Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat

. 2014 Jun 25 ; 15 (7) : 11275-93. [epub] 20140625

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24968269

Transplantation of mesenchymal stem cells (MSC) improves functional recovery in experimental models of spinal cord injury (SCI); however, the mechanisms underlying this effect are not completely understood. We investigated the effect of intrathecal implantation of human MSC on functional recovery, astrogliosis and levels of inflammatory cytokines in rats using balloon-induced spinal cord compression lesions. Transplanted cells did not survive at the lesion site of the spinal cord; however, functional recovery was enhanced in the MSC-treated group as was confirmed by the Basso, Beattie, and Bresnahan (BBB) and the flat beam test. Morphometric analysis showed a significantly higher amount of remaining white matter in the cranial part of the lesioned spinal cords. Immunohistochemical analysis of the lesions indicated the rearrangement of the glial scar in MSC-treated animals. Real-time PCR analysis revealed an increased expression of Irf5, Mrc1, Fgf2, Gap43 and Gfap. Transplantation of MSCs into a lesioned spinal cord reduced TNFα, IL-4, IL-1β, IL-2, IL-6 and IL-12 and increased the levels of MIP-1α and RANTES when compared to saline-treated controls. Intrathecal implantation of MSCs reduces the inflammatory reaction and apoptosis, improves functional recovery and modulates glial scar formation after SCI, regardless of cell survival. Therefore, repeated applications may prolong the beneficial effects induced by MSC application.

Zobrazit více v PubMed

Oliveri R.S., Bello S., Biering-Sorensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: Systematic review with meta-analyses of rat models. Neurobiol. Dis. 2014;62:338–353. doi: 10.1016/j.nbd.2013.10.014. PubMed DOI

Urdzikova L., Jendelova P., Glogarova K., Burian M., Hajek M., Sykova E. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J. Neurotrauma. 2006;23:1379–1391. doi: 10.1089/neu.2006.23.1379. PubMed DOI

Coutts M., Keirstead H.S. Stem cells for the treatment of spinal cord injury. Exp. Neurol. 2008;209:368–377. doi: 10.1016/j.expneurol.2007.09.002. PubMed DOI

Garbuzova-Davis S., Willing A.E., Saporta S., Bickford P.C., Gemma C., Chen N., Sanberg C.D., Klasko S.K., Borlongan C.V., Sanberg P.R. Novel cell therapy approaches for brain repair. Prog. Brain Res. 2006;157:207–222. doi: 10.1016/S0079-6123(06)57014-1. PubMed DOI

Joyce N., Annett G., Wirthlin L., Olson S., Bauer G., Nolta J.A. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen. Med. 2010;5:933–946. doi: 10.2217/rme.10.72. PubMed DOI PMC

Hardy S.A., Maltman D.J., Przyborski S.A. Mesenchymal stem cells as mediators of neural differentiation. Curr. Stem Cell Res. Ther. 2008;3:43–52. doi: 10.2174/157488808783489471. PubMed DOI

Nishio Y., Koda M., Kamada T., Someya Y., Yoshinaga K., Okada S., Harada H., Okawa A., Moriya H., Yamazaki M. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J. Neurosurg. Spine. 2006;5:424–433. doi: 10.3171/spi.2006.5.5.424. PubMed DOI

English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol. Cell Biol. 2013;91:19–26. doi: 10.1038/icb.2012.56. PubMed DOI

Stagg J., Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr. Mol. Med. 2013;13:856–867. doi: 10.2174/1566524011313050016. PubMed DOI

Weiss D.J., Casaburi R., Flannery R., LeRoux-Williams M., Tashkin D.P. A placebo-controlled, randomized trial of mesenchymal stem cells in copd. Chest. 2013;143:1590–1598. doi: 10.1378/chest.12-2094. PubMed DOI PMC

Karussis D., Karageorgiou C., Vaknin-Dembinsky A., Gowda-Kurkalli B., Gomori J. M., Kassis I., Bulte J.W., Petrou P., Ben-Hur T., Abramsky O., et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 2010;67:1187–1194. PubMed PMC

Vanecek V., Zablotskii V., Forostyak S., Ruzicka J., Herynek V., Babic M., Jendelova P., Kubinova S., Dejneka A., Sykova E. Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury. Int. J. Nanomed. 2012;7:3719–3730. PubMed PMC

Zhilai Z., Hui Z., Anmin J., Shaoxiong M., Bo Y., Yinhai C. A combination of taxol infusion and human umbilical cord mesenchymal stem cells transplantation for the treatment of rat spinal cord injury. Brain Res. 2012;1481:79–89. PubMed

Cizkova D., Novotna I., Slovinska L., Vanicky I., Jergova S., Rosocha J., Radonak J. Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J. Neurotrauma. 2011;28:1951–1961. doi: 10.1089/neu.2010.1413. PubMed DOI

Mothe A.J., Bozkurt G., Catapano J., Zabojova J., Wang X., Keating A., Tator C.H. Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat. Spinal Cord. 2011;49:967–973. doi: 10.1038/sc.2011.46. PubMed DOI

Basso D.M., Beattie M.S., Bresnahan J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 1995;12:1–21. PubMed

Hodgetts S.I., Simmons P.J., Plant G.W. Human mesenchymal precursor cells (stro-1(+)) from spinal cord injury patients improve functional recovery and tissue sparing in an acute spinal cord injury rat model. Cell Transplant. 2013;22:393–412. doi: 10.3727/096368912X656081. PubMed DOI

Ritfeld G.J., Nandoe Tewarie R.D., Vajn K., Rahiem S.T., Hurtado A., Wendell D.F., Roos R.A., Oudega M. Bone marrow stromal cell-mediated tissue sparing enhances functional repair after spinal cord contusion in adult rats. Cell Transplant. 2012;21:1561–1575. doi: 10.3727/096368912X640484. PubMed DOI

Urdzikova L., Vanicky I. Post-traumatic moderate systemic hyperthermia worsens behavioural outcome after spinal cord injury in the rat. Spinal Cord. 2006;44:113–119. doi: 10.1038/sj.sc.3101792. PubMed DOI

Amemori T., Jendelova P., Ruzickova K., Arboleda D., Sykova E. Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat. Cytotherapy. 2010;12:212–225. doi: 10.3109/14653240903440103. PubMed DOI

Arboleda D., Forostyak S., Jendelova P., Marekova D., Amemori T., Pivonkova H., Masinova K., Sykova E. Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell. Mol. Neurobiol. 2011;31:1113–1122. doi: 10.1007/s10571-011-9712-3. PubMed DOI

Pourheydar B., Joghataei M.T., Bakhtiari M., Mehdizadeh M., Yekta Z., Najafzadeh N. Co-transplantation of bone marrow stromal cells with schwann cells evokes mechanical allodynia in the contusion model of spinal cord injury in rats. Cell J. 2012;13:213–222. PubMed PMC

Paul C., Samdani A.F., Betz R.R., Fischer I., Neuhuber B. Grafting of human bone marrow stromal cells into spinal cord injury: A comparison of delivery methods. Spine. 2009;34:328–334. doi: 10.1097/BRS.0b013e31819403ce. PubMed DOI PMC

Hejcl A., Ruzicka J., Kapcalova M., Turnovcova K., Krumbholcova E., Pradny M., Michalek J., Cihlar J., Jendelova P., Sykova E. Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: A comparative study of four methacrylate hydrogels. Stem Cells Dev. 2013;22:2794–2805. doi: 10.1089/scd.2012.0616. PubMed DOI

Hejcl A., Sedy J., Kapcalova M., Toro D.A., Amemori T., Lesny P., Likavcanova-Masinova K., Krumbholcova E., Pradny M., Michalek J., et al. Hpma-rgd hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev. 2010;19:1535–1546. doi: 10.1089/scd.2009.0378. PubMed DOI

Renault-Mihara F., Okada S., Shibata S., Nakamura M., Toyama Y., Okano H. Spinal cord injury: Emerging beneficial role of reactive astrocytes' migration. Int. J. Biochem. Cell Biol. 2008;40:1649–1653. doi: 10.1016/j.biocel.2008.03.009. PubMed DOI

Lukovic D., Moreno Manzano V., Stojkovic M., Bhattacharya S.S., Erceg S. Concise review: Human pluripotent stem cells in the treatment of spinal cord injury. Stem Cells. 2012;30:1787–1792. doi: 10.1002/stem.1159. PubMed DOI

Hausmann O.N. Post-traumatic inflammation following spinal cord injury. Spinal Cord. 2003;41:369–378. doi: 10.1038/sj.sc.3101483. PubMed DOI

Cusimano M., Biziato D., Brambilla E., Donega M., Alfaro-Cervello C., Snider S., Salani G., Pucci F., Comi G., Garcia-Verdugo J.M., et al. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain. 2012;135:447–460. doi: 10.1093/brain/awr339. PubMed DOI PMC

Ren Y., Young W. Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast. 2013;2013:945034. PubMed PMC

Hirai T., Uchida K., Nakajima H., Guerrero A.R., Takeura N., Watanabe S., Sugita D., Yoshida A., Johnson W.E., Baba H. The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in response to chronic progressive spinal cord compression: Implications for human cervical compressive myelopathy. PLoS One. 2013;8:e64528. doi: 10.1371/journal.pone.0064528. PubMed DOI PMC

Krausgruber T., Blazek K., Smallie T., Alzabin S., Lockstone H., Sahgal N., Hussell T., Feldmann M., Udalova I.A. Irf5 promotes inflammatory macrophage polarization and th1-th17 responses. Nat. Immunol. 2011;12:231–238. doi: 10.1038/ni.1990. PubMed DOI

Nakajima H., Uchida K., Rodriguez Guerrero A., Watanabe S., Sugita D., Takeura N., Yoshida A., Long G., Wright K., Johnson E., et al. Transplantation of mesenchymal stem cells promotes the alternative pathway of macrophage activation and functional recovery after spinal cord injury. J. Neurotrauma. 2012;29:1614–1625. PubMed PMC

Greish S., Abogresha N., Abdel-Hady Z., Zakaria E., Ghaly M., Hefny M. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. World J. Stem Cells. 2012;4:101–109. PubMed PMC

Kim J., Hematti P. Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Exp. Hematol. 2009;37:1445–1453. PubMed PMC

Li M., Ikehara S. Bone-marrow-derived mesenchymal stem cells for organ repair. Stem Cells Int. 2013;2013:1–8. PubMed PMC

De la Calle J.L., Paino C.L. A procedure for direct lumbar puncture in rats. Brain Res. Bull. 2002;59:245–250. PubMed

Machova Urdzikova L., Sedlacek R., Suchy T., Amemori T., Ruzicka J., Lesny P., Havlas V., Sykova E., Jendelova P. Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat. Biomed. Eng. Online. 2014;13:42. doi: 10.1186/1475-925X-13-42. PubMed DOI PMC

Goldstein B., Little J.W., Harris R.M. Axonal sprouting following incomplete spinal cord injury: An experimental model. J. Spinal Cord Med. 1997;20:200–206. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis

. 2021 ; 9 () : 695900. [epub] 20210706

Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response

. 2021 May 24 ; 9 (6) : . [epub] 20210524

New Model of Ventral Spinal Cord Lesion Induced by Balloon Compression in Rats

. 2020 Nov 05 ; 8 (11) : . [epub] 20201105

The Effect of Wharton Jelly-Derived Mesenchymal Stromal Cells and Their Conditioned Media in the Treatment of a Rat Spinal Cord Injury

. 2019 Sep 12 ; 20 (18) : . [epub] 20190912

The Effect of iPS-Derived Neural Progenitors Seeded on Laminin-Coated pHEMA-MOETACl Hydrogel with Dual Porosity in a Rat Model of Chronic Spinal Cord Injury

. 2019 Apr ; 28 (4) : 400-412. [epub] 20190118

The Effect of Human Mesenchymal Stem Cells Derived from Wharton's Jelly in Spinal Cord Injury Treatment Is Dose-Dependent and Can Be Facilitated by Repeated Application

. 2018 May 17 ; 19 (5) : . [epub] 20180517

Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury?

. 2018 Jan ; 13 (1) : 119-127.

The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation

. 2015 Dec 31 ; 17 (1) : . [epub] 20151231

Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats

. 2015 Dec 22 ; 6 () : 257. [epub] 20151222

Alzheimer's Disease: Mechanism and Approach to Cell Therapy

. 2015 Nov 04 ; 16 (11) : 26417-51. [epub] 20151104

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...