The Role of Green Tea Catechin Epigallocatechin Gallate (EGCG) and Mammalian Target of Rapamycin (mTOR) Inhibitor PP242 (Torkinib) in the Treatment of Spinal Cord Injury
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0./0.0/15_003/0000419
Operational Program Research, Development and Education in the framework of the project "Center of Reconstructive Neuroscience"
17120
InterAction LTAUSA
(LM2015064)
EATRIS-CZ
(CZ.1.05/1.1.00/02.0109)
BIOCEV
LQ1604 National Sustainability Program II (Project BIOCEV-FAR)
Ministry of Education, Youth and Sports of CR
PubMed
36829922
PubMed Central
PMC9952296
DOI
10.3390/antiox12020363
PII: antiox12020363
Knihovny.cz E-zdroje
- Klíčová slova
- EGCG, PP 242, astrogliosis, axonal growth, inflammatory response, mTOR pathway, neuroregeneration, spinal cord injury,
- Publikační typ
- časopisecké články MeSH
Spinal cord injury (SCI) is a devastating condition that has physical and psychological consequences for patients. SCI is accompanied by scar formation and systemic inflammatory response leading to an intense degree of functional loss. The catechin, epigallocatechin gallate (EGCG), an active compound found in green tea, holds neuroprotective features and is known for its anti-inflammatory potential. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that exists in two functionally distinct complexes termed mTOR complex 1 and 2 (mTORC1; mTORC2). Inhibition of mTORC1 by rapamycin causes neuroprotection, leading to partial recovery from SCI. In this study the effects of EGCG, PP242 (an inhibitor of both complexes of mTOR), and a combination of EGCG and PP242 in SCI have been examined. It has been found that both EGCG and PP242 significantly improved sensory/motor functions following SCI. However, EGCG appeared to be more effective (BBB motor test, from 2 to 8 weeks after SCI, p = 0.019, p = 0.007, p = 0.006, p = 0.006, p = 0.05, p = 0.006, and p = 0.003, respectively). The only exception was the Von Frey test, where EGCG was ineffective, while mTOR inhibition by PP242, as well as PP242 in combination with EGCG, significantly reduced withdrawal latency starting from week three (combinatorial therapy (EGCG + PP242) vs. control at 3, 5, and 7 weeks, p = 0.011, p = 0.007, and p = 0.05, respectively). It has been found that EGCG was as effective as PP242 in suppressing mTOR signaling pathways, as evidenced by a reduction in phosphorylated S6 expression (PP242 (t-test, p < 0.0001) or EGCG (t-test, p = 0.0002)). These results demonstrate that EGCG and PP242 effectively suppress mTOR pathways, resulting in recovery from SCI in rats, and that EGCG acts via suppressing mTOR pathways.
Departments of Neurosurgery New York Medical College Valhalla NY 10595 USA
Institute of Experimental Medicine Czech Academy of Sciences Vídeňská 1083 Prague Czech Republic
Zobrazit více v PubMed
Kawai M., Nagoshi N., Okano H., Nakamura M. A review of regenerative therapy for spinal cord injury using human iPS cells. N. Am. Spine Soc. J. 2023;13:100184. doi: 10.1016/j.xnsj.2022.100184. PubMed DOI PMC
Alizadeh A., Dyck S.M., Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019;10:282. doi: 10.3389/fneur.2019.00282. PubMed DOI PMC
Dumont R.J., Verma S., Okonkwo D.O., Hurlbert R.J., Boulos P.T., Ellegala D.B., Dumont A.S. Acute spinal cord injury, part II: Contemporary pharmacotherapy. Clin. Neuropharmacol. 2001;24:265–279. doi: 10.1097/00002826-200109000-00003. PubMed DOI
Shang Z., Wang R., Li D., Chen J., Zhang B., Wang M., Wang X., Wanyan P. Spinal Cord Injury: A Systematic Review and Network Meta-Analysis of Therapeutic Strategies Based on 15 Types of Stem Cells in Animal Models. Front. Pharmacol. 2022;13:819861. doi: 10.3389/fphar.2022.819861. PubMed DOI PMC
Rosen T. Green tea catechins: Biologic properties, proposed mechanisms of action, and clinical implications. J. Drugs Dermatol. 2012;11:e55–e60. PubMed
Kimura M., Umegaki K., Kasuya Y., Sugisawa A., Higuchi M. The relation between single/double or repeated tea catechin ingestions and plasma antioxidant activity in humans. Eur. J. Clin. Nutr. 2002;56:1186–1193. doi: 10.1038/sj.ejcn.1601471. PubMed DOI
Khalatbary A.R., Ahmadvand H. Anti-inflammatory effect of the epigallocatechin gallate following spinal cord trauma in rat. Iran. Biomed. J. 2011;15:31–37. PubMed PMC
Urdzikova L.M., Ruzicka J., Karova K., Kloudova A., Svobodova B., Amin A., Dubisova J., Schmidt M., Kubinova S., Jhanwar-Uniyal M., et al. A green tea polyphenol epigallocatechin-3-gallate enhances neuroregeneration after spinal cord injury by altering levels of inflammatory cytokines. Neuropharmacology. 2017;126:213–223. doi: 10.1016/j.neuropharm.2017.09.006. PubMed DOI
Kuang X., Huang Y., Cu H.F., Zu X.Y., Zou W.Y., Song Z.B., Guo Q.L. Effects of intrathecal epigallocatechin gallate, an inhibitor of Toll-like receptor 4, on chronic neuropathic pain in rats. Eur. J. Pharmacol. 2012;676:51–56. doi: 10.1016/j.ejphar.2011.11.037. PubMed DOI
Xifro X., Vidal-Sancho L., Boadas-Vaello P., Turrado C., Alberch J., Puig T., Verdu E. Novel epigallocatechin-3-gallate (EGCG) derivative as a new therapeutic strategy for reducing neuropathic pain after chronic constriction nerve injury in mice. PLoS ONE. 2015;10:e0123122. doi: 10.1371/journal.pone.0123122. PubMed DOI PMC
Wang Y., Luo W., Lin F., Liu W., Gu R. Epigallocatechin-3-gallate selenium nanoparticles for neuroprotection by scavenging reactive oxygen species and reducing inflammation. Front. Bioeng. Biotechnol. 2022;10:989602. doi: 10.3389/fbioe.2022.989602. PubMed DOI PMC
Zhang L., Liu W., You H., Chen Z., Xu L., He H. Assessing the analgesic efficacy of oral epigallocatechin-3-gallate on epidural catheter analgesia in patients after surgical stabilisation of multiple rib fractures: A prospective double-blind, placebo-controlled clinical trial. Pharm. Biol. 2020;58:741–744. doi: 10.1080/13880209.2020.1797123. PubMed DOI PMC
Kumar N.B., Pow-Sang J., Spiess P.E., Park J., Salup R., Williams C.R., Parnes H., Schell M.J. Randomized, placebo-controlled trial evaluating the safety of one-year administration of green tea catechins. Oncotarget. 2016;7:70794–70802. doi: 10.18632/oncotarget.12222. PubMed DOI PMC
Bellmann-Strobl J., Paul F., Wuerfel J., Dorr J., Infante-Duarte C., Heidrich E., Kortgen B., Brandt A., Pfuller C., Radbruch H., et al. Epigallocatechin Gallate in Relapsing-Remitting Multiple Sclerosis A Randomized, Placebo-Controlled Trial. Neurol. Neuroimmunol. Neuroinflamm. 2021;8:e981. doi: 10.1212/NXI.0000000000000981. PubMed DOI PMC
Mahler A., Steiniger J., Bock M., Klug L., Parreidt N., Lorenz M., Zimmermann B.F., Krannich A., Paul F., Boschmann M. Metabolic response to epigallocatechin-3-gallate in relapsing-remitting multiple sclerosis: A randomized clinical trial. Am. J. Clin. Nutr. 2015;101:487–495. doi: 10.3945/ajcn.113.075309. PubMed DOI
Wolfram S. Effects of green tea and EGCG on cardiovascular and metabolic health. J. Am. Coll. Nutr. 2007;26:373S–388S. doi: 10.1080/07315724.2007.10719626. PubMed DOI
Aydin M.S., Caliskan A., Kocarslan A., Kocarslan S., Yildiz A., Gunay S., Savik E., Hazar A., Yalcin F. Intraperitoneal curcumin decreased lung, renal and heart injury in abdominal aorta ischemia/reperfusion model in rat. Int. J. Surg. 2014;12:601–605. doi: 10.1016/j.ijsu.2014.04.013. PubMed DOI
Garcia-Nino W.R., Zatarain-Barron Z.L., Hernandez-Pando R., Vega-Garcia C.C., Tapia E., Pedraza-Chaverri J. Oxidative Stress Markers and Histological Analysis in Diverse Organs from Rats Treated with a Hepatotoxic Dose of Cr(VI): Effect of Curcumin. Biol. Trace Elem. Res. 2015;167:130–145. doi: 10.1007/s12011-015-0283-x. PubMed DOI
Ruzicka J., Urdzikova L.M., Svobodova B., Amin A.G., Karova K., Dubisova J., Zaviskova K., Kubinova S., Schmidt M., Jhanwar-Uniyal M., et al. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury? Neural Regen. Res. 2018;13:119–127. doi: 10.4103/1673-5374.224379. PubMed DOI PMC
Dudka J., Jodynis-Liebert J., Korobowicz E., Burdan F., Korobowicz A., Szumilo J., Tokarska E., Klepacz R., Murias M. Activity of NADPH-cytochrome P-450 reductase of the human heart, liver and lungs in the presence of (-)-epigallocatechin gallate, quercetin and resveratrol: An in vitro study. Basic Clin. Pharmacol. 2005;97:74–79. doi: 10.1111/j.1742-7843.2005.pto_98.x. PubMed DOI
Liu Z.J., Ran Y.Y., Huang S., Wen S.H., Zhang W.X., Liu X.R., Ji Z.L., Geng X.K., Ji X.M., Du H.S., et al. Curcumin Protects against Ischemic Stroke by Titrating Microglia/Macrophage Polarization. Front. Aging Neurosci. 2017;9:233. doi: 10.3389/fnagi.2017.00233. PubMed DOI PMC
Meng M., Li Y.Q., Yan M.X., Kou Y., Ren H.B. Effects of epigallocatechin gallate on diethyldithiocarbamate-induced pancreatic fibrosis in rats. Biol. Pharm. Bull. 2007;30:1091–1096. doi: 10.1248/bpb.30.1091. PubMed DOI
Yuan J., Zou M., Xiang X., Zhu H., Chu W., Liu W., Chen F., Lin J. Curcumin improves neural function after spinal cord injury by the joint inhibition of the intracellular and extracellular components of glial scar. J. Surg. Res. 2015;195:235–245. doi: 10.1016/j.jss.2014.12.055. PubMed DOI
Krupa P., Vackova I., Ruzicka J., Zaviskova K., Dubisova J., Koci Z., Turnovcova K., Urdzikova L.M., Kubinova S., Rehak S., et al. The Effect of Human Mesenchymal Stem Cells Derived from Wharton’s Jelly in Spinal Cord Injury Treatment Is Dose-Dependent and Can Be Facilitated by Repeated Application. Int. J. Mol. Sci. 2018;19:1503. doi: 10.3390/ijms19051503. PubMed DOI PMC
Eom D.W., Lee J.H., Kim Y.J., Hwang G.S., Kim S.N., Kwak J.H., Cheon G.J., Kim K.H., Jang H.J., Ham J., et al. Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells. BMB Rep. 2015;48:461–466. doi: 10.5483/BMBRep.2015.48.8.216. PubMed DOI PMC
Yunos N.M., Beale P., Yu J.Q., Huq F. Synergism from sequenced combinations of curcumin and epigallocatechin-3-gallate with cisplatin in the killing of human ovarian cancer cells. Anticancer Res. 2011;31:1131–1140. PubMed
Renno W.M., Al-Khaledi G., Mousa A., Karam S.M., Abul H., Asfar S. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology. 2014;77:100–119. doi: 10.1016/j.neuropharm.2013.09.013. PubMed DOI
Khalatbary A.R., Tiraihi T., Boroujeni M.B., Ahmadvand H., Tavafi M., Tamjidipoor A. Effects of epigallocatechin gallate on tissue protection and functional recovery after contusive spinal cord injury in rats. Brain Res. 2010;1306:168–175. doi: 10.1016/j.brainres.2009.09.109. PubMed DOI
Ge R., Zhu Y., Diao Y., Tao L., Yuan W., Xiong X.C. Anti-edema effect of epigallocatechin gallate on spinal cord injury in rats. Brain Res. 2013;1527:40–46. doi: 10.1016/j.brainres.2013.06.009. PubMed DOI
Carloni S., Buonocore G., Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol. Dis. 2008;32:329–339. doi: 10.1016/j.nbd.2008.07.022. PubMed DOI
Erlich S., Alexandrovich A., Shohami E., Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis. 2007;26:86–93. doi: 10.1016/j.nbd.2006.12.003. PubMed DOI
Liu K., Lu Y., Lee J.K., Samara R., Willenberg R., Sears-Kraxberger I., Tedeschi A., Park K.K., Jin D., Cai B., et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 2010;13:1075–1081. doi: 10.1038/nn.2603. PubMed DOI PMC
Park K.K., Liu K., Hu Y., Smith P.D., Wang C., Cai B., Xu B.G., Connolly L., Kramvis I., Sahin M., et al. Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science. 2008;322:963–966. doi: 10.1126/science.1161566. PubMed DOI PMC
Sekiguchi A., Kanno H., Ozawa H., Yamaya S., Itoi E. Rapamycin Promotes Autophagy and Reduces Neural Tissue Damage and Locomotor Impairment after Spinal Cord Injury in Mice. J. Neurotrauma. 2012;29:946–956. doi: 10.1089/neu.2011.1919. PubMed DOI
Jaworski J., Sheng M. The growing role of mTOR in neuronal development and plasticity. Mol. Neurobiol. 2006;34:205–219. doi: 10.1385/MN:34:3:205. PubMed DOI
Switon K., Kotulska K., Janusz-Kaminska A., Justyna Z.A., Jaworski J. Molecular Neurobiology of Mtor. Neuroscience. 2017;341:112–153. doi: 10.1016/j.neuroscience.2016.11.017. PubMed DOI
Goldshmit Y., Kanner S., Zacs M., Frisca F., Pinto A.R., Currie P.D., Pinkas-Kramarski R. Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury. Mol. Cell. Neurosci. 2015;68:82–91. doi: 10.1016/j.mcn.2015.04.006. PubMed DOI
Vargova I., Urdzikova L.M., Karova K., Smejkalova B., Sursal T., Cimermanova V., Turnovcova K., Gandhi C.D., Jhanwar-Uniyal M., Jendelova P. Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response. Biomedicines. 2021;9:593. doi: 10.3390/biomedicines9060593. PubMed DOI PMC
Pazoki-Toroudi H., Amani H., Ajami M., Nabavi S.F., Braidy N., Kasi P.D., Nabavi S.M. Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Res. Rev. 2016;31:55–66. doi: 10.1016/j.arr.2016.07.004. PubMed DOI
Van Aller G.S., Carson J.D., Tang W., Peng H., Zhao L., Copeland R.A., Tummino P.J., Luo L. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem. Biophys. Res. Commun. 2011;406:194–199. doi: 10.1016/j.bbrc.2011.02.010. PubMed DOI
Vanicky I., Urdzikova L., Saganova K., Cizkova D., Galik J. A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J. Neurotrauma. 2001;18:1399–1407. doi: 10.1089/08977150152725687. PubMed DOI
Urdzikova L., Vanicky I. Post-traumatic moderate systemic hyperthermia worsens behavioural outcome after spinal cord injury in the rat. Spinal Cord. 2006;44:113–119. doi: 10.1038/sj.sc.3101792. PubMed DOI
Basso D.M., Beattie M.S., Bresnahan J.C. A Sensitive and Reliable Locomotor Rating-Scale for Open-Field Testing in Rats. J. Neurotrauma. 1995;12:1–21. doi: 10.1089/neu.1995.12.1. PubMed DOI
Goldstein B., James W.L., Roger M.H. Axonal Sprouting Following Incomplete Spinal Cord Injury: An Experimental Model. J. Spinal Cord Med. 1997;20:200–206. doi: 10.1080/10790268.1997.11719469. PubMed DOI
Neumannova K., Machova-Urdzikova L., Kwok J.C.F., Fawcett J.W., Jendelova P. Adaptation of tape removal test for measurement of sensitivity in perineal area of rat. Exp. Neurol. 2020;324:113097. doi: 10.1016/j.expneurol.2019.113097. PubMed DOI
Ashok A., Andrabi S.S., Mansoor S., Kuang Y., Kwon B.K., Labhasetwar V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants. 2022;11:408. doi: 10.3390/antiox11020408. PubMed DOI PMC
Cano A., Ettcheto M., Chang J.H., Barroso E., Espina M., Kuhne B.A., Barenys M., Auladell C., Folch J., Souto E.B., et al. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J. Control. Release Off. J. Control. Release Soc. 2019;301:62–75. doi: 10.1016/j.jconrel.2019.03.010. PubMed DOI PMC
Rezai-Zadeh K., Shytle D., Sun N., Mori T., Hou H.Y., Jeanniton D., Ehrhart J., Townsend K., Zeng J., Morgan D., et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci. 2005;25:8807–8814. doi: 10.1523/JNEUROSCI.1521-05.2005. PubMed DOI PMC
Tian W., Han X.G., Liu Y.J., Tang G.Q., Liu B., Wang Y.Q., Xiao B., Xu Y.F. Intrathecal epigallocatechin gallate treatment improves functional recovery after spinal cord injury by upregulating the expression of BDNF and GDNF. Neurochem. Res. 2013;38:772–779. doi: 10.1007/s11064-013-0976-5. PubMed DOI
Jia C., Oliver J., Gilmer D., Lovins C., Rodriguez-Gil D.J., Hagg T. Inhibition of focal adhesion kinase increases adult olfactory stem cell self-renewal and neuroregeneration through ciliary neurotrophic factor. Stem Cell Res. 2020;49:102061. doi: 10.1016/j.scr.2020.102061. PubMed DOI PMC
Sedy J., Urdzikova L., Likavcanova K., Hejcl A., Jendelova P., Sykova E. A new model of severe neurogenic pulmonary edema in spinal cord injured rat. Neurosci. Lett. 2007;423:167–171. doi: 10.1016/j.neulet.2007.06.053. PubMed DOI
Tang P., Hou H., Zhang L., Lan X., Mao Z., Liu D., He C., Du H. Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol. Neurobiol. 2014;49:276–287. doi: 10.1007/s12035-013-8518-3. PubMed DOI
Li K., Liu J., Song L., Lv W., Tian X., Li Z., Shi S. Effect of Electroacupuncture Treatment at Dazhui (GV14) and Mingmen (GV4) Modulates the PI3K/AKT/mTOR Signaling Pathway in Rats after Spinal Cord Injury. Neural Plast. 2020;2020:5474608. doi: 10.1155/2020/5474608. PubMed DOI PMC
Penailillo J., Palacios M., Mounieres C., Munoz R., Slater P.G., De Domenico E., Patrushev I., Gilchrist M., Larrain J. Analysis of the early response to spinal cord injury identified a key role for mTORC1 signaling in the activation of neural stem progenitor cells. NPJ Regen. Med. 2021;6:68. doi: 10.1038/s41536-021-00179-3. PubMed DOI PMC
Kim H.S., Quon M.J., Kim J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014;2:187–195. doi: 10.1016/j.redox.2013.12.022. PubMed DOI PMC
Dinda B., Dinda S., Dinda M. Therapeutic potential of green tea catechin, (-)-epigallocatechin-3-O-gallate (EGCG) in SARS-CoV-2 infection: Major interactions with host/virus proteases. Phytomed. Plus Int. J. Phytother. Phytopharm. 2023;3:100402. doi: 10.1016/j.phyplu.2022.100402. PubMed DOI PMC
Siblini H., Al-Hendy A., Segars J., Gonzalez F., Taylor H.S., Singh B., Flaminia A., Flores V.A., Christman G.M., Huang H., et al. Assessing the Hepatic Safety of Epigallocatechin Gallate (EGCG) in Reproductive-Aged Women. Nutrients. 2023;15:320. doi: 10.3390/nu15020320. PubMed DOI PMC
Wang Y., Wu S., Li Q., Lang W., Li W., Jiang X., Wan Z., Chen J., Wang H. Epigallocatechin-3-gallate: A phytochemical as a promising drug candidate for the treatment of Parkinson’s disease. Front. Pharmacol. 2022;13:977521. doi: 10.3389/fphar.2022.977521. PubMed DOI PMC
Wu Q., Song J., Gao Y., Zou Y., Guo J., Zhang X., Liu D., Guo D., Bi H. Epigallocatechin gallate enhances human lens epithelial cell survival after UVB irradiation via the mitochondrial signaling pathway. Mol. Med. Rep. 2022;25:87. doi: 10.3892/mmr.2022.12603. PubMed DOI PMC
Zhang L., Wen J.X., Hai L., Wang Y.F., Yan L., Gao W.H., Hu Z.D., Wang Y.J. Preventive and therapeutic effects of green tea on lung cancer: A narrative review of evidence from clinical and basic research. J. Thorac. Dis. 2022;14:5029–5038. doi: 10.21037/jtd-22-1791. PubMed DOI PMC
Feng H., Yang Z., Bai X., Yang M., Fang Y., Zhang X., Guo Q., Ning H. Therapeutic potential of a dual mTORC1/2 inhibitor for the prevention of posterior capsule opacification: An in vitro study. Int. J. Mol. Med. 2018;41:2099–2107. doi: 10.3892/ijmm.2018.3398. PubMed DOI PMC