Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24712305
PubMed Central
PMC4001357
DOI
10.1186/1475-925x-13-42
PII: 1475-925X-13-42
Knihovny.cz E-zdroje
- MeSH
- Achillova šlacha účinky léků zranění MeSH
- biomechanika MeSH
- buněčná diferenciace MeSH
- extracelulární matrix metabolismus MeSH
- fyziologická neovaskularizace MeSH
- hojení ran * MeSH
- karcinogeneze MeSH
- kolagenasy škodlivé účinky MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie MeSH
- osteogeneze MeSH
- pluripotentní kmenové buňky transplantace MeSH
- poranění šlachy chemicky indukované patologie patofyziologie chirurgie MeSH
- transplantace mezenchymálních kmenových buněk * škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kolagenasy MeSH
BACKGROUND: Mesenchymal stromal cells attract much interest in tissue regeneration because of their capacity to differentiate into mesodermal origin cells, their paracrine properties and their possible use in autologous transplantations. The aim of this study was to investigate the safety and reparative potential of implanted human mesenchymal stromal cells (hMSCs), prepared under Good Manufacturing Practice (GMP) conditions utilizing human mixed platelet lysate as a culture supplement, in a collagenase Achilles tendon injury model in rats. METHODS: Eighty-one rats with collagenase-induced injury were divided into two groups. The first group received human mesenchymal stromal cells injected into the site of injury 3 days after lesion induction, while the second group received saline. Biomechanical testing, morphometry and semiquantitative immunohistochemistry of collagens I, II and III, versican and aggrecan, neovascularization, and hMSC survival were performed 2, 4, and 6 weeks after injury. RESULTS: Human mesenchymal stromal cell-treated rats had a significantly better extracellular matrix structure and a larger amount of collagen I and collagen III. Neovascularization was also increased in hMSC-treated rats 2 and 4 weeks after tendon injury. MTCO2 (Cytochrome c oxidase subunit II) positivity confirmed the presence of hMSCs 2, 4 and 6 weeks after transplantation. Collagen II deposits and alizarin red staining for bone were found in 6 hMSC- and 2 saline-treated tendons 6 weeks after injury. The intensity of anti-versican and anti-aggrecan staining did not differ between the groups. CONCLUSIONS: hMSCs can support tendon healing through better vascularization as well as through larger deposits and better organization of the extracellular matrix. The treatment procedure was found to be safe; however, cartilage and bone formation at the implantation site should be taken into account when planning subsequent in vivo and clinical trials on tendinopathy as an expected adverse event.
Zobrazit více v PubMed
Lovati AB, Corradetti B, Cremonesi F, Bizzaro D, Consiglio AL. Tenogenic differentiation of equine mesenchymal progenitor cells under indirect co-culture. Int J Artif Organs. 2012;35(11):996–1005. doi: 10.5301/ijao.5000129. PubMed DOI
Pacini S, Spinabella S, Trombi L, Fazzi R, Galimberti S, Dini F, Carlucci F, Petrini M. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue Eng. 2007;13(12):2949–2955. doi: 10.1089/ten.2007.0108. PubMed DOI
Havlas V, Kotaška J, Lesný P, Sevastyanova O, Trč T. Effect of PRP on healing of arthroscopic rotator cuff repair first experience. Ortopedie. 2013;7:6–9.
Ahmad Z, Wardale J, Brooks R, Henson F, Noorani A, Rushton N. Exploring the application of stem cells in tendon repair and regeneration. Arthroscopy. 2012;28(7):1018–1029. doi: 10.1016/j.arthro.2011.12.009. PubMed DOI
Kida Y, Morihara T, Matsuda K, Kajikawa Y, Tachiiri H, Iwata Y, Sawamura K, Yoshida A, Oshima Y, Ikeda T, Fujiwara H, Kawata M, Kubo T. Bone marrow-derived cells from the footprint infiltrate into the repaired rotator cuff. Journal of shoulder and elbow surgery/American Shoulder and Elbow Surgeons. 2013;22(2):197–205. doi: 10.1016/j.jse.2012.02.007. PubMed DOI
Ruzzini L, Longo UG, Rizzello G, Denaro V. Stem cells and tendinopathy: state of the art from the basic science to clinic application. Muscles Ligaments Tendons J. 2012;2(3):235–238. PubMed PMC
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. International Society Cellular Therapy Cytotherapy. 2006;8(4):315–317. PubMed
Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1–21. doi: 10.1089/neu.1995.12.1. PubMed DOI
Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res. 2008;69(7):928–937. doi: 10.2460/ajvr.69.7.928. PubMed DOI
Kuo CK, Tuan RS. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A. 2008;14(10):1615–1627. PubMed
Ohnishi S, Sumiyoshi H, Kitamura S, Nagaya N. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett. 2007;581(21):3961–3966. PubMed
Sharma RI, Snedeker JG. Paracrine interactions between mesenchymal stem cells affect substrate driven differentiation toward tendon and bone phenotypes. PLoS One. 2012;7(2):e31504. PubMed PMC
Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88(9):792–806. PubMed PMC
Chowdhury A, Bezuidenhout LW, Mulet-Sierra A, Jomha NM, Adesida AB. Effect of interleukin-1beta treatment on co-cultures of human meniscus cells and bone marrow mesenchymal stromal cells. BMC Musculoskelet Disord. 2013;14:216. PubMed PMC
Rattigan Y, Hsu JM, Mishra PJ, Glod J, Banerjee D. Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res. 2010;316(20):3417–3424. PubMed
Warnke PH, Humpe A, Strunk D, Stephens S, Warnke F, Wiltfang J, Schallmoser K, Alamein M, Bourke R, Heiner P, Liu Q. A clinically-feasible protocol for using human platelet lysate and mesenchymal stem cells in regenerative therapies. J Craniomaxillofac Surg. 2013;41(2):153–161. PubMed
Chevallier N, Anagnostou F, Zilber S, Bodivit G, Maurin S, Barrault A, Bierling P, Hernigou P, Layrolle P, Rouard H. Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate. Biomaterials. 2010;31(2):270–278. PubMed
Parsons P, Butcher A, Hesselden K, Ellis K, Maughan J, Milner R, Scott M, Alley C, Watson JT, Horner A. Platelet-rich concentrate supports human mesenchymal stem cell proliferation, bone morphogenetic protein-2 messenger RNA expression, alkaline phosphatase activity, and bone formation in vitro: a mode of action to enhance bone repair. J Orthop Trauma. 2008;22(9):595–604. PubMed
Prins HJ, Rozemuller H, Vonk-Griffioen S, Verweij VG, Dhert WJ, Slaper-Cortenbach IC, Martens AC. Bone-forming capacity of mesenchymal stromal cells when cultured in the presence of human platelet lysate as substitute for fetal bovine serum. Tissue Eng Part A. 2009;15(12):3741–3751. PubMed
Lohmann M, Walenda G, Hemeda H, Joussen S, Drescher W, Jockenhoevel S, Hutschenreuter G, Zenke M, Wagner W. Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells. PLoS One. 2012;7(5):e37839. PubMed PMC
Gruber R, Karreth F, Kandler B, Fuerst G, Rot A, Fischer MB, Watzek G. Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions. Platelets. 2004;15(1):29–35. PubMed
Horn P, Bokermann G, Cholewa D, Bork S, Walenda T, Koch C, Drescher W, Hutschenreuther G, Zenke M, Ho AD, Wagner W. Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy. 2010;12(7):888–898. PubMed
Kumar A, Salimath BP, Stark GB, Finkenzeller G. Platelet-derived growth factor receptor signaling is not involved in osteogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A. 2010;16(3):983–993. PubMed
Bernstein P, Sticht C, Jacobi A, Liebers C, Manthey S, Stiehler M. Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation. Osteoarthritis Cartilage. 2010;18(12):1596–1607. PubMed
Corps AN, Robinson AH, Movin T, Costa ML, Hazleman BL, Riley GP. Increased expression of aggrecan and biglycan mRNA in Achilles tendinopathy. Rheumatology (Oxford) 2006;45(3):291–294. PubMed
Tang YL, Zhao Q, Zhang YC, Cheng L, Liu M, Shi J, Yang YZ, Pan C, Ge J, Phillips MI. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept. 2004;117(1):3–10. PubMed
Yamagata M, Shinomura T, Kimata K. Tissue variation of two large chondroitin sulfate proteoglycans (PG-M/versican and PG-H/aggrecan) in chick embryos. Anat Embryol. 1993;187(5):433–444. PubMed
Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol. 2006;207(2):331–339. PubMed
Chai W, Ni M, Rui YF, Zhang KY, Zhang Q, Xu LL, Chan KM, Li G, Wang Y. Effect of growth and differentiation factor 6 on the tenogenic differentiation of bone marrow-derived mesenchymal stem cells. Chin Med J (Engl) 2013;126(8):1509–1516. PubMed
Tan Q, Lui PP, Rui YF. Effect of in vitro passaging on the stem cell-related properties of tendon-derived stem cells-implications in tissue engineering. Stem Cells Dev. 2012;21(5):790–800. PubMed PMC
Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, Caplan AI. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng. 1999;5(3):267–277. PubMed
Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med. 2011;39(6):1282–1289. PubMed
Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat