Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response

. 2021 May 24 ; 9 (6) : . [epub] 20210524

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34073791

Grantová podpora
CZ.02.1.01/0.0./0.0/15_003/0000419 Ministerstvo Školství, Mládeže a Tělovýchovy
LTAUSA17120 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 34073791
PubMed Central PMC8225190
DOI 10.3390/biomedicines9060593
PII: biomedicines9060593
Knihovny.cz E-zdroje

Traumatic spinal cord injury (SCI) is untreatable and remains the leading cause of disability. Neuroprotection and recovery after SCI can be partially achieved by rapamycin (RAPA) treatment, an inhibitor of mTORC1, complex 1 of the mammalian target of rapamycin (mTOR) pathway. However, mechanisms regulated by the mTOR pathway are not only controlled by mTORC1, but also by a second mTOR complex (mTORC2). Second-generation inhibitor, pp242, inhibits both mTORC1 and mtORC2, which led us to explore its therapeutic potential after SCI and compare it to RAPA treatment. In a rat balloon-compression model of SCI, the effect of daily RAPA (5 mg/kg; IP) and pp242 (5 mg/kg; IP) treatment on inflammatory responses and autophagy was observed. We demonstrated inhibition of the mTOR pathway after SCI through analysis of p-S6, p-Akt, and p-4E-BP1 levels. Several proinflammatory cytokines were elevated in pp242-treated rats, while RAPA treatment led to a decrease in proinflammatory cytokines. Both RAPA and pp242 treatments caused an upregulation of LC3B and led to improved functional and structural recovery in acute SCI compared to the controls, however, a greater axonal sprouting was seen following RAPA treatment. These results suggest that dual mTOR inhibition by pp242 after SCI induces distinct mechanisms and leads to recovery somewhat inferior to that following RAPA treatment.

Zobrazit více v PubMed

Alizadeh A., Dyck S.M., Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019;10:282. doi: 10.3389/fneur.2019.00282. PubMed DOI PMC

Dumont R.J., Okonkwo D.O., Verma S., Hurlbert R.J., Boulos P.T., Ellegala D.B., Dumont A.S. Acute Spinal Cord Injury, Part I: Pathophysiologic Mechanisms. Clin. Neuropharmacol. 2001;24:254–264. doi: 10.1097/00002826-200109000-00002. PubMed DOI

Oyinbo C.A. Secondary Injury Mechanisms in Traumatic Spinal Cord Injury: A Nugget of This Multiply Cascade. Acta Neurobiol. Exp. 2011;71:281–299. PubMed

Ahuja C.S., Wilson J.R., Nori S., Kotter M.R.N., Druschel C., Curt A., Fehlings M.G. Traumatic Spinal Cord Injury. Nat. Rev. Dis. Primers. 2017;3:17018. doi: 10.1038/nrdp.2017.18. PubMed DOI

Satkunendrarajah K., Nassiri F., Karadimas S.K., Lip A., Yao G., Fehlings M.G. Riluzole Promotes Motor and Respiratory Recovery Associated with Enhanced Neuronal Survival and Function Following High Cervical Spinal Hemisection. Exp. Neurol. 2016;276:59–71. doi: 10.1016/j.expneurol.2015.09.011. PubMed DOI

Norimatsu Y., Ohmori T., Kimura A., Madoiwa S., Mimuro J., Seichi A., Yatomi Y., Hoshino Y., Sakata Y. FTY720 Improves Functional Recovery after Spinal Cord Injury by Primarily Nonimmunomodulatory Mechanisms. Am. J. Pathol. 2012;180:1625–1635. doi: 10.1016/j.ajpath.2011.12.012. PubMed DOI

Zhang H., Zhang X., Wang Z., Shi H., Wu F., Lin B., Xu X., Wang X., Fu X., Li Z., et al. Exogenous Basic Fibroblast Growth Factor Inhibits ER Stress–Induced Apoptosis and Improves Recovery from Spinal Cord Injury. CNS Neurosci. Ther. 2012;19:20–29. doi: 10.1111/cns.12013. PubMed DOI PMC

Machova Urdzikova L., Karova K., Ruzicka J., Kloudova A., Shannon C., Dubisova J., Murali R., Kubinova S., Sykova E., Jhanwar-Uniyal M., et al. The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation. Int. J. Mol. Sci. 2015;17:49. doi: 10.3390/ijms17010049. PubMed DOI PMC

Machova Urdzikova L., Ruzicka J., Karova K., Kloudova A., Svobodova B., Amin A., Dubisova J., Schmidt M., Kubinova S., Jhanwar-Uniyal M., et al. A Green Tea Polyphenol Epigallocatechin-3-Gallate Enhances Neuroregeneration after Spinal Cord Injury by Altering Levels of Inflammatory Cytokines. Neuropharmacology. 2017;126:213–223. doi: 10.1016/j.neuropharm.2017.09.006. PubMed DOI

Dikic I., Elazar Z. Mechanism and Medical Implications of Mammalian Autophagy. Nat. Rev. Mol. Cell Biol. 2018;19:349–364. doi: 10.1038/s41580-018-0003-4. PubMed DOI

Nixon R.A. The Role of Autophagy in Neurodegenerative Disease. Nat. Med. 2013;19:983–997. doi: 10.1038/nm.3232. PubMed DOI

Friedman L.G., Lachenmayer M.L., Wang J., He L., Poulose S.M., Komatsu M., Holstein G.R., Yue Z. Disrupted Autophagy Leads to Dopaminergic Axon and Dendrite Degeneration and Promotes Presynaptic Accumulation of -Synuclein and LRRK2 in the Brain. J. Neurosci. 2012;32:7585–7593. doi: 10.1523/JNEUROSCI.5809-11.2012. PubMed DOI PMC

Komatsu M., Waguri S., Chiba T., Murata S., Iwata J., Tanida I., Ueno T., Koike M., Uchiyama Y., Kominami E., et al. Loss of Autophagy in the Central Nervous System Causes Neurodegeneration in Mice. Nature. 2006;441:880–884. doi: 10.1038/nature04723. PubMed DOI

Rubinsztein D.C., Codogno P., Levine B. Autophagy Modulation as a Potential Therapeutic Target for Diverse Diseases. Nat. Rev. Drug Discov. 2012;11:709–730. doi: 10.1038/nrd3802. PubMed DOI PMC

Kinarivala N., Patel R., Boustany R.-M., Al-Ahmad A., Trippier P.C. Discovery of Aromatic Carbamates That Confer Neuroprotective Activity by Enhancing Autophagy and Inducing the Anti-Apoptotic Protein B-Cell Lymphoma 2 (Bcl-2) J. Med. Chem. 2017;60:9739–9756. doi: 10.1021/acs.jmedchem.7b01199. PubMed DOI PMC

Kanno H., Ozawa H., Sekiguchi A., Yamaya S., Itoi E. Induction of Autophagy and Autophagic Cell Death in Damaged Neural Tissue after Acute Spinal Cord Injury in Mice. Spine. 2011;36:E1427–E1434. doi: 10.1097/BRS.0b013e3182028c3a. PubMed DOI

Liu S., Sarkar C., Dinizo M., Faden A.I., Koh E.Y., Lipinski M.M., Wu J. Disrupted Autophagy after Spinal Cord Injury Is Associated with ER Stress and Neuronal Cell Death. Cell Death Dis. 2015;6:e1582. doi: 10.1038/cddis.2014.527. PubMed DOI PMC

Leiva-Rodríguez T., Romeo-Guitart D., Marmolejo-Martínez-Artesero S., Herrando-Grabulosa M., Bosch A., Forés J., Casas C. ATG5 Overexpression Is Neuroprotective and Attenuates Cytoskeletal and Vesicle-Trafficking Alterations in Axotomized Motoneurons. Cell Death Dis. 2018;9:626. doi: 10.1038/s41419-018-0682-y. PubMed DOI PMC

Sekiguchi A., Kanno H., Ozawa H., Yamaya S., Itoi E. Rapamycin Promotes Autophagy and Reduces Neural Tissue Damage and Locomotor Impairment after Spinal Cord Injury in Mice. J. Neurotrauma. 2012;29:946–956. doi: 10.1089/neu.2011.1919. PubMed DOI

Tang P., Hou H., Zhang L., Lan X., Mao Z., Liu D., He C., Du H., Zhang L. Autophagy Reduces Neuronal Damage and Promotes Locomotor Recovery via Inhibition of Apoptosis after Spinal Cord Injury in Rats. Mol. Neurobiol. 2014;49:276–287. doi: 10.1007/s12035-013-8518-3. PubMed DOI

Laplante M., Sabatini D.M. MTOR Signaling in Growth Control and Disease. Cell. 2012;149:274–293. doi: 10.1016/j.cell.2012.03.017. PubMed DOI PMC

Kim J., Kundu M., Viollet B., Guan K.-L. AMPK and MTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nat. Cell Biol. 2011;13:132–141. doi: 10.1038/ncb2152. PubMed DOI PMC

Ma X., Zhang S., He L., Rong Y., Brier L.W., Sun Q., Liu R., Fan W., Chen S., Yue Z., et al. MTORC1-Mediated NRBF2 Phosphorylation Functions as a Switch for the Class III PtdIns3K and Autophagy. Autophagy. 2017;13:592–607. doi: 10.1080/15548627.2016.1269988. PubMed DOI PMC

Rabanal-Ruiz Y., Otten E.G., Korolchuk V.I. MTORC1 as the Main Gateway to Autophagy. Essays Biochem. 2017;61:565–584. doi: 10.1042/EBC20170027. PubMed DOI PMC

Spilman P., Podlutskaya N., Hart M.J., Debnath J., Gorostiza O., Bredesen D., Richardson A., Strong R., Galvan V. Inhibition of MTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-Beta Levels in a Mouse Model of Alzheimer’s Disease. PLoS ONE. 2010;5:e9979. doi: 10.1371/journal.pone.0009979. PubMed DOI PMC

Tsvetkov A.S., Miller J., Arrasate M., Wong J.S., Pleiss M.A., Finkbeiner S. A Small-Molecule Scaffold Induces Autophagy in Primary Neurons and Protects against Toxicity in a Huntington Disease Model. Proc. Natl. Acad. Sci. USA. 2010;107:16982–16987. doi: 10.1073/pnas.1004498107. PubMed DOI PMC

Li X.-G., Du J.-H., Lu Y., Lin X.-J. Neuroprotective Effects of Rapamycin on Spinal Cord Injury in Rats by Increasing Autophagy and Akt Signaling. Neural Regen. Res. 2019;14:721. doi: 10.4103/1673-5374.247476. PubMed DOI PMC

Srivastava I.N., Shperdheja J., Baybis M., Ferguson T., Crino P.B. MTOR Pathway Inhibition Prevents Neuroinflammation and Neuronal Death in a Mouse Model of Cerebral Palsy. Neurobiol. Dis. 2016;85:144–154. doi: 10.1016/j.nbd.2015.10.001. PubMed DOI

Xie L., Sun F., Wang J., Mao X., Xie L., Yang S.-H., Su D., Simpkins J.W., Greenberg D.A., Jin K. MTOR Signaling Inhibition Modulates Macrophages/Microglia-Mediated Neuroinflammation and Secondary Injury via Regulatory T Cells after Focal Ischemia. J. Immunol. 2014;192:6009–6019. doi: 10.4049/jimmunol.1303492. PubMed DOI PMC

Wang Z.-Y., Lin J.-H., Muharram A., Liu W.-G. Beclin-1-Mediated Autophagy Protects Spinal Cord Neurons against Mechanical Injury-Induced Apoptosis. Apoptosis. 2014;19:933–945. doi: 10.1007/s10495-014-0976-1. PubMed DOI

Jhanwar-Uniyal M., Amin A.G., Cooper J.B., Das K., Schmidt M.H., Murali R. Discrete Signaling Mechanisms of MTORC1 and MTORC2: Connected yet Apart in Cellular and Molecular Aspects. Adv. Biol. Regul. 2017;64:39–48. doi: 10.1016/j.jbior.2016.12.001. PubMed DOI

Sarbassov D.D., Ali S.M., Kim D.-H., Guertin D.A., Latek R.R., Erdjument-Bromage H., Tempst P., Sabatini D.M. Rictor, a Novel Binding Partner of MTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway That Regulates the Cytoskeleton. Curr. Biol. CB. 2004;14:1296–1302. doi: 10.1016/j.cub.2004.06.054. PubMed DOI

Neil J., Shannon C., Mohan A., Laurent D., Murali R., Jhanwar-Uniyal M. ATP-Site Binding Inhibitor Effectively Targets MTORC1 and MTORC2 Complexes in Glioblastoma. Int. J. Oncol. 2016;48:1045–1052. doi: 10.3892/ijo.2015.3311. PubMed DOI

Feng H., Yang Z., Bai X., Yang M., Fang Y., Zhang X., Guo Q., Ning H. Therapeutic Potential of a Dual MTORC1/2 Inhibitor for the Prevention of Posterior Capsule Opacification: An in Vitro Study. Int. J. Mol. Med. 2018;41:2099–2107. doi: 10.3892/ijmm.2018.3398. PubMed DOI PMC

Vanický I., Urdzíková L., Saganová K., Čízková D., Gálik J. A Simple and Reproducible Model of Spinal Cord Injury Induced by Epidural Balloon Inflation in the Rat. J. Neurotrauma. 2001;18:1399–1407. doi: 10.1089/08977150152725687. PubMed DOI

Urdzíková L., Vanický I. Post-Traumatic Moderate Systemic Hyperthermia Worsens Behavioural Outcome after Spinal Cord Injury in the Rat. Spinal Cord. 2006;44:113–119. doi: 10.1038/sj.sc.3101792. PubMed DOI

Banerjee S., Gianino S.M., Gao F., Christians U., Gutmann D.H. Interpreting Mammalian Target of Rapamycin and Cell Growth Inhibition in a Genetically-Engineered Mouse Model of Nf1-Deficient Astrocytes. Mol. Cancer Ther. 2011;10 doi: 10.1158/1535-7163.MCT-10-0654. PubMed DOI PMC

Md Rashid M., Lee H., Jung B.H. Metabolite Identification and Pharmacokinetic Profiling of PP242, an ATP-Competitive Inhibitor of MTOR Using Ultra High-Performance Liquid Chromatography and Mass Spectrometry. J. Chromatogr. B. 2018;1072:244–251. doi: 10.1016/j.jchromb.2017.11.027. PubMed DOI

Rivero-Gutiérrez B., Anzola A., Martínez-Augustin O., de Medina F.S. Stain-Free Detection as Loading Control Alternative to Ponceau and Housekeeping Protein Immunodetection in Western Blotting. Anal. Biochem. 2014;467:1–3. doi: 10.1016/j.ab.2014.08.027. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Urdzíková L.M., Růžička J., LaBagnara M., Kárová K., Kubinová Š., Jiráková K., Murali R., Syková E., Jhanwar-Uniyal M., Jendelová P. Human Mesenchymal Stem Cells Modulate Inflammatory Cytokines after Spinal Cord Injury in Rat. Int. J. Mol. Sci. 2014;15:11275–11293. doi: 10.3390/ijms150711275. PubMed DOI PMC

Basso D.M., Beattie M.S., Bresnahan J.C. A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats. J. Neurotrauma. 1995;12:1–21. doi: 10.1089/neu.1995.12.1. PubMed DOI

Kanno H., Ozawa H., Sekiguchi A., Yamaya S., Tateda S., Yahata K., Itoi E. The Role of MTOR Signaling Pathway in Spinal Cord Injury. Cell Cycle. 2012;11:3175. doi: 10.4161/cc.21262. PubMed DOI PMC

Wullschleger S., Loewith R., Hall M.N. TOR Signaling in Growth and Metabolism. Cell. 2006;124:471–484. doi: 10.1016/j.cell.2006.01.016. PubMed DOI

Chen H.-C., Fong T.-H., Lee A.-W., Chiu W.-T. Autophagy Is Activated in Injured Neurons and Inhibited by Methylprednisolone After Experimental Spinal Cord Injury. Spine. 2012;37:470–475. doi: 10.1097/BRS.0b013e318221e859. PubMed DOI

Chen C.-H., Sung C.-S., Huang S.-Y., Feng C.-W., Hung H.-C., Yang S.-N., Chen N.-F., Tai M.-H., Wen Z.-H., Chen W.-F. The Role of the PI3K/Akt/MTOR Pathway in Glial Scar Formation Following Spinal Cord Injury. Exp. Neurol. 2016;278:27–41. doi: 10.1016/j.expneurol.2016.01.023. PubMed DOI

Codeluppi S., Svensson C.I., Hefferan M.P., Valencia F., Silldorff M.D., Oshiro M., Marsala M., Pasquale E.B. The Rheb-MTOR Pathway Is Upregulated in Reactive Astrocytes of the Injured Spinal Cord. J. Neurosci. 2009;29:1093–1104. doi: 10.1523/JNEUROSCI.4103-08.2009. PubMed DOI PMC

Wang X., Li X., Huang B., Ma S. Blocking Mammalian Target of Rapamycin (MTOR) Improves Neuropathic Pain Evoked by Spinal Cord Injury. Transl. Neurosci. 2016;7 doi: 10.1515/tnsci-2016-0008. PubMed DOI PMC

Chen H.-C., Fong T.-H., Hsu P.-W., Chiu W.-T. Multifaceted Effects of Rapamycin on Functional Recovery after Spinal Cord Injury in Rats through Autophagy Promotion, Anti-Inflammation, and Neuroprotection. J. Surg. Res. 2013;179:e203–e210. doi: 10.1016/j.jss.2012.02.023. PubMed DOI

Du J., Li X., Lin X., Lu Y., Chen B. A Rapamycin-Enhanced Autophagy Reduces Neural Apoptosis by Blocking Bax Mitochondral Translation and Cytochrome C Release in Acute Spinal Cord Injury in Rats. Med. Case Rep. 2017;3 doi: 10.21767/2471-8041.100075. DOI

O’Reilly K.E., Rojo F., She Q.-B., Solit D., Mills G.B., Smith D., Lane H., Hofmann F., Hicklin D.J., Ludwig D.L., et al. MTOR Inhibition Induces Upstream Receptor Tyrosine Kinase Signaling and Activates Akt. Cancer Res. 2006;66:1500–1508. doi: 10.1158/0008-5472.CAN-05-2925. PubMed DOI PMC

Sarbassov D.D. Phosphorylation and Regulation of Akt/PKB by the Rictor-MTOR Complex. Science. 2005;307:1098–1101. doi: 10.1126/science.1106148. PubMed DOI

Cordaro M., Paterniti I., Siracusa R., Impellizzeri D., Esposito E., Cuzzocrea S. KU0063794, a Dual MTORC1 and MTORC2 Inhibitor, Reduces Neural Tissue Damage and Locomotor Impairment After Spinal Cord Injury in Mice. Mol. Neurobiol. 2017;54:2415–2427. doi: 10.1007/s12035-016-9827-0. PubMed DOI

Brown E.J., Beal P.A., Keith C.T., Chen J., Bum Shin T., Schreiber S.L. Control of P70 S6 Kinase by Kinase Activity of FRAP in Vivo. Nature. 1995;377:441–446. doi: 10.1038/377441a0. PubMed DOI

Gingras A.C., Kennedy S.G., O’Leary M.A., Sonenberg N., Hay N. 4E-BP1, a Repressor of MRNA Translation, Is Phosphorylated and Inactivated by the Akt(PKB) Signaling Pathway. Genes Dev. 1998;12:502–513. doi: 10.1101/gad.12.4.502. PubMed DOI PMC

Feldman M.E., Apsel B., Uotila A., Loewith R., Knight Z.A., Ruggero D., Shokat K.M. Active-Site Inhibitors of MTOR Target Rapamycin-Resistant Outputs of MTORC1 and MTORC2. PLoS Biol. 2009;7 doi: 10.1371/journal.pbio.1000038. PubMed DOI PMC

Thoreen C.C., Kang S.A., Chang J.W., Liu Q., Zhang J., Gao Y., Reichling L.J., Sim T., Sabatini D.M., Gray N.S. An ATP-Competitive Mammalian Target of Rapamycin Inhibitor Reveals Rapamycin-Resistant Functions of MTORC1. J. Biol. Chem. 2009;284:8023–8032. doi: 10.1074/jbc.M900301200. PubMed DOI PMC

Jiang Y.P., Ballou L.M., Lin R.Z. Rapamycin-Insensitive Regulation of 4e-BP1 in Regenerating Rat Liver. J. Biol. Chem. 2001;276:10943–10951. doi: 10.1074/jbc.M007758200. PubMed DOI

Choo A.Y., Yoon S.-O., Kim S.G., Roux P.P., Blenis J. Rapamycin Differentially Inhibits S6Ks and 4E-BP1 to Mediate Cell-Type-Specific Repression of MRNA Translation. Proc. Natl. Acad. Sci. USA. 2008;105:17414–17419. doi: 10.1073/pnas.0809136105. PubMed DOI PMC

Perlson E., Hanz S., Ben-Yaakov K., Segal-Ruder Y., Seger R., Fainzilber M. Vimentin-Dependent Spatial Translocation of an Activated MAP Kinase in Injured Nerve. Neuron. 2005;45:715–726. doi: 10.1016/j.neuron.2005.01.023. PubMed DOI

Willis D.E., Twiss J.L. The Evolving Roles of Axonally Synthesized Proteins in Regeneration. Curr. Opin. Neurobiol. 2006;16:111–118. doi: 10.1016/j.conb.2006.01.002. PubMed DOI

Michaelevski I., Medzihradszky K.F., Lynn A., Burlingame A.L., Fainzilber M. Axonal Transport Proteomics Reveals Mobilization of Translation Machinery to the Lesion Site in Injured Sciatic Nerve. Mol. Cell. Proteom. MCP. 2010;9:976–987. doi: 10.1074/mcp.M900369-MCP200. PubMed DOI PMC

Petrova V., Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev. Neurobiol. 2018;78:898–925. doi: 10.1002/dneu.22608. PubMed DOI

Goldshmit Y., Kanner S., Zacs M., Frisca F., Pinto A.R., Currie P.D., Pinkas-Kramarski R. Rapamycin Increases Neuronal Survival, Reduces Inflammation and Astrocyte Proliferation after Spinal Cord Injury. Mol. Cell. Neurosci. 2015;68:82–91. doi: 10.1016/j.mcn.2015.04.006. PubMed DOI

Kang S.A., Pacold M.E., Cervantes C.L., Lim D., Lou H.J., Ottina K., Gray N.S., Turk B.E., Yaffe M.B., Sabatini D.M. MTORC1 Phosphorylation Sites Encode Their Sensitivity to Starvation and Rapamycin. Science. 2013;341:1236566. doi: 10.1126/science.1236566. PubMed DOI PMC

Hsieh A.C., Liu Y., Edlind M.P., Ingolia N.T., Janes M.R., Sher A., Shi E.Y., Stumpf C.R., Christensen C., Bonham M.J., et al. The Translational Landscape of MTOR Signalling Steers Cancer Initiation and Metastasis. Nature. 2012;485:55–61. doi: 10.1038/nature10912. PubMed DOI PMC

Yan P., Bai L., Lu W., Gao Y., Bi Y., Lv G. Regulation of Autophagy by AMP-Activated Protein Kinase/Sirtuin 1 Pathway Reduces Spinal Cord Neurons Damage. Iran. J. Basic Med. Sci. 2017;20:1029–1036. doi: 10.22038/IJBMS.2017.9272. PubMed DOI PMC

Dossou A.S., Basu A. The Emerging Roles of MTORC1 in Macromanaging Autophagy. Cancers. 2019;11:1422. doi: 10.3390/cancers11101422. PubMed DOI PMC

Peña-Llopis S., Vega-Rubin-de-Celis S., Schwartz J.C., Wolff N.C., Tran T.A.T., Zou L., Xie X.-J., Corey D.R., Brugarolas J. Regulation of TFEB and V-ATPases by MTORC1. EMBO J. 2011;30:3242–3258. doi: 10.1038/emboj.2011.257. PubMed DOI PMC

Gordeev S.A., Bykova T.V., Zubova S.G., Bystrova O.A., Martynova M.G., Pospelov V.A., Pospelova T.V. MTOR Kinase Inhibitor Pp242 Causes Mitophagy Terminated by Apoptotic Cell Death in E1A-Ras Transformed Cells. Oncotarget. 2015;6:44905–44926. doi: 10.18632/oncotarget.6457. PubMed DOI PMC

Kim Y.C., Guan K.-L. MTOR: A Pharmacologic Target for Autophagy Regulation. J. Clin. Investig. 2015;125:25–32. doi: 10.1172/JCI73939. PubMed DOI PMC

He M., Ding Y., Chu C., Tang J., Xiao Q., Luo Z.-G. Autophagy Induction Stabilizes Microtubules and Promotes Axon Regeneration after Spinal Cord Injury. Proc. Natl. Acad. Sci. USA. 2016;113:11324–11329. doi: 10.1073/pnas.1611282113. PubMed DOI PMC

Li Z., Nie L., Chen L., Sun Y., Li G. Rapamycin Relieves Inflammation of Experimental Autoimmune Encephalomyelitis by Altering the Balance of Treg/Th17 in a Mouse Model. Neurosci. Lett. 2019;705:39–45. doi: 10.1016/j.neulet.2019.04.035. PubMed DOI

Liu S., Xu G.-Y., Johnson K.M., Echetebu C., Ye Z., Hulsebosch C.E., McAdoo D.J. Regulation of Interleukin-1β by the Interleukin-1 Receptor Antagonist in the Glutamate-Injured Spinal Cord: Endogenous Neuroprotection. Brain Res. 2008;1231:63–74. doi: 10.1016/j.brainres.2008.07.035. PubMed DOI

Boato F., Rosenberger K., Nelissen S., Geboes L., Peters E.M., Nitsch R., Hendrix S. Absence of IL-1β Positively Affects Neurological Outcome, Lesion Development and Axonal Plasticity after Spinal Cord Injury. J. Neuroinflamm. 2013;10:792. doi: 10.1186/1742-2094-10-6. PubMed DOI PMC

Pelisch N., Rosas Almanza J., Stehlik K.E., Aperi B.V., Kroner A. CCL3 Contributes to Secondary Damage after Spinal Cord Injury. J. Neuroinflamm. 2020;17:362. doi: 10.1186/s12974-020-02037-3. PubMed DOI PMC

Stammers A.T., Liu J., Kwon B.K. Expression of Inflammatory Cytokines Following Acute Spinal Cord Injury in a Rodent Model. J. Neurosci. Res. 2012;90:782–790. doi: 10.1002/jnr.22820. PubMed DOI

Mukaino M., Nakamura M., Yamada O., Okada S., Morikawa S., Renault-Mihara F., Iwanami A., Ikegami T., Ohsugi Y., Tsuji O., et al. Anti-IL-6-Receptor Antibody Promotes Repair of Spinal Cord Injury by Inducing Microglia-Dominant Inflammation. Exp. Neurol. 2010;224:403–414. doi: 10.1016/j.expneurol.2010.04.020. PubMed DOI

Okada S., Nakamura M., Mikami Y., Shimazaki T., Mihara M., Ohsugi Y., Iwamoto Y., Yoshizaki K., Kishimoto T., Toyama Y., et al. Blockade of Interleukin-6 Receptor Suppresses Reactive Astrogliosis and Ameliorates Functional Recovery in Experimental Spinal Cord Injury. J. Neurosci. Res. 2004;76:265–276. doi: 10.1002/jnr.20044. PubMed DOI

Yang G., Tang W.-Y. Resistance of Interleukin-6 to the Extracellular Inhibitory Environment Promotes Axonal Regeneration and Functional Recovery Following Spinal Cord Injury. Int. J. Mol. Med. 2017;39:437–445. doi: 10.3892/ijmm.2017.2848. PubMed DOI

Gao W., Li F., Zhou Z., Xu X., Wu Y., Zhou S., Yin D., Sun D., Xiong J., Jiang R., et al. IL-2/Anti-IL-2 Complex Attenuates Inflammation and BBB Disruption in Mice Subjected to Traumatic Brain Injury. Front. Neurol. 2017;8 doi: 10.3389/fneur.2017.00281. PubMed DOI PMC

Zhang H., Xia Y., Ye Q., Yu F., Zhu W., Li P., Wei Z., Yang Y., Shi Y., Thomson A.W., et al. In Vivo Expansion of Regulatory T Cells with IL-2/IL-2 Antibody Complex Protects against Transient Ischemic Stroke. J. Neurosci. 2018;38:10168–10179. doi: 10.1523/JNEUROSCI.3411-17.2018. PubMed DOI PMC

Walsh J.T., Zheng J., Smirnov I., Lorenz U., Tung K., Kipnis J. Regulatory T Cells in Central Nervous System Injury: A Double-Edged Sword. J. Immunol. 2014;193:5013–5022. doi: 10.4049/jimmunol.1302401. PubMed DOI PMC

Karova K., Wainwright J.V., Machova-Urdzikova L., Pisal R.V., Schmidt M., Jendelova P., Jhanwar-Uniyal M. Transplantation of Neural Precursors Generated from Spinal Progenitor Cells Reduces Inflammation in Spinal Cord Injury via NF-ΚB Pathway Inhibition. J. Neuroinflamm. 2019;16:12. doi: 10.1186/s12974-019-1394-7. PubMed DOI PMC

Mukhamedshina Y.O., Akhmetzyanova E.R., Martynova E.V., Khaiboullina S.F., Galieva L.R., Rizvanov A.A. Systemic and Local Cytokine Profile Following Spinal Cord Injury in Rats: A Multiplex Analysis. Front. Neurol. 2017;8 doi: 10.3389/fneur.2017.00581. PubMed DOI PMC

Kwiecien J.M., Dabrowski W., Dąbrowska-Bouta B., Sulkowski G., Oakden W., Kwiecien-Delaney C.J., Yaron J.R., Zhang L., Schutz L., Marzec-Kotarska B., et al. Prolonged Inflammation Leads to Ongoing Damage after Spinal Cord Injury. PLoS ONE. 2020;15:e0226584. doi: 10.1371/journal.pone.0226584. PubMed DOI PMC

Thompson C.D., Zurko J.C., Hanna B.F., Hellenbrand D.J., Hanna A. The Therapeutic Role of Interleukin-10 after Spinal Cord Injury. J. Neurotrauma. 2013;30:1311–1324. doi: 10.1089/neu.2012.2651. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...