The Effect of Human Mesenchymal Stem Cells Derived from Wharton's Jelly in Spinal Cord Injury Treatment Is Dose-Dependent and Can Be Facilitated by Repeated Application

. 2018 May 17 ; 19 (5) : . [epub] 20180517

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29772841

Human mesenchymal stem cells derived from Wharton's jelly (WJ-MSCs) were used for the treatment of the ischemic-compression model of spinal cord injury in rats. To assess the effectivity of the treatment, different dosages (0.5 or 1.5 million cells) and repeated applications were compared. Cells or saline were applied intrathecally by lumbar puncture for one week only, or in three consecutive weeks after injury. Rats were assessed for locomotor skills (BBB, rotarod, flat beam) for 9 weeks. Spinal cord tissue was morphometrically analyzed for axonal sprouting, sparing of gray and white matter and astrogliosis. Endogenous gene expression (Gfap, Casp3, Irf5, Cd86, Mrc1, Cd163) was studied with quantitative Real-time polymerase chain reaction (qRT PCR). Significant recovery of functional outcome was observed in all of the treated groups except for the single application of the lowest number of cells. Histochemical analyses revealed a gradually increasing effect of grafted cells, resulting in a significant increase in the number of GAP43+ fibers, a higher amount of spared gray matter and reduced astrogliosis. mRNA expression of macrophage markers and apoptosis was downregulated after the repeated application of 1.5 million cells. We conclude that the effect of hWJ-MSCs on spinal cord regeneration is dose-dependent and potentiated by repeated application.

Zobrazit více v PubMed

Fawcett J.W., Asher R.A. The glial scar and central nervous system repair. Brain Res. Bull. 1999;49:377–391. doi: 10.1016/S0361-9230(99)00072-6. PubMed DOI

Zai L.J., Wrathall J.R. Cell proliferation and replacement following contusive spinal cord injury. Glia. 2005;50:247–257. doi: 10.1002/glia.20176. PubMed DOI

Mbalaviele G., Jaiswal N., Meng A., Cheng L., Van Den Bos C., Thiede M. Human mesenchymal stem cells promote human osteoclast differentiation from CD34+ bone marrow hematopoietic progenitors. Endocrinology. 1999;140:3736–3743. doi: 10.1210/endo.140.8.6880. PubMed DOI

Woodbury D., Schwarz E.J., Prockop D.J., Black I.B. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 2000;61:364–370. doi: 10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C. PubMed DOI

Toma C., Pittenger M.F., Cahill K.S., Byrne B.J., Kessler P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105:93–98. doi: 10.1161/hc0102.101442. PubMed DOI

Bai L., Lennon D.P., Eaton V., Maier K., Caplan A.I., Miller S.D., Miller R.H. Human bone marrow-derived mesenchymal stem cells induce th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia. 2009;57:1192–1203. doi: 10.1002/glia.20841. PubMed DOI PMC

Park C.W., Kim K.S., Bae S., Son H.K., Myung P.K., Hong H.J., Kim H. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int. J. Stem Cells. 2009;2:59–68. doi: 10.15283/ijsc.2009.2.1.59. PubMed DOI PMC

Torres-Espin A., Corona-Quintanilla D.L., Fores J., Allodi I., Gonzalez F., Udina E., Navarro X. Neuroprotection and axonal regeneration after lumbar ventral root avulsion by re-implantation and mesenchymal stem cells transplant combined therapy. Neurotherapeutics. 2013;10:354–368. doi: 10.1007/s13311-013-0178-5. PubMed DOI PMC

Caplan A.I. Mesenchymal stem cells: Time to change the name! Stem Cells Transl. Med. 2017;6:1445–1451. doi: 10.1002/sctm.17-0051. PubMed DOI PMC

Amable P.R., Teixeira M.V., Carias R.B., Granjeiro J.M., Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and wharton’s jelly. Stem Cell Res. Ther. 2014;5:53. doi: 10.1186/scrt442. PubMed DOI PMC

Zhou C., Yang B., Tian Y., Jiao H., Zheng W., Wang J., Guan F. Immunomodulatory effect of human umbilical cord wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell. Immunol. 2011;272:33–38. doi: 10.1016/j.cellimm.2011.09.010. PubMed DOI PMC

Kim D.W., Staples M., Shinozuka K., Pantcheva P., Kang S.D., Borlongan C.V. Wharton’s jelly-derived mesenchymal stem cells: Phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int. J. Mol. Sci. 2013;14:11692–11712. doi: 10.3390/ijms140611692. PubMed DOI PMC

Zhang J., Li Y., Chen J., Yang M., Katakowski M., Lu M., Chopp M. Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res. 2004;1030:19–27. doi: 10.1016/j.brainres.2004.09.061. PubMed DOI

Bao X., Wei J., Feng M., Lu S., Li G., Dou W., Ma W., Ma S., An Y., Qin C., et al. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res. 2011;1367:103–113. doi: 10.1016/j.brainres.2010.10.063. PubMed DOI

Oliveri R.S., Bello S., Biering-Sorensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: Systematic review with meta-analyses of rat models. Neurobiol. Dis. 2014;62:338–353. doi: 10.1016/j.nbd.2013.10.014. PubMed DOI

Saito F., Nakatani T., Iwase M., Maeda Y., Murao Y., Suzuki Y., Fukushima M., Ide C. Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: A pilot study. Restor. Neurol. Neurosci. 2012;30:127–136. PubMed

Forostyak S., Jendelova P., Sykova E. The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie. 2013;95:2257–2270. doi: 10.1016/j.biochi.2013.08.004. PubMed DOI

Cizkova D., Novotna I., Slovinska L., Vanicky I., Jergova S., Rosocha J., Radonak J. Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J. Neurotrauma. 2011;28:1951–1961. doi: 10.1089/neu.2010.1413. PubMed DOI

Cheng I., Mayle R.E., Cox C.A., Park D.Y., Smith R.L., Corcoran-Schwartz I., Ponnusamy K.E., Oshtory R., Smuck M.W., Mitra R., et al. Functional assessment of the acute local and distal transplantation of human neural stem cells after spinal cord injury. Spine J. 2012;12:1040–1044. doi: 10.1016/j.spinee.2012.09.005. PubMed DOI

Urdzikova L.M., Ruzicka J., LaBagnara M., Karova K., Kubinova S., Jirakova K., Murali R., Sykova E., Jhanwar-Uniyal M., Jendelova P. Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat. Int. J. Mol. Sci. 2014;15:11275–11293. doi: 10.3390/ijms150711275. PubMed DOI PMC

Vanicky I., Urdzikova L., Saganova K., Cizkova D., Galik J. A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J. Neurotrauma. 2001;18:1399–1407. doi: 10.1089/08977150152725687. PubMed DOI

Antonic A., Sena E.S., Lees J.S., Wills T.E., Skeers P., Batchelor P.E., Macleod M.R., Howells D.W. Stem cell transplantation in traumatic spinal cord injury: A systematic review and meta-analysis of animal studies. PLoS Biol. 2013;11:e1001738. doi: 10.1371/journal.pbio.1001738. PubMed DOI PMC

Ruzicka J., Machova-Urdzikova L., Gillick J., Amemori T., Romanyuk N., Karova K., Zaviskova K., Dubisova J., Kubinova S., Murali R., et al. A comparative study of three different types of stem cells for treatment of rat spinal cord injury. Cell Transplant. 2017;26:585–603. doi: 10.3727/096368916X693671. PubMed DOI PMC

Amemori T., Ruzicka J., Romanyuk N., Jhanwar-Uniyal M., Sykova E., Jendelova P. Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell Res. Ther. 2015;6:257. doi: 10.1186/s13287-015-0255-2. PubMed DOI PMC

Paul C., Samdani A.F., Betz R.R., Fischer I., Neuhuber B. Grafting of human bone marrow stromal cells into spinal cord injury: A comparison of delivery methods. Spine. 2009;34:328–334. doi: 10.1097/BRS.0b013e31819403ce. PubMed DOI PMC

Sareen D., Gowing G., Sahabian A., Staggenborg K., Paradis R., Avalos P., Latter J., Ornelas L., Garcia L., Svendsen C.N. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J. Comp. Neurol. 2014;522:2707–2728. doi: 10.1002/cne.23578. PubMed DOI PMC

Pal R., Gopinath C., Rao N.M., Banerjee P., Krishnamoorthy V., Venkataramana N.K., Totey S. Functional recovery after transplantation of bone marrow-derived human mesenchymal stromal cells in a rat model of spinal cord injury. Cytotherapy. 2010;12:792–806. doi: 10.3109/14653249.2010.487899. PubMed DOI

Ninomiya K., Iwatsuki K., Ohnishi Y., Ohkawa T., Yoshimine T. Intranasal delivery of bone marrow stromal cells to spinal cord lesions. J. Neurosurg. Spine. 2015;23:111–119. doi: 10.3171/2014.10.SPINE14690. PubMed DOI

Okada S., Ishii K., Yamane J., Iwanami A., Ikegami T., Katoh H., Iwamoto Y., Nakamura M., Miyoshi H., Okano H.J., et al. In vivo imaging of engrafted neural stem cells: Its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J. 2005;19:1839–1841. doi: 10.1096/fj.05-4082fje. PubMed DOI

Parr A.M., Kulbatski I., Tator C.H. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J. Neurotrauma. 2007;24:835–845. doi: 10.1089/neu.2006.3771. PubMed DOI

Chen C., Chen F., Yao C., Shu S., Feng J., Hu X., Hai Q., Yao S., Chen X. Intrathecal injection of human umbilical cord-derived mesenchymal stem cells ameliorates neuropathic pain in rats. Neurochem. Res. 2016;41:3250–3260. doi: 10.1007/s11064-016-2051-5. PubMed DOI

Himes B.T., Neuhuber B., Coleman C., Kushner R., Swanger S.A., Kopen G.C., Wagner J., Shumsky J.S., Fischer I. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabilit. Neural Repair. 2006;20:278–296. doi: 10.1177/1545968306286976. PubMed DOI

Amemori T., Jendelova P., Ruzickova K., Arboleda D., Sykova E. Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat. Cytotherapy. 2010;12:212–225. doi: 10.3109/14653240903440103. PubMed DOI

Cho S.R., Kim Y.R., Kang H.S., Yim S.H., Park C.I., Min Y.H., Lee B.H., Shin J.C., Lim J.B. Functional recovery after the transplantation of neurally differentiated mesenchymal stem cells derived from bone marrow in a rat model of spinal cord injury. Cell Transplant. 2009;18:1359–1368. doi: 10.3727/096368909X475329. PubMed DOI

Hu S.L., Luo H.S., Li J.T., Xia Y.Z., Li L., Zhang L.J., Meng H., Cui G.Y., Chen Z., Wu N., et al. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit. Care Med. 2010;38:2181–2189. doi: 10.1097/CCM.0b013e3181f17c0e. PubMed DOI

Li H., Wen Y., Luo Y., Lan X., Wang D., Sun Z., Hu L. Transplantation of bone marrow mesenchymal stem cells into spinal cord injury: A comparison of delivery different times. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010;24:180–184. PubMed

Bollini S., Gentili C., Tasso R., Cancedda R. The regenerative role of the fetal and adult stem cell secretome. J. Clin. Med. 2013;2:302–327. doi: 10.3390/jcm2040302. PubMed DOI PMC

Balasubramanian S., Thej C., Venugopal P., Priya N., Zakaria Z., Sundarraj S., Majumdar A.S. Higher propensity of wharton’s jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow. Cell Biol. Int. 2013;37:507–515. doi: 10.1002/cbin.10056. PubMed DOI

Hsieh J.Y., Wang H.W., Chang S.J., Liao K.H., Lee I.H., Lin W.S., Wu C.H., Lin W.Y., Cheng S.M. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS ONE. 2013;8:e72604. doi: 10.1371/journal.pone.0072604. PubMed DOI PMC

Drela K., Lech W., Figiel-Dabrowska A., Zychowicz M., Mikula M., Sarnowska A., Domanska-Janik K. Enhanced neuro-therapeutic potential of wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture. Cytotherapy. 2016;18:497–509. doi: 10.1016/j.jcyt.2016.01.006. PubMed DOI

Shi C. Recent progress toward understanding the physiological function of bone marrow mesenchymal stem cells. Immunology. 2012;136:133–138. doi: 10.1111/j.1365-2567.2012.03567.x. PubMed DOI PMC

Li X., Bai J., Ji X., Li R., Xuan Y., Wang Y. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int. J. Mol. Med. 2014;34:695–704. doi: 10.3892/ijmm.2014.1821. PubMed DOI PMC

Li C., Chen X., Qiao S., Liu X., Liu C., Zhu D., Su J., Wang Z. Effects of wharton’s jelly cells of the human umbilical cord on acute spinal cord injury in rats, and expression of interleukin-1beta and nerve growth factor in spinal cord tissues. Artif. Cells Nanomed. Biotechnol. 2016;44:1254–1258. doi: 10.3109/21691401.2015.1019671. PubMed DOI

Lee K.H., Suh-Kim H., Choi J.S., Jeun S.S., Kim E.J., Kim S.S., Yoon D.H., Lee B.H. Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats. Acta Neurobiol. Exp. 2007;67:13–22. PubMed

Nakajima H., Uchida K., Guerrero A.R., Watanabe S., Sugita D., Takeura N., Yoshida A., Long G., Wright K.T., Johnson W.E., et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J. Neurotrauma. 2012;29:1614–1625. doi: 10.1089/neu.2011.2109. PubMed DOI PMC

Oh J.S., Park I.S., Kim K.N., Yoon D.H., Kim S.H., Ha Y. Transplantation of an adipose stem cell cluster in a spinal cord injury. Neuroreport. 2012;23:277–282. doi: 10.1097/WNR.0b013e3283505ae2. PubMed DOI

Park S.I., Lim J.Y., Jeong C.H., Kim S.M., Jun J.A., Jeun S.S., Oh W.I. Human umbilical cord blood-derived mesenchymal stem cell therapy promotes functional recovery of contused rat spinal cord through enhancement of endogenous cell proliferation and oligogenesis. J. Biomed. Biotechnol. 2012;2012:362473. doi: 10.1155/2012/362473. PubMed DOI PMC

Shang A.J., Hong S.Q., Xu Q., Wang H.Y., Yang Y., Wang Z.F., Xu B.N., Jiang X.D., Xu R.X. Nt-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats. Brain Res. 2011;1391:102–113. doi: 10.1016/j.brainres.2011.03.019. PubMed DOI

Matyas J.J., Stewart A.N., Goldsmith A., Nan Z., Skeel R.L., Rossignol J., Dunbar G.L. Effects of bone-marrow-derived msc transplantation on functional recovery in a rat model of spinal cord injury: Comparisons of transplant locations and cell concentrations. Cell Transplant. 2017;26:1472–1482. doi: 10.1177/0963689717721214. PubMed DOI PMC

Gabr H., El-Kheir W.A., Farghali H.A., Ismail Z.M., Zickri M.B., El Maadawi Z.M., Kishk N.A., Sabaawy H.E. Intrathecal transplantation of autologous adherent bone marrow cells induces functional neurological recovery in a canine model of spinal cord injury. Cell Transplant. 2015;24:1813–1827. doi: 10.3727/096368914X683025. PubMed DOI PMC

Ryu H.H., Kang B.J., Park S.S., Kim Y., Sung G.J., Woo H.M., Kim W.H., Kweon O.K. Comparison of mesenchymal stem cells derived from fat, bone marrow, wharton’s jelly, and umbilical cord blood for treating spinal cord injuries in dogs. J. Vet. Med. Sci. 2012;74:1617–1630. doi: 10.1292/jvms.12-0065. PubMed DOI

Satti H.S., Waheed A., Ahmed P., Ahmed K., Akram Z., Aziz T., Satti T.M., Shahbaz N., Khan M.A., Malik S.A. Autologous mesenchymal stromal cell transplantation for spinal cord injury: A phase I pilot study. Cytotherapy. 2016;18:518–522. doi: 10.1016/j.jcyt.2016.01.004. PubMed DOI

Mendonca M.V., Larocca T.F., de Freitas Souza B.S., Villarreal C.F., Silva L.F., Matos A.C., Novaes M.A., Bahia C.M., de Oliveira Melo Martinez A.C., Kaneto C.M., et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res. Ther. 2014;5:126. doi: 10.1186/scrt516. PubMed DOI PMC

Koci Z., Vyborny K., Dubisova J., Vackova I., Jager A., Lunov O., Jirakova K., Kubinova S. Extracellular matrix hydrogel derived from human umbilical cord as a scaffold for neural tissue repair and its comparison with extracellular matrix from porcine tissues. Tissue Eng. Part C Methods. 2017;23:333–345. doi: 10.1089/ten.tec.2017.0089. PubMed DOI

Parr A.M., Kulbatski I., Zahir T., Wang X., Yue C., Keating A., Tator C.H. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience. 2008;155:760–770. doi: 10.1016/j.neuroscience.2008.05.042. PubMed DOI

Yang J.R., Liao C.H., Pang C.Y., Huang L.L., Chen Y.L., Shiue Y.L., Chen L.R. Transplantation of porcine embryonic stem cells and their derived neuronal progenitors in a spinal cord injury rat model. Cytotherapy. 2013;15:201–208. doi: 10.1016/j.jcyt.2012.09.001. PubMed DOI

Dunham N.W., Miya T.S. A note on a simple apparatus for detecting neurological deficit in rats and mice. J. Am. Pharm. Assoc. 1957;46:208–209. doi: 10.1002/jps.3030460322. PubMed DOI

Metz G.A., Whishaw I.Q. The ladder rung walking task: A scoring system and its practical application. J. Vis. Exp. 2009 doi: 10.3791/1204. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Role of Green Tea Catechin Epigallocatechin Gallate (EGCG) and Mammalian Target of Rapamycin (mTOR) Inhibitor PP242 (Torkinib) in the Treatment of Spinal Cord Injury

. 2023 Feb 03 ; 12 (2) : . [epub] 20230203

Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis

. 2021 ; 9 () : 695900. [epub] 20210706

New Model of Ventral Spinal Cord Lesion Induced by Balloon Compression in Rats

. 2020 Nov 05 ; 8 (11) : . [epub] 20201105

Human Wharton's Jelly-Cellular Specificity, Stemness Potency, Animal Models, and Current Application in Human Clinical Trials

. 2020 Apr 12 ; 9 (4) : . [epub] 20200412

A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential

. 2020 Mar 09 ; 10 (1) : 4290. [epub] 20200309

Biomaterials and Magnetic Stem Cell Delivery in the Treatment of Spinal Cord Injury

. 2020 Jan ; 45 (1) : 171-179. [epub] 20190426

The Effect of Wharton Jelly-Derived Mesenchymal Stromal Cells and Their Conditioned Media in the Treatment of a Rat Spinal Cord Injury

. 2019 Sep 12 ; 20 (18) : . [epub] 20190912

Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair

. 2019 Jul 23 ; 9 (1) : 10674. [epub] 20190723

Therapeutic Strategies for Spinal Cord Injury

. 2018 Oct 16 ; 19 (10) : . [epub] 20181016

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace