Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24968269
PubMed Central
PMC4139782
DOI
10.3390/ijms150711275
PII: ijms150711275
Knihovny.cz E-zdroje
- MeSH
- chemokin CCL5 genetika metabolismus MeSH
- fibroblastový růstový faktor 2 genetika metabolismus MeSH
- gliový fibrilární kyselý protein genetika metabolismus MeSH
- interferonové regulační faktory genetika metabolismus MeSH
- interleukiny genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- lokomoce MeSH
- mezenchymální kmenové buňky metabolismus MeSH
- poranění míchy metabolismus terapie MeSH
- potkani Wistar MeSH
- protein GAP-43 genetika metabolismus MeSH
- receptory imunologické genetika metabolismus MeSH
- TNF-alfa genetika metabolismus MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemokin CCL5 MeSH
- fibroblastový růstový faktor 2 MeSH
- gliový fibrilární kyselý protein MeSH
- interferonové regulační faktory MeSH
- interleukiny MeSH
- protein GAP-43 MeSH
- receptory imunologické MeSH
- TNF-alfa MeSH
Transplantation of mesenchymal stem cells (MSC) improves functional recovery in experimental models of spinal cord injury (SCI); however, the mechanisms underlying this effect are not completely understood. We investigated the effect of intrathecal implantation of human MSC on functional recovery, astrogliosis and levels of inflammatory cytokines in rats using balloon-induced spinal cord compression lesions. Transplanted cells did not survive at the lesion site of the spinal cord; however, functional recovery was enhanced in the MSC-treated group as was confirmed by the Basso, Beattie, and Bresnahan (BBB) and the flat beam test. Morphometric analysis showed a significantly higher amount of remaining white matter in the cranial part of the lesioned spinal cords. Immunohistochemical analysis of the lesions indicated the rearrangement of the glial scar in MSC-treated animals. Real-time PCR analysis revealed an increased expression of Irf5, Mrc1, Fgf2, Gap43 and Gfap. Transplantation of MSCs into a lesioned spinal cord reduced TNFα, IL-4, IL-1β, IL-2, IL-6 and IL-12 and increased the levels of MIP-1α and RANTES when compared to saline-treated controls. Intrathecal implantation of MSCs reduces the inflammatory reaction and apoptosis, improves functional recovery and modulates glial scar formation after SCI, regardless of cell survival. Therefore, repeated applications may prolong the beneficial effects induced by MSC application.
Zobrazit více v PubMed
Oliveri R.S., Bello S., Biering-Sorensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: Systematic review with meta-analyses of rat models. Neurobiol. Dis. 2014;62:338–353. doi: 10.1016/j.nbd.2013.10.014. PubMed DOI
Urdzikova L., Jendelova P., Glogarova K., Burian M., Hajek M., Sykova E. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J. Neurotrauma. 2006;23:1379–1391. doi: 10.1089/neu.2006.23.1379. PubMed DOI
Coutts M., Keirstead H.S. Stem cells for the treatment of spinal cord injury. Exp. Neurol. 2008;209:368–377. doi: 10.1016/j.expneurol.2007.09.002. PubMed DOI
Garbuzova-Davis S., Willing A.E., Saporta S., Bickford P.C., Gemma C., Chen N., Sanberg C.D., Klasko S.K., Borlongan C.V., Sanberg P.R. Novel cell therapy approaches for brain repair. Prog. Brain Res. 2006;157:207–222. doi: 10.1016/S0079-6123(06)57014-1. PubMed DOI
Joyce N., Annett G., Wirthlin L., Olson S., Bauer G., Nolta J.A. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen. Med. 2010;5:933–946. doi: 10.2217/rme.10.72. PubMed DOI PMC
Hardy S.A., Maltman D.J., Przyborski S.A. Mesenchymal stem cells as mediators of neural differentiation. Curr. Stem Cell Res. Ther. 2008;3:43–52. doi: 10.2174/157488808783489471. PubMed DOI
Nishio Y., Koda M., Kamada T., Someya Y., Yoshinaga K., Okada S., Harada H., Okawa A., Moriya H., Yamazaki M. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J. Neurosurg. Spine. 2006;5:424–433. doi: 10.3171/spi.2006.5.5.424. PubMed DOI
English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol. Cell Biol. 2013;91:19–26. doi: 10.1038/icb.2012.56. PubMed DOI
Stagg J., Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr. Mol. Med. 2013;13:856–867. doi: 10.2174/1566524011313050016. PubMed DOI
Weiss D.J., Casaburi R., Flannery R., LeRoux-Williams M., Tashkin D.P. A placebo-controlled, randomized trial of mesenchymal stem cells in copd. Chest. 2013;143:1590–1598. doi: 10.1378/chest.12-2094. PubMed DOI PMC
Karussis D., Karageorgiou C., Vaknin-Dembinsky A., Gowda-Kurkalli B., Gomori J. M., Kassis I., Bulte J.W., Petrou P., Ben-Hur T., Abramsky O., et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 2010;67:1187–1194. PubMed PMC
Vanecek V., Zablotskii V., Forostyak S., Ruzicka J., Herynek V., Babic M., Jendelova P., Kubinova S., Dejneka A., Sykova E. Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury. Int. J. Nanomed. 2012;7:3719–3730. PubMed PMC
Zhilai Z., Hui Z., Anmin J., Shaoxiong M., Bo Y., Yinhai C. A combination of taxol infusion and human umbilical cord mesenchymal stem cells transplantation for the treatment of rat spinal cord injury. Brain Res. 2012;1481:79–89. PubMed
Cizkova D., Novotna I., Slovinska L., Vanicky I., Jergova S., Rosocha J., Radonak J. Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J. Neurotrauma. 2011;28:1951–1961. doi: 10.1089/neu.2010.1413. PubMed DOI
Mothe A.J., Bozkurt G., Catapano J., Zabojova J., Wang X., Keating A., Tator C.H. Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat. Spinal Cord. 2011;49:967–973. doi: 10.1038/sc.2011.46. PubMed DOI
Basso D.M., Beattie M.S., Bresnahan J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 1995;12:1–21. PubMed
Hodgetts S.I., Simmons P.J., Plant G.W. Human mesenchymal precursor cells (stro-1(+)) from spinal cord injury patients improve functional recovery and tissue sparing in an acute spinal cord injury rat model. Cell Transplant. 2013;22:393–412. doi: 10.3727/096368912X656081. PubMed DOI
Ritfeld G.J., Nandoe Tewarie R.D., Vajn K., Rahiem S.T., Hurtado A., Wendell D.F., Roos R.A., Oudega M. Bone marrow stromal cell-mediated tissue sparing enhances functional repair after spinal cord contusion in adult rats. Cell Transplant. 2012;21:1561–1575. doi: 10.3727/096368912X640484. PubMed DOI
Urdzikova L., Vanicky I. Post-traumatic moderate systemic hyperthermia worsens behavioural outcome after spinal cord injury in the rat. Spinal Cord. 2006;44:113–119. doi: 10.1038/sj.sc.3101792. PubMed DOI
Amemori T., Jendelova P., Ruzickova K., Arboleda D., Sykova E. Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat. Cytotherapy. 2010;12:212–225. doi: 10.3109/14653240903440103. PubMed DOI
Arboleda D., Forostyak S., Jendelova P., Marekova D., Amemori T., Pivonkova H., Masinova K., Sykova E. Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell. Mol. Neurobiol. 2011;31:1113–1122. doi: 10.1007/s10571-011-9712-3. PubMed DOI
Pourheydar B., Joghataei M.T., Bakhtiari M., Mehdizadeh M., Yekta Z., Najafzadeh N. Co-transplantation of bone marrow stromal cells with schwann cells evokes mechanical allodynia in the contusion model of spinal cord injury in rats. Cell J. 2012;13:213–222. PubMed PMC
Paul C., Samdani A.F., Betz R.R., Fischer I., Neuhuber B. Grafting of human bone marrow stromal cells into spinal cord injury: A comparison of delivery methods. Spine. 2009;34:328–334. doi: 10.1097/BRS.0b013e31819403ce. PubMed DOI PMC
Hejcl A., Ruzicka J., Kapcalova M., Turnovcova K., Krumbholcova E., Pradny M., Michalek J., Cihlar J., Jendelova P., Sykova E. Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: A comparative study of four methacrylate hydrogels. Stem Cells Dev. 2013;22:2794–2805. doi: 10.1089/scd.2012.0616. PubMed DOI
Hejcl A., Sedy J., Kapcalova M., Toro D.A., Amemori T., Lesny P., Likavcanova-Masinova K., Krumbholcova E., Pradny M., Michalek J., et al. Hpma-rgd hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev. 2010;19:1535–1546. doi: 10.1089/scd.2009.0378. PubMed DOI
Renault-Mihara F., Okada S., Shibata S., Nakamura M., Toyama Y., Okano H. Spinal cord injury: Emerging beneficial role of reactive astrocytes' migration. Int. J. Biochem. Cell Biol. 2008;40:1649–1653. doi: 10.1016/j.biocel.2008.03.009. PubMed DOI
Lukovic D., Moreno Manzano V., Stojkovic M., Bhattacharya S.S., Erceg S. Concise review: Human pluripotent stem cells in the treatment of spinal cord injury. Stem Cells. 2012;30:1787–1792. doi: 10.1002/stem.1159. PubMed DOI
Hausmann O.N. Post-traumatic inflammation following spinal cord injury. Spinal Cord. 2003;41:369–378. doi: 10.1038/sj.sc.3101483. PubMed DOI
Cusimano M., Biziato D., Brambilla E., Donega M., Alfaro-Cervello C., Snider S., Salani G., Pucci F., Comi G., Garcia-Verdugo J.M., et al. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain. 2012;135:447–460. doi: 10.1093/brain/awr339. PubMed DOI PMC
Ren Y., Young W. Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast. 2013;2013:945034. PubMed PMC
Hirai T., Uchida K., Nakajima H., Guerrero A.R., Takeura N., Watanabe S., Sugita D., Yoshida A., Johnson W.E., Baba H. The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in response to chronic progressive spinal cord compression: Implications for human cervical compressive myelopathy. PLoS One. 2013;8:e64528. doi: 10.1371/journal.pone.0064528. PubMed DOI PMC
Krausgruber T., Blazek K., Smallie T., Alzabin S., Lockstone H., Sahgal N., Hussell T., Feldmann M., Udalova I.A. Irf5 promotes inflammatory macrophage polarization and th1-th17 responses. Nat. Immunol. 2011;12:231–238. doi: 10.1038/ni.1990. PubMed DOI
Nakajima H., Uchida K., Rodriguez Guerrero A., Watanabe S., Sugita D., Takeura N., Yoshida A., Long G., Wright K., Johnson E., et al. Transplantation of mesenchymal stem cells promotes the alternative pathway of macrophage activation and functional recovery after spinal cord injury. J. Neurotrauma. 2012;29:1614–1625. PubMed PMC
Greish S., Abogresha N., Abdel-Hady Z., Zakaria E., Ghaly M., Hefny M. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. World J. Stem Cells. 2012;4:101–109. PubMed PMC
Kim J., Hematti P. Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Exp. Hematol. 2009;37:1445–1453. PubMed PMC
Li M., Ikehara S. Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells Int. 2013;2013:1–8. PubMed PMC
De la Calle J.L., Paino C.L. A procedure for direct lumbar puncture in rats. Brain Res. Bull. 2002;59:245–250. PubMed
Machova Urdzikova L., Sedlacek R., Suchy T., Amemori T., Ruzicka J., Lesny P., Havlas V., Sykova E., Jendelova P. Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat. Biomed. Eng. Online. 2014;13:42. doi: 10.1186/1475-925X-13-42. PubMed DOI PMC
Goldstein B., Little J.W., Harris R.M. Axonal sprouting following incomplete spinal cord injury: An experimental model. J. Spinal Cord Med. 1997;20:200–206. PubMed
Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis
New Model of Ventral Spinal Cord Lesion Induced by Balloon Compression in Rats
Alzheimer's Disease: Mechanism and Approach to Cell Therapy