Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis

. 2021 ; 9 () : 695900. [epub] 20210706

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34295897

Preclinical and clinical studies with various stem cells, their secretomes, and extracellular vesicles (EVs) indicate their use as a promising strategy for the treatment of various diseases and tissue defects, including neurodegenerative diseases such as spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS). Autologous and allogenic mesenchymal stem cells (MSCs) are so far the best candidates for use in regenerative medicine. Here we review the effects of the implantation of MSCs (progenitors of mesodermal origin) in animal models of SCI and ALS and in clinical studies. MSCs possess multilineage differentiation potential and are easily expandable in vitro. These cells, obtained from bone marrow (BM), adipose tissue, Wharton jelly, or even other tissues, have immunomodulatory and paracrine potential, releasing a number of cytokines and factors which inhibit the proliferation of T cells, B cells, and natural killer cells and modify dendritic cell activity. They are hypoimmunogenic, migrate toward lesion sites, induce better regeneration, preserve perineuronal nets, and stimulate neural plasticity. There is a wide use of MSC systemic application or MSCs seeded on scaffolds and tissue bridges made from various synthetic and natural biomaterials, including human decellularized extracellular matrix (ECM) or nanofibers. The positive effects of MSC implantation have been recorded in animals with SCI lesions and ALS. Moreover, promising effects of autologous as well as allogenic MSCs for the treatment of SCI and ALS were demonstrated in recent clinical studies.

Erratum v

PubMed

Zobrazit více v PubMed

Ahmadian Kia N., Bahrami A. R., Ebrahimi M., Matin M. M., Neshati Z., Almohaddesin M. R., et al. (2011). Comparative analysis of chemokine receptor’s expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J. Mol. Neurosci. 44 178–185. 10.1007/s12031-010-9446-6 PubMed DOI

Ahuja C. S., Wilson J. R., Nori S., Kotter M. R. N., Druschel C., Curt A., et al. (2017). Traumatic spinal cord injury. Nat. Rev. Dis. Primers. 3:17018. PubMed

Amemori T., Ruzicka J., Romanyuk N., Jhanwar-Uniyal M., Sykova E., Jendelova P. (2015). Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell. Res. Ther. 6:257. PubMed PMC

Angeli C. A., Boakye M., Morton R. A., Vogt J., Benton K., Chen Y., et al. (2018). Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl. J. Med. 379 1244–1250. 10.1056/nejmoa1803588 PubMed DOI

Asadi-Golshan R., Razban V., Mirzaei E., Rahmanian A., Khajeh S., Mostafavi-Pour Z., et al. (2018). Sensory and motor behavior evidences supporting the usefulness of conditioned medium from dental pulp-derived stem cells in spinal cord injury in rats. Asian Spine J. 12 785–793. 10.31616/asj.2018.12.5.785 PubMed DOI PMC

Balasubramanian S., Thej C., Venugopal P., Priya N., Zakaria Z., Sundarraj S., et al. (2013). Higher propensity of Wharton’s jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow. Cell Biol. Int. 37 507–515. 10.1002/cbin.10056 PubMed DOI

Barczewska M., Maksymowicz S., Zdolińska-Malinowska I., Siwek T., Grudniak M. (2020). Umbilical cord mesenchymal stem cells in Amyotrophic Lateral Sclerosis: an original study. Stem Cell Rev. Rep. 16 922–932. 10.1007/s12015-020-10016-7 PubMed DOI PMC

Bensimon G., Lacomblez L., Meininger V. (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N. Engl. J. Med. 330 585–591. PubMed

Blasko J., Szekiova E., Slovinska L., Kafka J., Cizkova D. (2017). Axonal outgrowth stimulation after alginate/mesenchymal stem cell therapy in injured rat spinal cord. Acta Neurobiol. Exp. 77 337–350. 10.21307/ane-2017-066 PubMed DOI

Blondheim N. R., Levy Y. S., Ben-Zur T., Burshtein A., Cherlow T., Kan I., et al. (2006). Human mesenchymal stem cells express neural genes, suggesting a neural predisposition. Stem Cells Dev. 15 141–164. 10.1089/scd.2006.15.141 PubMed DOI

Boucherie C., Schafer S., Lavand’homme P., Maloteaux J. M., Hermans E. (2009). Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J. Neurosci. Res. 87 2034–2046. 10.1002/jnr.22038 PubMed DOI

Bradbury E. J., Burnside E. R. (2019). Moving beyond the glial scar for spinal cord repair. Nat. Commun. 10:3879. PubMed PMC

Bydon M., Dietz A. B., Goncalves S., Moinuddin F. M., Alvi M. A., Goyal A., et al. (2020). CELLTOP clinical trial: First report from a phase 1 trial of Autologous Adipose Tissue-Derived mesenchymal stem cells in the treatment of paralysis due to traumatic spinal cord injury. Mayo Clin. Proc. 95 406–414. 10.1016/j.mayocp.2019.10.008 PubMed DOI

Cantinieaux D., Quertainmont R., Blacher S., Rossi L., Wanet T., Noël A., et al. (2013). Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One. 8:e69515. 10.1371/journal.pone.0069515 PubMed DOI PMC

Caplan A. I. (1991). Mesenchymal stem cells. J. Orthop. Res. 9 641–650. PubMed

Chelyshev Y. A., Kabdesh I. M., Mukhamedshina Y. O. (2020). Extracellular matrix in neural plasticity and regeneration. Cell. Mol. Neurobiol. 10.1007/s10571-020-00986-0 [Epub ahead of print]. PubMed DOI PMC

Chen W., Zhang Y., Yang S., Sun J., Qiu H., Hu X., et al. (2020a). neuroregen scaffolds combined with autologous bone marrow mononuclear cells for the repair of acute complete spinal cord injury: A 3-Year clinical study. Cell Transplant. 29:963689720950637. 10.1177/0963689720950637 PubMed DOI PMC

Chen X., Wu J., Sun R., Zhao Y., Li Y., Pan J., et al. (2020b). Tubular scaffold with microchannels and an H-shaped lumen loaded with bone marrow stromal cells promotes neuroregeneration and inhibits apoptosis after spinal cord injury. J. Tissue Eng. Regen. Med. 14 397–411. 10.1002/term.2996 PubMed DOI PMC

Cho H., Shukla S. (2020). Role of edaravone as a treatment option for patients with Amyotrophic Lateral Sclerosis. Pharmaceuticals (Basel) 14:29. 10.3390/ph14010029 PubMed DOI PMC

Chudickova M., Vackova I., Machova Urdzikova L., Jancova P., Kekulova K., Rehorova M., et al. (2019). The effect of Wharton Jelly-Derived mesenchymal stromal cells and their conditioned media in the treatment of a rat spinal cord injury. Int. J. Mol. Sci. 20:4516. 10.3390/ijms20184516 PubMed DOI PMC

Cizkova D., Cubinkova V., Smolek T., Murgoci A. N., Danko J., Vdoviakova K., et al. (2018). Localized intrathecal delivery of mesenchymal stromal cells conditioned medium improves functional recovery in a rat model of spinal cord injury. Int. J. Mol. Sci. 19:870. 10.3390/ijms19030870 PubMed DOI PMC

Cizkova D., Novotna I., Slovinska L., Vanicky I., Jergova S., Rosocha J., et al. (2011). Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J. Neurotrauma. 28 1951–1961. 10.1089/neu.2010.1413 PubMed DOI

Cízková D., Rosocha J., Vanický I., Jergová S., Cízek M. (2006). Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell. Mol. Neurobiol. 26 1167–1180. PubMed PMC

Costa A., Naranjo J. D., Londono R., Badylak S. F. (2017). Biologic Scaffolds. Cold Spring Harb. Perspect. Med. 7:a025676. 10.1101/cshperspect.a025676 PubMed DOI PMC

Crapo P. M., Tottey S., Slivka P. F., Badylak S. F. (2014). Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng. Part A. 20 313–323. 10.1089/ten.tea.2013.0186 PubMed DOI PMC

Danisovic L., Varga I., Polák S., Ulicná M., Hlavacková L., Böhmer D., et al. (2009). Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen. Physiol. Biophys. 28 56–62. 10.4149/gpb_2009_01_56 PubMed DOI

Deda H., Inci M. C., Kurekci A. E., Sav A., Kayihan K., Ozgun E., et al. (2009). Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy. 11 18–25. 10.1080/14653240802549470 PubMed DOI

Deng W. S., Ma K., Liang B., Liu X. Y., Xu H. Y., Zhang J., et al. (2020). Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen. Res. 15 1686–1700. 10.4103/1673-5374.276340 PubMed DOI PMC

Devaux S., Cizkova D., Quanico J., Franck J., Nataf S., Pays L., et al. (2016). Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time- and segment-specific window for effective tissue repair. Mol. Cell. Proteomics. 15 2641–2670. 10.1074/mcp.m115.057794 PubMed DOI PMC

Discher D. E., Mooney D. J., Zandstra P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science 324 1673–1677. 10.1126/science.1171643 PubMed DOI PMC

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 8 315–317. 10.1080/14653240600855905 PubMed DOI

Elman J. S., Li M., Wang F., Gimble J. M., Parekkadan B. (2014). A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. J. Inflamm. 11:1. 10.1186/1476-9255-11-1 PubMed DOI PMC

Fawcett J. W. (2009). Recovery from spinal cord injury: regeneration, plasticity and rehabilitation. Brain 132 1417–1418. 10.1093/brain/awp121 PubMed DOI

Fawcett J. W., Oohashi T., Pizzorusso T. (2019). The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 20 451–465. 10.1038/s41583-019-0196-3 PubMed DOI

Forostyak O., Butenko O., Anderova M., Forostyak S., Sykova E., Verkhratsky A., et al. (2016a). Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res. 16 622–634. 10.1016/j.scr.2016.03.010 PubMed DOI

Forostyak O., Forostyak S., Kortus S., Sykova E., Verkhratsky A., Dayanithi G. (2016b). Physiology of Ca(2+) signalling in stem cells of different origins and differentiation stages. Cell Calcium 59 57–66. 10.1016/j.ceca.2016.02.001 PubMed DOI

Forostyak S., Homola A., Turnovcova K., Svitil P., Jendelova P., Sykova E. (2014). Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells 32 3163–3172. 10.1002/stem.1812 PubMed DOI PMC

Forostyak S., Jendelova P., Kapcalova M., Arboleda D., Sykova E. (2011). Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy. 13 1036–1046. 10.3109/14653249.2011.592521 PubMed DOI

Forostyak S., Jendelova P., Sykova E. (2013). The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie 95 2257–2270. 10.1016/j.biochi.2013.08.004 PubMed DOI

Forostyak S., Sykova E. (2017). Neuroprotective potential of cell-based therapies in ALS: from bench to bedside. Front. Neurosci. 11:591. 10.3389/fnins.2017.00591 PubMed DOI PMC

Garbuzova-Davis S., Sanberg C. D., Kuzmin-Nichols N., Willing A. E., Gemma C., Bickford P. C., et al. (2008). Human umbilical cord blood treatment in a mouse model of ALS: optimization of cell dose. PLoS One. 3:e2494. 10.1371/journal.pone.0002494 PubMed DOI PMC

Gill M. L., Grahn P. J., Calvert J. S., Linde M. B., Lavrov I. A., Strommen J. A., et al. (2018). Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 24 1677–1682. 10.1038/s41591-018-0175-7 PubMed DOI

Goutman S. A., Savelieff M. G., Sakowski S. A., Feldman E. L. (2019). Stem cell treatments for amyotrophic lateral sclerosis: a critical overview of early phase trials. Expert Opin. Investig. Drugs. 28 525–543. 10.1080/13543784.2019.1627324 PubMed DOI PMC

Grulova I., Slovinska L., Blaško J., Devaux S., Wisztorski M., Salzet M., et al. (2015). Delivery of alginate scaffold releasing two trophic factors for spinal cord injury repair. Sci. Rep. 5:13702. PubMed PMC

Gu W., Zhang F., Xue Q., Ma Z., Lu P., Yu B. (2009). Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology. 30 205–217. 10.1111/j.1440-1789.2009.01063.x PubMed DOI

Hejcl A., Ruzicka J., Proks V., Mackova H., Kubinova S., Tukmachev D., et al. (2018). Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection. J. Mater Sci.-Mater M. 29:89. 10.1007/s10856-10018-16100-10852 PubMed DOI

Hejcl A., Sedy J., Kapcalova M., Toro D. A., Amemori T., Lesny P., et al. (2010). HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev. 19 1535–1546. 10.1089/scd.2009.0378 PubMed DOI

Hong J. Y., Seo Y., Davaa G., Kim H. W., Kim S. H., Hyun J. K. (2020). Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Acta Biomater. 101 357–371. 10.1016/j.actbio.2019.11.012 PubMed DOI

Hsiao S. T., Asgari A., Lokmic Z., Sinclair R., Dusting G. J., Lim S. Y., et al. (2012). Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev. 21 2189–2203. 10.1089/scd.2011.0674 PubMed DOI PMC

Huang J. I., Kazmi N., Durbhakula M. M., Hering T. M., Yoo J. U., Johnstone B. (2005). Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: A patient-matched comparison. J. Orthop. Res. 23 1383–1389. 10.1016/j.orthres.2005.03.018 PubMed DOI

Hur J. W., Cho T. H., Park D. H., Lee J. B., Park J. Y., Chung Y. G., et al. (2016). Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. J. Spinal Cord Med. 39 655–664. 10.1179/2045772315y.0000000048 PubMed DOI PMC

Jendelová P., Herynek V., Decroos J., Glogarová K., Andersson B., Hájek M., et al. (2003). Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn. Reson. Med. 50 767–776. 10.1002/mrm.10585 PubMed DOI

Jendelová P., Herynek V., Urdzíková L., Glogarová K., Kroupová J., Andersson B., et al. (2004). Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J. Neurosci. Res. 76 232–243. 10.1002/jnr.20041 PubMed DOI

Kanekiyo K., Wakabayashi T., Nakano N., Yamada Y., Tamachi M., Suzuki Y., et al. (2018). Effects of intrathecal injection of the conditioned medium from bone marrow stromal cells on spinal cord injury in rats. J. Neurotrauma. 35 521–532. 10.1089/neu.2017.5201 PubMed DOI

Karussis D., Karageorgiou C., Vaknin-Dembinsky A., Gowda-Kurkalli B., Gomori J. M., Kassis I., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67 1187–1194. PubMed PMC

Kim D.-W., Staples M., Shinozuka K., Pantcheva P., Kang S.-D., Borlongan C. V. (2013). Wharton’s Jelly-Derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int. J. Mol. Sci. 14 11692–11712. 10.3390/ijms140611692 PubMed DOI PMC

Kim H., Kim H. Y., Choi M. R., Hwang S., Nam K. H., Kim H. C., et al. (2010). Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci. Lett. 468 190–194. 10.1016/j.neulet.2009.10.074 PubMed DOI

Kim Y. C., Kim Y. H., Kim J. W., Ha K. Y. (2016). Transplantation of Mesenchymal Stem Cells for acute spinal cord injury in rats: Comparative study between intralesional injection and scaffold based transplantation. J. Korean Med. Sci. 31 1373–1382. 10.3346/jkms.2016.31.9.1373 PubMed DOI PMC

Koci Z., Vyborny K., Dubisova J., Vackova I., Jager A., Lunov O., et al. (2017). Extracellular matrix hydrogel derived from human umbilical cord as a scaffold for neural tissue repair and its comparison with extracellular matrix from porcine tissues. Tissue Eng. Part C Methods. 23 333–345. 10.1089/ten.tec.2017.0089 PubMed DOI

Krause D. S. (2002). Plasticity of marrow-derived stem cells. Gene Ther. 9 754–758. 10.1038/sj.gt.3301760 PubMed DOI

Krupa P., Vackova I., Ruzicka J., Zaviskova K., Dubisova J., Koci Z., et al. (2018). The Effect of human mesenchymal stem cells derived from Wharton’s Jelly in spinal cord injury treatment is dose-dependent and can be facilitated by repeated application. Int. J. Mol. Sci. 19:1503. 10.3390/ijms19051503 PubMed DOI PMC

Kubinova S. (2017). Extracellular matrix based biomaterials for central nervous system tissue repair: the benefits and drawbacks. Neural Regen. Res. 12 1430–1432. 10.4103/1673-5374.215249 PubMed DOI PMC

Kubinova S., Horak D., Hejcl A., Plichta Z., Kotek J., Proks V., et al. (2015). SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair. J. Tissue Eng. Regen. Med. 9 1298–1309. 10.1002/term.1694 PubMed DOI

Kubinová S., Syková E. (2010). Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine 5 99–108. 10.2217/nnm.09.93 PubMed DOI

Kubinova S., Sykova E. (2012). Biomaterials combined with cell therapy for treatment of spinal cord injury. Regen. Med. 7 207–224. 10.2217/rme.11.121 PubMed DOI

Lankford K. L., Arroyo E. J., Nazimek K., Bryniarski K., Askenase P. W., Kocsis J. D. (2018). Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One. 13:e0190358. 10.1371/journal.pone.0190358 PubMed DOI PMC

Layer R. T., Ulich T. R., Coric D., Arnold P. M., Guest J. D., Heary R. H., et al. (2017). New Clinical-pathological classification of intraspinal injury following traumatic acute complete thoracic spinal cord injury: Postdurotomy/Myelotomy observations from the INSPIRE trial. Neurosurgery. 64 105–109. 10.1093/neuros/nyx204 PubMed DOI

Leu S., Lin Y. C., Yuen C. M., Yen C. H., Kao Y. H., Sun C. K., et al. (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8:63. 10.1186/1479-5876-8-63 PubMed DOI PMC

Li D., Zhang P., Yao X., Li H., Shen H., Li X., et al. (2018). Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Front. Neurosci. 12:845. 10.3389/fnins.2018.00845 PubMed DOI PMC

Li Y., Chen J., Chen X. G., Wang L., Gautam S. C., Xu Y. X., et al. (2002). Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 59 514–523. 10.1212/wnl.59.4.514 PubMed DOI

Liau L. L., Looi Q. H., Chia W. C., Subramaniam T., Ng M. H., Law J. X. (2020). Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci. 10:112. PubMed PMC

Libro R., Bramanti P., Mazzon E. (2017). The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Exp. Ther. Med. 14 3355–3368. 10.3892/etm.2017.4939 PubMed DOI PMC

Lindvall O., Kokaia Z. (2006). Stem cells for the treatment of neurological disorders. Nature 441 1094–1096. 10.1038/nature04960 PubMed DOI

Liu S., Schackel T., Weidner N., Puttagunta R. (2017). Biomaterial-supported cell transplantation treatments for spinal cord injury: challenges and perspectives. Front. Cell. Neurosci. 11:430. 10.3389/fncel.2017.00430 PubMed DOI PMC

Liu S., Xie Y. Y., Wang B. (2019). Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regen. Res. 14 1352–1363. 10.4103/1673-5374.253512 PubMed DOI PMC

Marconi S., Castiglione G., Turano E., Bissolotti G., Angiari S., Farinazzo A., et al. (2012). Human adipose-derived Mesenchymal Stem Cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng. Part A. 18 1264–1272. 10.1089/ten.tea.2011.0491 PubMed DOI

Martinez H. R., Gonzalez-Garza M. T., Moreno-Cuevas J. E., Caro E., Gutierrez-Jimenez E., Segura J. J. (2009). Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy. 11 26–34. 10.1080/14653240802644651 PubMed DOI

Mazzini L., Fagioli F., Boccaletti R. (2004). Stem-cell therapy in amyotrophic lateral sclerosis. Lancet 364 1936–1937. PubMed

Mazzini L., Fagioli F., Boccaletti R., Mareschi K., Oliveri G., Olivieri C., et al. (2003). Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 4 158–161. 10.1080/14660820310014653 PubMed DOI

Mazzini L., Ferrero I., Luparello V., Rustichelli D., Gunetti M., Mareschi K., et al. (2010). Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A phase I clinical trial. Exp. Neurol. 223 229–237. PubMed

Mazzini L., Mareschi K., Ferrero I., Miglioretti M., Stecco A., Servo S., et al. (2011). Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 14 56–60. 10.3109/14653249.2011.613929 PubMed DOI

Mendt M., Rezvani K., Shpall E. (2019). Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 54 789–792. PubMed

Mezey E., Chandross K. J., Harta G., Maki R. A., Mckercher S. R. (2000a). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290 1779–1782. PubMed

Mezey É, Chandross K. J., Harta G., Maki R. A., Mckercher S. R. (2000b). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290 1779–1782. 10.1126/science.290.5497.1779 PubMed DOI

Murgoci A.-N., Cizkova D., Majerova P., Petrovova E., Medvecky L., Fournier I., et al. (2018). Brain-cortex microglia-derived exosomes: nanoparticles for glioma therapy. Chemphyschem. 19 1205–1214. 10.1002/cphc.201701198 PubMed DOI

Murphy A. R., Laslett A., O’brien C. M., Cameron N. R. (2017). Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomater. 54 1–20. 10.1016/j.actbio.2017.02.046 PubMed DOI

Musselman K. E., Shah M., Zariffa J. (2018). Rehabilitation technologies and interventions for individuals with spinal cord injury: translational potential of current trends. J. Neuroeng. Rehabil. 15:40. PubMed PMC

Muthu S., Jeyaraman M., Gulati A., Arora A. (2020). Current evidence on mesenchymal stem cell therapy for traumatic spinal cord injury: systematic review and meta-analysis. Cytotherapy. 23 186–197. 10.1016/j.jcyt.2020.09.007 PubMed DOI

Nakano M., Kubota K., Kobayashi E., Chikenji T. S., Saito Y., Konari N., et al. (2020). Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimer’s disease model by increasing the expression of microRNA-146a in hippocampus. Sci. Rep. 10:10772. PubMed PMC

Nandoe R. D. S., Hurtado A., Levi A. D. O., Grotenhuis A., Oudega M. (2006). Bone marrow stromal cells for repair of the spinal cord: towards clinical application. Cell Transplant. 15 563–577. 10.3727/000000006783981602 PubMed DOI

Oh K. W., Moon C., Kim H. Y., Oh S. I., Park J., Lee J. H., et al. (2015). Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl. Med. 4 590–597. 10.5966/sctm.2014-0212 PubMed DOI PMC

Oh K.-W., Noh M.-Y., Kwon M.-S., Kim H. Y., Oh S.-I., Part J., et al. (2018). Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann. Neurol. 84 361–373. 10.1002/ana.25302 PubMed DOI PMC

Osaka M., Honmou O., Murakami T., Nonaka T., Houkin K., Hamada H., et al. (2010). Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res. 1343 226–235. 10.1016/j.brainres.2010.05.011 PubMed DOI

Park H.-W., Cho J.-S., Park C.-K., Jung S. J., Park C.-H., Lee S.-J., et al. (2012). Directed induction of functional motor neuron-like cells from genetically engineered human mesenchymal stem cells. PLoS One. 7:e35244. 10.1371/journal.pone.0035244 PubMed DOI PMC

Pego A. P., Kubinova S., Cizkova D., Vanicky I., Mar F. M., Sousa M. M., et al. (2012). Regenerative medicine for the treatment of spinal cord injury: more than just promises? J. Cell. Mol. Med. 16 2564–2582. 10.1111/j.1582-4934.2012.01603.x PubMed DOI PMC

Peng Z., Gao W., Yue B., Jiang J., Gu Y., Dai J., et al. (2018). Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization. J. Tissue Eng. Regen. Med. 12 e1725–e1736. PubMed

Petrenko Y., Vackova I., Kekulova K., Chudickova M., Koci Z., Turnovcova K., et al. (2020). A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on Neuroregenerative Potential. Sci. Rep. 10:4290. PubMed PMC

Petrou P., Gothelf Y., Argov Z., Gotkine M., Levy Y. S., Kassis I., et al. (2016). Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of Phase 1/2 and 2a clinical trials. JAMA Neurol. 73 337–344. 10.1001/jamaneurol.2015.4321 PubMed DOI

Prabhakar S., Marwaha N., Lal V., Sharma R. R., Rajan R., Khandelwal N. (2012). Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: a pilot study. Neurol. India 60 465–469. 10.4103/0028-3886.103185 PubMed DOI

Prockop D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276 71–74. 10.1126/science.276.5309.71 PubMed DOI

Ramer L. M., Ramer M. S., Steeves J. D. (2005). Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord. 43 134–161. 10.1038/sj.sc.3101715 PubMed DOI

Rath N., Balain B. (2017). Spinal cord injury—the role of surgical treatment for neurological improvement. J. Clin. Orthop. Trauma. 8 99–102. 10.1016/j.jcot.2017.06.016 PubMed DOI PMC

Rosenzweig E. S., McDonald J. W. (2004). Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr. Opin. Neurol. 17 121–131. 10.1097/00019052-200404000-00007 PubMed DOI

Rushkevich Y. N., Kosmacheva S. M., Zabrodets G. V., Ignatenko S. I., Goncharova N. V., Severin I. N., et al. (2015). The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in belarus. Bull. Exp. Biol. Med. 159 576–581. 10.1007/s10517-015-3017-3 PubMed DOI

Ruzicka J., Machova-Urdzikova L., Gillick J., Amemori T., Romanyuk N., Karova K., et al. (2017). A comparative study of three different types of stem cells for treatment of rat spinal cord injury. Cell Transplant. 26 585–603. 10.3727/096368916x693671 PubMed DOI PMC

Sareen D., Gowing G., Sahabian A., Staggenborg K., Paradis R., Avalos P., et al. (2014). Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J. Comp. Neurol. 522 2707–2728. 10.1002/cne.23578 PubMed DOI PMC

Sharif-Alhoseini M., Khormali M., Rezaei M., Safdarian M., Hajighadery A., Khalatbari M. M., et al. (2017). Animal models of spinal cord injury: a systematic review. Spinal Cord. 55 714–721. PubMed

Sharma A., Sane H., Gokulchandran N., Badhe P., Paranjape A., Pradhan R., et al. (2019). “Stem Cell Therapy in Motor Neuron Disease,” in Novel Aspects on Motor Neuron Disease, ed. Sibat H. F. (London: InTech; ).

Sharma A., Sane H., Paranjape A., Pradhan R., Das R., Biju H., et al. (2020). Multiple doses of cell therapy and neurorehabilitation in amyotrophic lateral sclerosis: A case report. Clin. Pract. 10:1242. PubMed PMC

Sharma A. K., Sane H. M., Paranjape A. A., Gokulchandran N., Nagrajan A., D’sa M., et al. (2015). The effect of autologous bone marrow mononuclear cell transplantation on the survival duration in Amyotrophic Lateral Sclerosis - a retrospective controlled study. Am. J. Stem Cells 4 50–65. PubMed PMC

Shin S., Lee J., Kwon Y., Park K.-S., Jeong J.-H., Choi S.-J., et al. (2021). Comparative proteomic analysis of the Mesenchymal Stem Cells secretome from adipose, bone marrow, placenta and Wharton’s Jelly. Int. J. Mol. Sci. 22:845. 10.3390/ijms22020845 PubMed DOI PMC

Silver J., Miller J. H. (2004). Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5 146–156. 10.1038/nrn1326 PubMed DOI

Silvestro S., Bramanti P., Trubiani O., Mazzon E. (2020). Stem cells therapy for spinal cord injury: An overview of clinical trials. Int. J. Mol. Sci. 21:659. 10.3390/ijms21020659 PubMed DOI PMC

Sorg B. A., Berretta S., Blacktop J. M., Fawcett J. W., Kitagawa H., Kwok J. C., et al. (2016). Casting a wide net: role of perineuronal nets in neural plasticity. J. Neurosci. 36 11459–11468. 10.1523/jneurosci.2351-16.2016 PubMed DOI PMC

Sun J. H., Li G., Wu T. T., Lin Z. J., Zou J. L., Huang L. J., et al. (2020). Decellularization optimizes the inhibitory microenvironment of the optic nerve to support neurite growth. Biomaterials. 258:120289. 10.1016/j.biomaterials.2020.120289 PubMed DOI

Sun X., Bai Y., Zhai H., Liu S., Zhang C., Xu Y., et al. (2019). Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury. Acta Biomater. 86 194–206. 10.1016/j.actbio.2018.12.032 PubMed DOI

Sykova E., Forostyak S. (2013). Stem cells in regenerative medicine. Laser Ther. 22 87–92. PubMed PMC

Syková E., Homola A., Mazanec R., Lachmann H., Konrádová ŠL., Kobylka P., et al. (2006a). Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 15 675–687. 10.3727/000000006783464381 PubMed DOI

Syková E., Jendelová P., Urdzíková L., Lesný P., Hejcl A. (2006b). Bone marrow stem cells and polymer hydrogels–two strategies for spinal cord injury repair. Cell. Mol. Neurobiol. 26 1113–1129. PubMed PMC

Syková E., Jendelová P. (2005). Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann. N. Y. Acad. Sci. 1049 146–160. 10.1196/annals.1334.014 PubMed DOI

Sykova E., Jendelova P. (2007). In vivo tracking of stem cells in brain and spinal cord injury. Prog. Brain Res. 161 367–383. 10.1016/s0079-6123(06)61026-1 PubMed DOI

Sykova E., Rychmach P., Drahoradova I., Konradova S., Ruzickova K., Vorisek I., et al. (2017). Transplantation of Mesenchymal Stromal Cells in patients with amyotrophic lateral sclerosis: results of phase I/IIa clinical trial. Cell Transplant. 26 647–658. 10.3727/096368916x693716 PubMed DOI PMC

Taran R., Mamidi M. K., Singh G., Dutta S., Parhar I. S., John J. P., et al. (2014). In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources. J. Biosci. 39 157–169. 10.1007/s12038-013-9409-5 PubMed DOI

Théry C., Duban L., Segura E., Véron P., Lantz O., Amigorena S. (2002). Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat. Immunol. 3 1156–1162. 10.1038/ni854 PubMed DOI

Tropel P., Platet N., Platel J. C., Noel D., Albrieux M., Benabid A. L., et al. (2006). Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells. 24 2868–2876. 10.1634/stemcells.2005-0636 PubMed DOI

Tukmachev D., Forostyak S., Koci Z., Zaviskova K., Vackova I., Vyborny K., et al. (2016). Injectable extracellular matrix hydrogels as scaffolds for spinal cord injury repair. Tissue Eng. Part A. 22 306–317. 10.1089/ten.tea.2015.0422 PubMed DOI PMC

Uccelli A., Benvenuto F., Laroni A., Giunti D. (2011). Neuroprotective features of mesenchymal stem cells. Best Pract. Res. Clin. Haematol. 24 59–64. 10.1016/j.beha.2011.01.004 PubMed DOI

Ullah I., Subbarao R. B., Rho G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Biosci. Rep. 35:e00191. PubMed PMC

Urdzikova L. M., Ruzicka J., Labagnara M., Karova K., Kubinova S., Jirakova K., et al. (2014). Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat. Int. J. Mol. Sci. 15 11275–11293. 10.3390/ijms150711275 PubMed DOI PMC

Vanický I., Urdzíková L., Saganová K., Cízková D., Gálik J. (2001). A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J. Neurotrauma. 18 1399–1407. 10.1089/08977150152725687 PubMed DOI

Vawda R., Badner A., Hong J., Mikhail M., Dragas R., Xhima K., et al. (2020). Harnessing the secretome of mesenchymal stromal cells for traumatic spinal cord injury: multicell comparison and assessment of in Vivo efficacy. Stem Cells Dev. 29 1429–1443. 10.1089/scd.2020.0079 PubMed DOI PMC

Vercelli A., Mereuta O. M., Garbossa D., Muraca G., Mareschi K., Rustichelli D., et al. (2008). Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 31 395–405. 10.1016/j.nbd.2008.05.016 PubMed DOI

Vikartovska Z., Kuricova M., Farbakova J., Liptak T., Mudronova D., Humenik F., et al. (2020). Stem cell conditioned medium treatment for canine spinal cord injury: pilot feasibility study. Int. J. Mol. Sci. 21:5129. 10.3390/ijms21145129 PubMed DOI PMC

Vishnubalaji R., Al-Nbaheen M., Kadalmani B., Aldahmash A., Ramesh T. (2012). Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res. 347 419–427. 10.1007/s00441-011-1306-3 PubMed DOI

Vyborny K., Vallova J., Koci Z., Kekulova K., Jirakova K., Jendelova P., et al. (2019). Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair. Sci. Rep. 9:10674. PubMed PMC

Wang J., Pearse D. D. (2015). Therapeutic hypothermia in spinal cord injury: the status of its use and open questions. Int. J. Mol. Sci. 16 16848–16879. 10.3390/ijms160816848 PubMed DOI PMC

Xu G., Ao R., Zhi Z., Jia J., Yu B. (2019). miR-21 and miR-19b delivered by hMSC-derived EVs regulate the apoptosis and differentiation of neurons in patients with spinal cord injury. J. Cell. Physiol. 234 10205–10217. 10.1002/jcp.27690 PubMed DOI

Yang E. Z., Zhang G. W., Xu J. G., Chen S., Wang H., Cao L. L., et al. (2017). Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury. Acta Pharmacol. Sin. 38 623–637. 10.1038/aps.2017.11 PubMed DOI PMC

Yang X. (2020). Chondroitin sulfate proteoglycans: key modulators of neuronal plasticity, long-term memory, neurodegenerative, and psychiatric disorders. Rev. Neurosci. 31 555–568. 10.1515/revneuro-2019-0117 PubMed DOI

Yousefifard M., Nasseri Maleki S., Askarian-Amiri S., Vaccaro A. R., Chapman J. R., Fehlings M. G., et al. (2019). A combination of mesenchymal stem cells and scaffolds promotes motor functional recovery in spinal cord injury: a systematic review and meta-analysis. J. Neurosurg. Spine. 32 269–284. 10.3171/2019.8.spine19201 PubMed DOI

Zaviskova K., Tukmachev D., Dubisova J., Vackova I., Hejcl A., Bystronova J., et al. (2018). Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair. J. Biomed. Mater. Res. A. 106 1129–1140. 10.1002/jbm.a.36311 PubMed DOI

Zhang J., Li Y., Chen J., Yang M., Katakowski M., Lu M., et al. (2004). Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res. 1030 19–27. 10.1016/j.brainres.2004.09.061 PubMed DOI

Zhao Y., Tang F., Xiao Z., Han G., Wang N., Yin N., et al. (2017). Clinical study of neuroregen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant. 26 891–900. 10.3727/096368917x695038 PubMed DOI PMC

Zhou C., Yang B., Tian Y., Jiao H., Zheng W., Wang J., et al. (2011). Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell. Immunol. 272 33–38. 10.1016/j.cellimm.2011.09.010 PubMed DOI PMC

Zhou Z., Tian X., Mo B., Xu H., Zhang L., Huang L., et al. (2020). Adipose mesenchymal stem cell transplantation alleviates spinal cord injury-induced neuroinflammation partly by suppressing the Jagged1/Notch pathway. Stem Cell. Res. Ther. 11:212. PubMed PMC

Zhu Y., Liu T., Song K., Fan X., Ma X., Cui Z. (2008). Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem. Funct. 26 664–675. 10.1002/cbf.1488 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...