Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34295897
PubMed Central
PMC8290345
DOI
10.3389/fcell.2021.695900
Knihovny.cz E-zdroje
- Klíčová slova
- amyotrophic lateral sclerosis, biomaterials, cell therapy, conditioned medium, exosomes, mesenchymal stem cells, neurodegenerative diseases, spinal cord injury,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Preclinical and clinical studies with various stem cells, their secretomes, and extracellular vesicles (EVs) indicate their use as a promising strategy for the treatment of various diseases and tissue defects, including neurodegenerative diseases such as spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS). Autologous and allogenic mesenchymal stem cells (MSCs) are so far the best candidates for use in regenerative medicine. Here we review the effects of the implantation of MSCs (progenitors of mesodermal origin) in animal models of SCI and ALS and in clinical studies. MSCs possess multilineage differentiation potential and are easily expandable in vitro. These cells, obtained from bone marrow (BM), adipose tissue, Wharton jelly, or even other tissues, have immunomodulatory and paracrine potential, releasing a number of cytokines and factors which inhibit the proliferation of T cells, B cells, and natural killer cells and modify dendritic cell activity. They are hypoimmunogenic, migrate toward lesion sites, induce better regeneration, preserve perineuronal nets, and stimulate neural plasticity. There is a wide use of MSC systemic application or MSCs seeded on scaffolds and tissue bridges made from various synthetic and natural biomaterials, including human decellularized extracellular matrix (ECM) or nanofibers. The positive effects of MSC implantation have been recorded in animals with SCI lesions and ALS. Moreover, promising effects of autologous as well as allogenic MSCs for the treatment of SCI and ALS were demonstrated in recent clinical studies.
Zobrazit více v PubMed
Ahmadian Kia N., Bahrami A. R., Ebrahimi M., Matin M. M., Neshati Z., Almohaddesin M. R., et al. (2011). Comparative analysis of chemokine receptor’s expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J. Mol. Neurosci. 44 178–185. 10.1007/s12031-010-9446-6 PubMed DOI
Ahuja C. S., Wilson J. R., Nori S., Kotter M. R. N., Druschel C., Curt A., et al. (2017). Traumatic spinal cord injury. Nat. Rev. Dis. Primers. 3:17018. PubMed
Amemori T., Ruzicka J., Romanyuk N., Jhanwar-Uniyal M., Sykova E., Jendelova P. (2015). Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell. Res. Ther. 6:257. PubMed PMC
Angeli C. A., Boakye M., Morton R. A., Vogt J., Benton K., Chen Y., et al. (2018). Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl. J. Med. 379 1244–1250. 10.1056/nejmoa1803588 PubMed DOI
Asadi-Golshan R., Razban V., Mirzaei E., Rahmanian A., Khajeh S., Mostafavi-Pour Z., et al. (2018). Sensory and motor behavior evidences supporting the usefulness of conditioned medium from dental pulp-derived stem cells in spinal cord injury in rats. Asian Spine J. 12 785–793. 10.31616/asj.2018.12.5.785 PubMed DOI PMC
Balasubramanian S., Thej C., Venugopal P., Priya N., Zakaria Z., Sundarraj S., et al. (2013). Higher propensity of Wharton’s jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow. Cell Biol. Int. 37 507–515. 10.1002/cbin.10056 PubMed DOI
Barczewska M., Maksymowicz S., Zdolińska-Malinowska I., Siwek T., Grudniak M. (2020). Umbilical cord mesenchymal stem cells in Amyotrophic Lateral Sclerosis: an original study. Stem Cell Rev. Rep. 16 922–932. 10.1007/s12015-020-10016-7 PubMed DOI PMC
Bensimon G., Lacomblez L., Meininger V. (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N. Engl. J. Med. 330 585–591. PubMed
Blasko J., Szekiova E., Slovinska L., Kafka J., Cizkova D. (2017). Axonal outgrowth stimulation after alginate/mesenchymal stem cell therapy in injured rat spinal cord. Acta Neurobiol. Exp. 77 337–350. 10.21307/ane-2017-066 PubMed DOI
Blondheim N. R., Levy Y. S., Ben-Zur T., Burshtein A., Cherlow T., Kan I., et al. (2006). Human mesenchymal stem cells express neural genes, suggesting a neural predisposition. Stem Cells Dev. 15 141–164. 10.1089/scd.2006.15.141 PubMed DOI
Boucherie C., Schafer S., Lavand’homme P., Maloteaux J. M., Hermans E. (2009). Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J. Neurosci. Res. 87 2034–2046. 10.1002/jnr.22038 PubMed DOI
Bradbury E. J., Burnside E. R. (2019). Moving beyond the glial scar for spinal cord repair. Nat. Commun. 10:3879. PubMed PMC
Bydon M., Dietz A. B., Goncalves S., Moinuddin F. M., Alvi M. A., Goyal A., et al. (2020). CELLTOP clinical trial: First report from a phase 1 trial of Autologous Adipose Tissue-Derived mesenchymal stem cells in the treatment of paralysis due to traumatic spinal cord injury. Mayo Clin. Proc. 95 406–414. 10.1016/j.mayocp.2019.10.008 PubMed DOI
Cantinieaux D., Quertainmont R., Blacher S., Rossi L., Wanet T., Noël A., et al. (2013). Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One. 8:e69515. 10.1371/journal.pone.0069515 PubMed DOI PMC
Caplan A. I. (1991). Mesenchymal stem cells. J. Orthop. Res. 9 641–650. PubMed
Chelyshev Y. A., Kabdesh I. M., Mukhamedshina Y. O. (2020). Extracellular matrix in neural plasticity and regeneration. Cell. Mol. Neurobiol. 10.1007/s10571-020-00986-0 [Epub ahead of print]. PubMed DOI PMC
Chen W., Zhang Y., Yang S., Sun J., Qiu H., Hu X., et al. (2020a). neuroregen scaffolds combined with autologous bone marrow mononuclear cells for the repair of acute complete spinal cord injury: A 3-Year clinical study. Cell Transplant. 29:963689720950637. 10.1177/0963689720950637 PubMed DOI PMC
Chen X., Wu J., Sun R., Zhao Y., Li Y., Pan J., et al. (2020b). Tubular scaffold with microchannels and an H-shaped lumen loaded with bone marrow stromal cells promotes neuroregeneration and inhibits apoptosis after spinal cord injury. J. Tissue Eng. Regen. Med. 14 397–411. 10.1002/term.2996 PubMed DOI PMC
Cho H., Shukla S. (2020). Role of edaravone as a treatment option for patients with Amyotrophic Lateral Sclerosis. Pharmaceuticals (Basel) 14:29. 10.3390/ph14010029 PubMed DOI PMC
Chudickova M., Vackova I., Machova Urdzikova L., Jancova P., Kekulova K., Rehorova M., et al. (2019). The effect of Wharton Jelly-Derived mesenchymal stromal cells and their conditioned media in the treatment of a rat spinal cord injury. Int. J. Mol. Sci. 20:4516. 10.3390/ijms20184516 PubMed DOI PMC
Cizkova D., Cubinkova V., Smolek T., Murgoci A. N., Danko J., Vdoviakova K., et al. (2018). Localized intrathecal delivery of mesenchymal stromal cells conditioned medium improves functional recovery in a rat model of spinal cord injury. Int. J. Mol. Sci. 19:870. 10.3390/ijms19030870 PubMed DOI PMC
Cizkova D., Novotna I., Slovinska L., Vanicky I., Jergova S., Rosocha J., et al. (2011). Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J. Neurotrauma. 28 1951–1961. 10.1089/neu.2010.1413 PubMed DOI
Cízková D., Rosocha J., Vanický I., Jergová S., Cízek M. (2006). Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell. Mol. Neurobiol. 26 1167–1180. PubMed PMC
Costa A., Naranjo J. D., Londono R., Badylak S. F. (2017). Biologic Scaffolds. Cold Spring Harb. Perspect. Med. 7:a025676. 10.1101/cshperspect.a025676 PubMed DOI PMC
Crapo P. M., Tottey S., Slivka P. F., Badylak S. F. (2014). Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng. Part A. 20 313–323. 10.1089/ten.tea.2013.0186 PubMed DOI PMC
Danisovic L., Varga I., Polák S., Ulicná M., Hlavacková L., Böhmer D., et al. (2009). Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen. Physiol. Biophys. 28 56–62. 10.4149/gpb_2009_01_56 PubMed DOI
Deda H., Inci M. C., Kurekci A. E., Sav A., Kayihan K., Ozgun E., et al. (2009). Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy. 11 18–25. 10.1080/14653240802549470 PubMed DOI
Deng W. S., Ma K., Liang B., Liu X. Y., Xu H. Y., Zhang J., et al. (2020). Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen. Res. 15 1686–1700. 10.4103/1673-5374.276340 PubMed DOI PMC
Devaux S., Cizkova D., Quanico J., Franck J., Nataf S., Pays L., et al. (2016). Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time- and segment-specific window for effective tissue repair. Mol. Cell. Proteomics. 15 2641–2670. 10.1074/mcp.m115.057794 PubMed DOI PMC
Discher D. E., Mooney D. J., Zandstra P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science 324 1673–1677. 10.1126/science.1171643 PubMed DOI PMC
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 8 315–317. 10.1080/14653240600855905 PubMed DOI
Elman J. S., Li M., Wang F., Gimble J. M., Parekkadan B. (2014). A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. J. Inflamm. 11:1. 10.1186/1476-9255-11-1 PubMed DOI PMC
Fawcett J. W. (2009). Recovery from spinal cord injury: regeneration, plasticity and rehabilitation. Brain 132 1417–1418. 10.1093/brain/awp121 PubMed DOI
Fawcett J. W., Oohashi T., Pizzorusso T. (2019). The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat. Rev. Neurosci. 20 451–465. 10.1038/s41583-019-0196-3 PubMed DOI
Forostyak O., Butenko O., Anderova M., Forostyak S., Sykova E., Verkhratsky A., et al. (2016a). Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res. 16 622–634. 10.1016/j.scr.2016.03.010 PubMed DOI
Forostyak O., Forostyak S., Kortus S., Sykova E., Verkhratsky A., Dayanithi G. (2016b). Physiology of Ca(2+) signalling in stem cells of different origins and differentiation stages. Cell Calcium 59 57–66. 10.1016/j.ceca.2016.02.001 PubMed DOI
Forostyak S., Homola A., Turnovcova K., Svitil P., Jendelova P., Sykova E. (2014). Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells 32 3163–3172. 10.1002/stem.1812 PubMed DOI PMC
Forostyak S., Jendelova P., Kapcalova M., Arboleda D., Sykova E. (2011). Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy. 13 1036–1046. 10.3109/14653249.2011.592521 PubMed DOI
Forostyak S., Jendelova P., Sykova E. (2013). The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie 95 2257–2270. 10.1016/j.biochi.2013.08.004 PubMed DOI
Forostyak S., Sykova E. (2017). Neuroprotective potential of cell-based therapies in ALS: from bench to bedside. Front. Neurosci. 11:591. 10.3389/fnins.2017.00591 PubMed DOI PMC
Garbuzova-Davis S., Sanberg C. D., Kuzmin-Nichols N., Willing A. E., Gemma C., Bickford P. C., et al. (2008). Human umbilical cord blood treatment in a mouse model of ALS: optimization of cell dose. PLoS One. 3:e2494. 10.1371/journal.pone.0002494 PubMed DOI PMC
Gill M. L., Grahn P. J., Calvert J. S., Linde M. B., Lavrov I. A., Strommen J. A., et al. (2018). Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 24 1677–1682. 10.1038/s41591-018-0175-7 PubMed DOI
Goutman S. A., Savelieff M. G., Sakowski S. A., Feldman E. L. (2019). Stem cell treatments for amyotrophic lateral sclerosis: a critical overview of early phase trials. Expert Opin. Investig. Drugs. 28 525–543. 10.1080/13543784.2019.1627324 PubMed DOI PMC
Grulova I., Slovinska L., Blaško J., Devaux S., Wisztorski M., Salzet M., et al. (2015). Delivery of alginate scaffold releasing two trophic factors for spinal cord injury repair. Sci. Rep. 5:13702. PubMed PMC
Gu W., Zhang F., Xue Q., Ma Z., Lu P., Yu B. (2009). Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord. Neuropathology. 30 205–217. 10.1111/j.1440-1789.2009.01063.x PubMed DOI
Hejcl A., Ruzicka J., Proks V., Mackova H., Kubinova S., Tukmachev D., et al. (2018). Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection. J. Mater Sci.-Mater M. 29:89. 10.1007/s10856-10018-16100-10852 PubMed DOI
Hejcl A., Sedy J., Kapcalova M., Toro D. A., Amemori T., Lesny P., et al. (2010). HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev. 19 1535–1546. 10.1089/scd.2009.0378 PubMed DOI
Hong J. Y., Seo Y., Davaa G., Kim H. W., Kim S. H., Hyun J. K. (2020). Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Acta Biomater. 101 357–371. 10.1016/j.actbio.2019.11.012 PubMed DOI
Hsiao S. T., Asgari A., Lokmic Z., Sinclair R., Dusting G. J., Lim S. Y., et al. (2012). Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev. 21 2189–2203. 10.1089/scd.2011.0674 PubMed DOI PMC
Huang J. I., Kazmi N., Durbhakula M. M., Hering T. M., Yoo J. U., Johnstone B. (2005). Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: A patient-matched comparison. J. Orthop. Res. 23 1383–1389. 10.1016/j.orthres.2005.03.018 PubMed DOI
Hur J. W., Cho T. H., Park D. H., Lee J. B., Park J. Y., Chung Y. G., et al. (2016). Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial. J. Spinal Cord Med. 39 655–664. 10.1179/2045772315y.0000000048 PubMed DOI PMC
Jendelová P., Herynek V., Decroos J., Glogarová K., Andersson B., Hájek M., et al. (2003). Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn. Reson. Med. 50 767–776. 10.1002/mrm.10585 PubMed DOI
Jendelová P., Herynek V., Urdzíková L., Glogarová K., Kroupová J., Andersson B., et al. (2004). Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J. Neurosci. Res. 76 232–243. 10.1002/jnr.20041 PubMed DOI
Kanekiyo K., Wakabayashi T., Nakano N., Yamada Y., Tamachi M., Suzuki Y., et al. (2018). Effects of intrathecal injection of the conditioned medium from bone marrow stromal cells on spinal cord injury in rats. J. Neurotrauma. 35 521–532. 10.1089/neu.2017.5201 PubMed DOI
Karussis D., Karageorgiou C., Vaknin-Dembinsky A., Gowda-Kurkalli B., Gomori J. M., Kassis I., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67 1187–1194. PubMed PMC
Kim D.-W., Staples M., Shinozuka K., Pantcheva P., Kang S.-D., Borlongan C. V. (2013). Wharton’s Jelly-Derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int. J. Mol. Sci. 14 11692–11712. 10.3390/ijms140611692 PubMed DOI PMC
Kim H., Kim H. Y., Choi M. R., Hwang S., Nam K. H., Kim H. C., et al. (2010). Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci. Lett. 468 190–194. 10.1016/j.neulet.2009.10.074 PubMed DOI
Kim Y. C., Kim Y. H., Kim J. W., Ha K. Y. (2016). Transplantation of Mesenchymal Stem Cells for acute spinal cord injury in rats: Comparative study between intralesional injection and scaffold based transplantation. J. Korean Med. Sci. 31 1373–1382. 10.3346/jkms.2016.31.9.1373 PubMed DOI PMC
Koci Z., Vyborny K., Dubisova J., Vackova I., Jager A., Lunov O., et al. (2017). Extracellular matrix hydrogel derived from human umbilical cord as a scaffold for neural tissue repair and its comparison with extracellular matrix from porcine tissues. Tissue Eng. Part C Methods. 23 333–345. 10.1089/ten.tec.2017.0089 PubMed DOI
Krause D. S. (2002). Plasticity of marrow-derived stem cells. Gene Ther. 9 754–758. 10.1038/sj.gt.3301760 PubMed DOI
Krupa P., Vackova I., Ruzicka J., Zaviskova K., Dubisova J., Koci Z., et al. (2018). The Effect of human mesenchymal stem cells derived from Wharton’s Jelly in spinal cord injury treatment is dose-dependent and can be facilitated by repeated application. Int. J. Mol. Sci. 19:1503. 10.3390/ijms19051503 PubMed DOI PMC
Kubinova S. (2017). Extracellular matrix based biomaterials for central nervous system tissue repair: the benefits and drawbacks. Neural Regen. Res. 12 1430–1432. 10.4103/1673-5374.215249 PubMed DOI PMC
Kubinova S., Horak D., Hejcl A., Plichta Z., Kotek J., Proks V., et al. (2015). SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair. J. Tissue Eng. Regen. Med. 9 1298–1309. 10.1002/term.1694 PubMed DOI
Kubinová S., Syková E. (2010). Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine 5 99–108. 10.2217/nnm.09.93 PubMed DOI
Kubinova S., Sykova E. (2012). Biomaterials combined with cell therapy for treatment of spinal cord injury. Regen. Med. 7 207–224. 10.2217/rme.11.121 PubMed DOI
Lankford K. L., Arroyo E. J., Nazimek K., Bryniarski K., Askenase P. W., Kocsis J. D. (2018). Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One. 13:e0190358. 10.1371/journal.pone.0190358 PubMed DOI PMC
Layer R. T., Ulich T. R., Coric D., Arnold P. M., Guest J. D., Heary R. H., et al. (2017). New Clinical-pathological classification of intraspinal injury following traumatic acute complete thoracic spinal cord injury: Postdurotomy/Myelotomy observations from the INSPIRE trial. Neurosurgery. 64 105–109. 10.1093/neuros/nyx204 PubMed DOI
Leu S., Lin Y. C., Yuen C. M., Yen C. H., Kao Y. H., Sun C. K., et al. (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8:63. 10.1186/1479-5876-8-63 PubMed DOI PMC
Li D., Zhang P., Yao X., Li H., Shen H., Li X., et al. (2018). Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Front. Neurosci. 12:845. 10.3389/fnins.2018.00845 PubMed DOI PMC
Li Y., Chen J., Chen X. G., Wang L., Gautam S. C., Xu Y. X., et al. (2002). Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 59 514–523. 10.1212/wnl.59.4.514 PubMed DOI
Liau L. L., Looi Q. H., Chia W. C., Subramaniam T., Ng M. H., Law J. X. (2020). Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci. 10:112. PubMed PMC
Libro R., Bramanti P., Mazzon E. (2017). The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Exp. Ther. Med. 14 3355–3368. 10.3892/etm.2017.4939 PubMed DOI PMC
Lindvall O., Kokaia Z. (2006). Stem cells for the treatment of neurological disorders. Nature 441 1094–1096. 10.1038/nature04960 PubMed DOI
Liu S., Schackel T., Weidner N., Puttagunta R. (2017). Biomaterial-supported cell transplantation treatments for spinal cord injury: challenges and perspectives. Front. Cell. Neurosci. 11:430. 10.3389/fncel.2017.00430 PubMed DOI PMC
Liu S., Xie Y. Y., Wang B. (2019). Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regen. Res. 14 1352–1363. 10.4103/1673-5374.253512 PubMed DOI PMC
Marconi S., Castiglione G., Turano E., Bissolotti G., Angiari S., Farinazzo A., et al. (2012). Human adipose-derived Mesenchymal Stem Cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng. Part A. 18 1264–1272. 10.1089/ten.tea.2011.0491 PubMed DOI
Martinez H. R., Gonzalez-Garza M. T., Moreno-Cuevas J. E., Caro E., Gutierrez-Jimenez E., Segura J. J. (2009). Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy. 11 26–34. 10.1080/14653240802644651 PubMed DOI
Mazzini L., Fagioli F., Boccaletti R. (2004). Stem-cell therapy in amyotrophic lateral sclerosis. Lancet 364 1936–1937. PubMed
Mazzini L., Fagioli F., Boccaletti R., Mareschi K., Oliveri G., Olivieri C., et al. (2003). Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 4 158–161. 10.1080/14660820310014653 PubMed DOI
Mazzini L., Ferrero I., Luparello V., Rustichelli D., Gunetti M., Mareschi K., et al. (2010). Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A phase I clinical trial. Exp. Neurol. 223 229–237. PubMed
Mazzini L., Mareschi K., Ferrero I., Miglioretti M., Stecco A., Servo S., et al. (2011). Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 14 56–60. 10.3109/14653249.2011.613929 PubMed DOI
Mendt M., Rezvani K., Shpall E. (2019). Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 54 789–792. PubMed
Mezey E., Chandross K. J., Harta G., Maki R. A., Mckercher S. R. (2000a). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290 1779–1782. PubMed
Mezey É, Chandross K. J., Harta G., Maki R. A., Mckercher S. R. (2000b). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290 1779–1782. 10.1126/science.290.5497.1779 PubMed DOI
Murgoci A.-N., Cizkova D., Majerova P., Petrovova E., Medvecky L., Fournier I., et al. (2018). Brain-cortex microglia-derived exosomes: nanoparticles for glioma therapy. Chemphyschem. 19 1205–1214. 10.1002/cphc.201701198 PubMed DOI
Murphy A. R., Laslett A., O’brien C. M., Cameron N. R. (2017). Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomater. 54 1–20. 10.1016/j.actbio.2017.02.046 PubMed DOI
Musselman K. E., Shah M., Zariffa J. (2018). Rehabilitation technologies and interventions for individuals with spinal cord injury: translational potential of current trends. J. Neuroeng. Rehabil. 15:40. PubMed PMC
Muthu S., Jeyaraman M., Gulati A., Arora A. (2020). Current evidence on mesenchymal stem cell therapy for traumatic spinal cord injury: systematic review and meta-analysis. Cytotherapy. 23 186–197. 10.1016/j.jcyt.2020.09.007 PubMed DOI
Nakano M., Kubota K., Kobayashi E., Chikenji T. S., Saito Y., Konari N., et al. (2020). Bone marrow-derived mesenchymal stem cells improve cognitive impairment in an Alzheimer’s disease model by increasing the expression of microRNA-146a in hippocampus. Sci. Rep. 10:10772. PubMed PMC
Nandoe R. D. S., Hurtado A., Levi A. D. O., Grotenhuis A., Oudega M. (2006). Bone marrow stromal cells for repair of the spinal cord: towards clinical application. Cell Transplant. 15 563–577. 10.3727/000000006783981602 PubMed DOI
Oh K. W., Moon C., Kim H. Y., Oh S. I., Park J., Lee J. H., et al. (2015). Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl. Med. 4 590–597. 10.5966/sctm.2014-0212 PubMed DOI PMC
Oh K.-W., Noh M.-Y., Kwon M.-S., Kim H. Y., Oh S.-I., Part J., et al. (2018). Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann. Neurol. 84 361–373. 10.1002/ana.25302 PubMed DOI PMC
Osaka M., Honmou O., Murakami T., Nonaka T., Houkin K., Hamada H., et al. (2010). Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res. 1343 226–235. 10.1016/j.brainres.2010.05.011 PubMed DOI
Park H.-W., Cho J.-S., Park C.-K., Jung S. J., Park C.-H., Lee S.-J., et al. (2012). Directed induction of functional motor neuron-like cells from genetically engineered human mesenchymal stem cells. PLoS One. 7:e35244. 10.1371/journal.pone.0035244 PubMed DOI PMC
Pego A. P., Kubinova S., Cizkova D., Vanicky I., Mar F. M., Sousa M. M., et al. (2012). Regenerative medicine for the treatment of spinal cord injury: more than just promises? J. Cell. Mol. Med. 16 2564–2582. 10.1111/j.1582-4934.2012.01603.x PubMed DOI PMC
Peng Z., Gao W., Yue B., Jiang J., Gu Y., Dai J., et al. (2018). Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization. J. Tissue Eng. Regen. Med. 12 e1725–e1736. PubMed
Petrenko Y., Vackova I., Kekulova K., Chudickova M., Koci Z., Turnovcova K., et al. (2020). A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on Neuroregenerative Potential. Sci. Rep. 10:4290. PubMed PMC
Petrou P., Gothelf Y., Argov Z., Gotkine M., Levy Y. S., Kassis I., et al. (2016). Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of Phase 1/2 and 2a clinical trials. JAMA Neurol. 73 337–344. 10.1001/jamaneurol.2015.4321 PubMed DOI
Prabhakar S., Marwaha N., Lal V., Sharma R. R., Rajan R., Khandelwal N. (2012). Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: a pilot study. Neurol. India 60 465–469. 10.4103/0028-3886.103185 PubMed DOI
Prockop D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276 71–74. 10.1126/science.276.5309.71 PubMed DOI
Ramer L. M., Ramer M. S., Steeves J. D. (2005). Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord. 43 134–161. 10.1038/sj.sc.3101715 PubMed DOI
Rath N., Balain B. (2017). Spinal cord injury—the role of surgical treatment for neurological improvement. J. Clin. Orthop. Trauma. 8 99–102. 10.1016/j.jcot.2017.06.016 PubMed DOI PMC
Rosenzweig E. S., McDonald J. W. (2004). Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr. Opin. Neurol. 17 121–131. 10.1097/00019052-200404000-00007 PubMed DOI
Rushkevich Y. N., Kosmacheva S. M., Zabrodets G. V., Ignatenko S. I., Goncharova N. V., Severin I. N., et al. (2015). The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in belarus. Bull. Exp. Biol. Med. 159 576–581. 10.1007/s10517-015-3017-3 PubMed DOI
Ruzicka J., Machova-Urdzikova L., Gillick J., Amemori T., Romanyuk N., Karova K., et al. (2017). A comparative study of three different types of stem cells for treatment of rat spinal cord injury. Cell Transplant. 26 585–603. 10.3727/096368916x693671 PubMed DOI PMC
Sareen D., Gowing G., Sahabian A., Staggenborg K., Paradis R., Avalos P., et al. (2014). Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J. Comp. Neurol. 522 2707–2728. 10.1002/cne.23578 PubMed DOI PMC
Sharif-Alhoseini M., Khormali M., Rezaei M., Safdarian M., Hajighadery A., Khalatbari M. M., et al. (2017). Animal models of spinal cord injury: a systematic review. Spinal Cord. 55 714–721. PubMed
Sharma A., Sane H., Gokulchandran N., Badhe P., Paranjape A., Pradhan R., et al. (2019). “Stem Cell Therapy in Motor Neuron Disease,” in Novel Aspects on Motor Neuron Disease, ed. Sibat H. F. (London: InTech; ).
Sharma A., Sane H., Paranjape A., Pradhan R., Das R., Biju H., et al. (2020). Multiple doses of cell therapy and neurorehabilitation in amyotrophic lateral sclerosis: A case report. Clin. Pract. 10:1242. PubMed PMC
Sharma A. K., Sane H. M., Paranjape A. A., Gokulchandran N., Nagrajan A., D’sa M., et al. (2015). The effect of autologous bone marrow mononuclear cell transplantation on the survival duration in Amyotrophic Lateral Sclerosis - a retrospective controlled study. Am. J. Stem Cells 4 50–65. PubMed PMC
Shin S., Lee J., Kwon Y., Park K.-S., Jeong J.-H., Choi S.-J., et al. (2021). Comparative proteomic analysis of the Mesenchymal Stem Cells secretome from adipose, bone marrow, placenta and Wharton’s Jelly. Int. J. Mol. Sci. 22:845. 10.3390/ijms22020845 PubMed DOI PMC
Silver J., Miller J. H. (2004). Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5 146–156. 10.1038/nrn1326 PubMed DOI
Silvestro S., Bramanti P., Trubiani O., Mazzon E. (2020). Stem cells therapy for spinal cord injury: An overview of clinical trials. Int. J. Mol. Sci. 21:659. 10.3390/ijms21020659 PubMed DOI PMC
Sorg B. A., Berretta S., Blacktop J. M., Fawcett J. W., Kitagawa H., Kwok J. C., et al. (2016). Casting a wide net: role of perineuronal nets in neural plasticity. J. Neurosci. 36 11459–11468. 10.1523/jneurosci.2351-16.2016 PubMed DOI PMC
Sun J. H., Li G., Wu T. T., Lin Z. J., Zou J. L., Huang L. J., et al. (2020). Decellularization optimizes the inhibitory microenvironment of the optic nerve to support neurite growth. Biomaterials. 258:120289. 10.1016/j.biomaterials.2020.120289 PubMed DOI
Sun X., Bai Y., Zhai H., Liu S., Zhang C., Xu Y., et al. (2019). Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury. Acta Biomater. 86 194–206. 10.1016/j.actbio.2018.12.032 PubMed DOI
Sykova E., Forostyak S. (2013). Stem cells in regenerative medicine. Laser Ther. 22 87–92. PubMed PMC
Syková E., Homola A., Mazanec R., Lachmann H., Konrádová ŠL., Kobylka P., et al. (2006a). Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 15 675–687. 10.3727/000000006783464381 PubMed DOI
Syková E., Jendelová P., Urdzíková L., Lesný P., Hejcl A. (2006b). Bone marrow stem cells and polymer hydrogels–two strategies for spinal cord injury repair. Cell. Mol. Neurobiol. 26 1113–1129. PubMed PMC
Syková E., Jendelová P. (2005). Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann. N. Y. Acad. Sci. 1049 146–160. 10.1196/annals.1334.014 PubMed DOI
Sykova E., Jendelova P. (2007). In vivo tracking of stem cells in brain and spinal cord injury. Prog. Brain Res. 161 367–383. 10.1016/s0079-6123(06)61026-1 PubMed DOI
Sykova E., Rychmach P., Drahoradova I., Konradova S., Ruzickova K., Vorisek I., et al. (2017). Transplantation of Mesenchymal Stromal Cells in patients with amyotrophic lateral sclerosis: results of phase I/IIa clinical trial. Cell Transplant. 26 647–658. 10.3727/096368916x693716 PubMed DOI PMC
Taran R., Mamidi M. K., Singh G., Dutta S., Parhar I. S., John J. P., et al. (2014). In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources. J. Biosci. 39 157–169. 10.1007/s12038-013-9409-5 PubMed DOI
Théry C., Duban L., Segura E., Véron P., Lantz O., Amigorena S. (2002). Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat. Immunol. 3 1156–1162. 10.1038/ni854 PubMed DOI
Tropel P., Platet N., Platel J. C., Noel D., Albrieux M., Benabid A. L., et al. (2006). Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells. 24 2868–2876. 10.1634/stemcells.2005-0636 PubMed DOI
Tukmachev D., Forostyak S., Koci Z., Zaviskova K., Vackova I., Vyborny K., et al. (2016). Injectable extracellular matrix hydrogels as scaffolds for spinal cord injury repair. Tissue Eng. Part A. 22 306–317. 10.1089/ten.tea.2015.0422 PubMed DOI PMC
Uccelli A., Benvenuto F., Laroni A., Giunti D. (2011). Neuroprotective features of mesenchymal stem cells. Best Pract. Res. Clin. Haematol. 24 59–64. 10.1016/j.beha.2011.01.004 PubMed DOI
Ullah I., Subbarao R. B., Rho G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Biosci. Rep. 35:e00191. PubMed PMC
Urdzikova L. M., Ruzicka J., Labagnara M., Karova K., Kubinova S., Jirakova K., et al. (2014). Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat. Int. J. Mol. Sci. 15 11275–11293. 10.3390/ijms150711275 PubMed DOI PMC
Vanický I., Urdzíková L., Saganová K., Cízková D., Gálik J. (2001). A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J. Neurotrauma. 18 1399–1407. 10.1089/08977150152725687 PubMed DOI
Vawda R., Badner A., Hong J., Mikhail M., Dragas R., Xhima K., et al. (2020). Harnessing the secretome of mesenchymal stromal cells for traumatic spinal cord injury: multicell comparison and assessment of in Vivo efficacy. Stem Cells Dev. 29 1429–1443. 10.1089/scd.2020.0079 PubMed DOI PMC
Vercelli A., Mereuta O. M., Garbossa D., Muraca G., Mareschi K., Rustichelli D., et al. (2008). Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 31 395–405. 10.1016/j.nbd.2008.05.016 PubMed DOI
Vikartovska Z., Kuricova M., Farbakova J., Liptak T., Mudronova D., Humenik F., et al. (2020). Stem cell conditioned medium treatment for canine spinal cord injury: pilot feasibility study. Int. J. Mol. Sci. 21:5129. 10.3390/ijms21145129 PubMed DOI PMC
Vishnubalaji R., Al-Nbaheen M., Kadalmani B., Aldahmash A., Ramesh T. (2012). Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res. 347 419–427. 10.1007/s00441-011-1306-3 PubMed DOI
Vyborny K., Vallova J., Koci Z., Kekulova K., Jirakova K., Jendelova P., et al. (2019). Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair. Sci. Rep. 9:10674. PubMed PMC
Wang J., Pearse D. D. (2015). Therapeutic hypothermia in spinal cord injury: the status of its use and open questions. Int. J. Mol. Sci. 16 16848–16879. 10.3390/ijms160816848 PubMed DOI PMC
Xu G., Ao R., Zhi Z., Jia J., Yu B. (2019). miR-21 and miR-19b delivered by hMSC-derived EVs regulate the apoptosis and differentiation of neurons in patients with spinal cord injury. J. Cell. Physiol. 234 10205–10217. 10.1002/jcp.27690 PubMed DOI
Yang E. Z., Zhang G. W., Xu J. G., Chen S., Wang H., Cao L. L., et al. (2017). Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury. Acta Pharmacol. Sin. 38 623–637. 10.1038/aps.2017.11 PubMed DOI PMC
Yang X. (2020). Chondroitin sulfate proteoglycans: key modulators of neuronal plasticity, long-term memory, neurodegenerative, and psychiatric disorders. Rev. Neurosci. 31 555–568. 10.1515/revneuro-2019-0117 PubMed DOI
Yousefifard M., Nasseri Maleki S., Askarian-Amiri S., Vaccaro A. R., Chapman J. R., Fehlings M. G., et al. (2019). A combination of mesenchymal stem cells and scaffolds promotes motor functional recovery in spinal cord injury: a systematic review and meta-analysis. J. Neurosurg. Spine. 32 269–284. 10.3171/2019.8.spine19201 PubMed DOI
Zaviskova K., Tukmachev D., Dubisova J., Vackova I., Hejcl A., Bystronova J., et al. (2018). Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair. J. Biomed. Mater. Res. A. 106 1129–1140. 10.1002/jbm.a.36311 PubMed DOI
Zhang J., Li Y., Chen J., Yang M., Katakowski M., Lu M., et al. (2004). Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res. 1030 19–27. 10.1016/j.brainres.2004.09.061 PubMed DOI
Zhao Y., Tang F., Xiao Z., Han G., Wang N., Yin N., et al. (2017). Clinical study of neuroregen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant. 26 891–900. 10.3727/096368917x695038 PubMed DOI PMC
Zhou C., Yang B., Tian Y., Jiao H., Zheng W., Wang J., et al. (2011). Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell. Immunol. 272 33–38. 10.1016/j.cellimm.2011.09.010 PubMed DOI PMC
Zhou Z., Tian X., Mo B., Xu H., Zhang L., Huang L., et al. (2020). Adipose mesenchymal stem cell transplantation alleviates spinal cord injury-induced neuroinflammation partly by suppressing the Jagged1/Notch pathway. Stem Cell. Res. Ther. 11:212. PubMed PMC
Zhu Y., Liu T., Song K., Fan X., Ma X., Cui Z. (2008). Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem. Funct. 26 664–675. 10.1002/cbf.1488 PubMed DOI