10.1002/neu.20278. PubMed DOI
Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis