Neuroprotective Potential of Cell-Based Therapies in ALS: From Bench to Bedside
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
29114200
PubMed Central
PMC5660803
DOI
10.3389/fnins.2017.00591
Knihovny.cz E-resources
- Keywords
- clinical trials, neurodegeneration, neuroprotection, stem cells,
- Publication type
- Journal Article MeSH
- Review MeSH
Motor neurons (MN) degeneration is a main feature of amyotrophic lateral sclerosis (ALS), a neurological disorder with a progressive course. The diagnosis of ALS is essentially a clinical one. Most common symptoms include a gradual neurological deterioration that reflect the impairment and subsequent loss of muscle functions. Up-to-date ALS has no therapy that would prevent or cure a disease. Modern therapeutic strategies comprise of neuroprotective treatment focused on antiglutamatergic, antioxidant, antiapoptotic, and anti-inflammatory molecules. Stem cells application and gene therapy has provided researchers with a powerful tool for discovery of new mechanisms and therapeutic agents, as well as opened new perspectives for patients and family members. Here, we review latest progress made in basic, translational and clinical stem cell research related to the ALS. We overviewed results of preclinical and clinical studies employing cell-based therapy to treat neurodegenerative disorders. A special focus has been made on the neuroprotective properties of adult mesenchymal stromal cells (MSC) application into ALS patients. Finally, we overviewed latest progress in the field of embryonic and induced pluripotent stem cells used for the modeling and application during neurodegeneration in general and in ALS in particular.
Department of Neuroscience 2nd Faculty of Medicine Charles University Prague Czechia
Institute of Neuroimmunology Slovak Academy of Sciences Bratislava Slovakia
See more in PubMed
Achi E. Y., Rudnicki S. A. (2012). ALS and Frontotemporal Dysfunction: a review. Neurol. Res. Int. 2012:806306. 10.1155/2012/806306 PubMed DOI PMC
Aggarwal S., Pittenger M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822. 10.1182/blood-2004-04-1559 PubMed DOI
Andersen P. M., Al-Chalabi A. (2011). Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7, 603–615. 10.1038/nrneurol.2011.150 PubMed DOI
Appel S. H. (1981). A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Ann. Neurol. 10, 499–505. 10.1002/ana.410100602 PubMed DOI
Aran F. A. (1848). Research on an as yet undescribed disease of the muscular system (progressive muscular atrophy). Arch. Gén. Méd. 24, 15–35.
Bedlack R. S., Silani V., Cudkowicz M. E. (2009). IPLEX and the telephone game: the difficulty in separating myth from reality on the internet. Amyotroph. Lateral. Scler. 10, 182–184. 10.1080/17482960802673059 PubMed DOI
Bento-Abreu A., Van Damme P., Van Den Bosch L., Robberecht W. (2010). The neurobiology of amyotrophic lateral sclerosis. Eur. J. Neurosci. 31, 2247–2265. 10.1111/j.1460-9568.2010.07260.x PubMed DOI
Blanquer M., Moraleda J. M., Iniesta F., Gomez-Espuch J., Meca-Lallana J., Villaverde R., et al. (2012). Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells 30, 1277–1285. 10.1002/stem.1080 PubMed DOI
Borasio G. D., Appel S. H. (2003). Upper and lower motor neuron disorders, in Neurological Disorders: Course and Treatment 2nd edn., Chapter 81, eds Brandt T., Caplan L. R., Dichgans J., Diener H. C., Kennard C. (San Diego, CA: Academic Press; ), 1165–1177.
Boucherie C., Schafer S., Lavand'homme P., Maloteaux J. M., Hermans E. (2009). Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J. Neurosci. Res. 87, 2034–2046. 10.1002/jnr.22038 PubMed DOI
Brody D. L., Holtzman D. M. (2008). Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci. 31, 175–193. 10.1146/annurev.neuro.31.060407.125529 PubMed DOI PMC
Burkhardt M. F., Martinez F. J., Wright S., Ramos C., Volfson D., Mason M., et al. (2013). A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell. Neurosci. 56, 355–364. 10.1016/j.mcn.2013.07.007 PubMed DOI PMC
Carulli D., Pizzorusso T., Kwok J. C., Putignano E., Poli A., Forostyak S., et al. (2010). Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133(Pt 8), 2331–2347. 10.1093/brain/awq145 PubMed DOI
Charcot J. M. (1881). Lectures on the Diseases of the Nervous System. (London: New Sydenham Society; ).
Chen Y., Meininger V., Guillemin G. J. (2009). Recent advances in the treatment of amyotrophic lateral sclerosis. emphasis on kynurenine pathway inhibitors. Cent. Nerv. Syst. Agents Med. Chem. 9, 32–39. 10.2174/187152409787601941 PubMed DOI
Chen Y. Z., Bennett C. L., Huynh H. M., Blair I. P., Puls I., Irobi J., et al. (2004). DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 74, 1128–1135. 10.1086/421054 PubMed DOI PMC
Choi M. R., Kim H. Y., Park J. Y., Lee T. Y., Baik C. S., Chai Y. G., et al. (2010). Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neurosci. Lett. 472, 94–98. 10.1016/j.neulet.2010.01.054 PubMed DOI
Dafinca R., Scaber J., Ababneh N., Lalic T., Weir G., Christian H., et al. (2016). C9orf72 Hexanucleotide expansions are associated with altered ER calcium homeostasis and stress granule formation in iPSC-derived neurons from patients with amyotrophic lateral sclerosis and frontotemporal Dementia. Stem Cells 34, 2063–2078. 10.1002/stem.2388 PubMed DOI PMC
Deda H., Inci M. C., Kurekci A. E., Sav A., Kayihan K., Ozgun E., et al. (2009). Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy 11, 18–25. 10.1080/14653240802549470 PubMed DOI
DeJesus-Hernandez M., Mackenzie I. R., Boeve B. F., Boxer A. L., Baker M., Rutherford N. J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256. 10.1016/j.neuron.2011.09.011 PubMed DOI PMC
Deshpande D. M., Kim Y. S., Martinez T., Carmen J., Dike S., Kerr D. A. (2006). Recovery from paralysis in adult rats using embryonic stem cells. Ann. Neurol. 60, 32–44. 10.1002/ana.20901 PubMed DOI
Dimos J. T., Rodolfa K. T., Niakan K. K., Weisenthal L. M., Mitsumoto H., Chung W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221. 10.1126/science.1158799 PubMed DOI
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. the international society for cellular therapy position statement. Cytotherapy 8, 315–317. 10.1080/14653240600855905 PubMed DOI
Elden A. C., Kim H. J., Hart M. P., Chen-Plotkin A. S., Johnson B. S., Fang X., et al. (2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075. 10.1038/nature09320 PubMed DOI PMC
Forostyak O., Butenko O., Anderova M., Forostyak S., Sykova E., Verkhratsky A., et al. (2016a). Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res. 16, 622–634. 10.1016/j.scr.2016.03.010 PubMed DOI
Forostyak O., Forostyak S., Kortus S., Sykova E., Verkhratsky A., Dayanithi G. (2016b). Physiology of Ca(2+) signalling in stem cells of different origins and differentiation stages. Cell Calcium 59, 57–66. 10.1016/j.ceca.2016.02.001 PubMed DOI
Forostyak O., Romanyuk N., Verkhratsky A., Sykova E., Dayanithi G. (2013a). Plasticity of calcium signaling cascades in human embryonic stem cell-derived neural precursors. Stem Cells Dev. 22, 1506–1521. 10.1089/scd.2012.0624 PubMed DOI PMC
Forostyak S., Homola A., Turnovcova K., Svitil P., Jendelova P., Sykova E. (2014). Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells 32, 3163–3172. 10.1002/stem.1812 PubMed DOI PMC
Forostyak S., Jendelova P., Kapcalova M., Arboleda D., Sykova E. (2011). Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy 13, 1036–1046. 10.3109/14653249.2011.592521 PubMed DOI
Forostyak S., Jendelova P., Sykova E. (2013b). The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie 95, 2257–2270. 10.1016/j.biochi.2013.08.004 PubMed DOI
Garbuzova-Davis S., Sanberg C. D., Kuzmin-Nichols N., Willing A. E., Gemma C., Bickford P. C., et al. (2008). Human umbilical cord blood treatment in a mouse model of ALS: optimization of cell dose. PLoS ONE 3:e2494. 10.1371/journal.pone.0002494 PubMed DOI PMC
Garbuzova-Davis S., Saporta S., Haller E., Kolomey I., Bennett S. P., Potter H., et al. (2007). Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS ONE 2:e1205. 10.1371/journal.pone.0001205 PubMed DOI PMC
Gelati M., Profico D., Projetti-Pensi M., Muzi G., Sgaravizzi G., Vescovi A. L. (2013). Culturing and expansion of “clinical grade” precursors cells from the fetal human central nervous system. Methods Mol. Biol. 1059, 65–77. 10.1007/978-1-62703-574-3_6 PubMed DOI
Geser F., Martinez-Lage M., Kwong L. K., Lee V. M., Trojanowski J. Q. (2009). Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J. Neurol. 256, 1205–1214. 10.1007/s00415-009-5069-7 PubMed DOI PMC
Gitcho M. A., Baloh R. H., Chakraverty S., Mayo K., Norton J. B., Levitch D., et al. (2008). TDP-43 A315T mutation in familial motor neuron disease. Ann. Neurol. 63, 535–538. 10.1002/ana.21344 PubMed DOI PMC
Glass J. D., Boulis N. M., Johe K., Rutkove S. B., Federici T., Feldman E. L. (2012). Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 30, 1144–1151. 10.1002/stem.1079 PubMed DOI
Gould T. W., Oppenheim R. W. (2011). Motor neuron trophic factors: therapeutic use in ALS? Brain Res. Rev. 67, 1–39. 10.1016/j.brainresrev.2010.10.003 PubMed DOI PMC
Gould T. W., Yonemura S., Oppenheim R. W., Ohmori S., Enomoto H. (2008). The neurotrophic effects of glial cell line-derived neurotrophic factor on spinal motoneurons are restricted to fusimotor subtypes. J. Neurosci. 28, 2131–2146. 10.1523/JNEUROSCI.5185-07.2008 PubMed DOI PMC
Gowing G., Svendsen C. N. (2011). Stem cell transplantation for motor neuron disease: current approaches and future perspectives. Neurotherapeutics 8, 591–606. 10.1007/s13311-011-0068-7 PubMed DOI PMC
Habisch H. J., Janowski M., Binder D., Kuzma-Kozakiewicz M., Widmann A., Habich A., et al. (2007). Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects. J. Neural Transm. 114, 1395–1406. 10.1007/s00702-007-0748-y PubMed DOI
Hadano S., Hand C. K., Osuga H., Yanagisawa Y., Otomo A., Devon R. S., Ikeda J. E. (2001). A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet. 29, 166–173. 10.1038/ng1001-166 PubMed DOI
Hall C. E., Yao Z., Choi M., Tyzack G. E., Serio A., Luisier R., et al. (2017). Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS. Cell Rep. 19, 1739–1749. 10.1016/j.celrep.2017.05.024 PubMed DOI PMC
Hand C. K., Khoris J., Salachas F., Gros-Louis F., Lopes A. A., Mayeux-Portas V., et al. (2002). A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am. J. Hum. Genet. 70, 251–256. 10.1086/337945 PubMed DOI PMC
Hardiman O. (2011). Management of respiratory symptoms in ALS. J. Neurol. 258, 359–365. 10.1007/s00415-010-5830-y PubMed DOI
Howe C. L., Bergstrom R. A., Horazdovsky B. F. (2009). Subcutaneous IGF-1 is not beneficial in 2-year ALS trial. Neurology 73, 1247; author reply 1247–1248. 10.1212/WNL.0b013e3181b26ae6 PubMed DOI
Johnston C. A., Stanton B. R., Turner M. R., Gray R., Blunt A. H., Butt D., et al. (2006). Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. J. Neurol. 253, 1642–1643. 10.1007/s00415-006-0195-y PubMed DOI
Kabashi E., Valdmanis P. N., Dion P., Spiegelman D., McConkey B. J., Rouleau G. A. (2008). TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40, 572–574. 10.1038/ng.132 PubMed DOI
Kallur T., Darsalia V., Lindvall O., Kokaia Z. (2006). Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J. Neurosci. Res. 84, 1630–1644. 10.1002/jnr.21066 PubMed DOI
Kanning K. C., Kaplan A., Henderson C. E. (2010). Motor neuron diversity in development and disease. Annu. Rev. Neurosci. 33, 409–440. 10.1146/annurev.neuro.051508.135722 PubMed DOI
Kaspar B. K., Llado J., Sherkat N., Rothstein J. D., Gage F. H. (2003). Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301, 839–842. 10.1126/science.1086137 PubMed DOI
Kaufmann P., Thompson J. L., Levy G., Buchsbaum R., Shefner J., Krivickas L. S., et al. (2009). Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann. Neurol. 66, 235–244. 10.1002/ana.21743 PubMed DOI PMC
Kiernan M. C., Vucic S., Cheah B. C., Turner M. R., Eisen A., Hardiman O., et al. (2018). Amyotrophic lateral sclerosis. Lancet 377, 942–955. 10.1016/S0140-6736(10)61156-7 PubMed DOI
Kim H., Kim H. Y., Choi M. R., Hwang S., Nam K. H., Kim H. C., et al. (2010). Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci. Lett. 468, 190–194. 10.1016/j.neulet.2009.10.074 PubMed DOI
Kondo T., Funayama M., Tsukita K., Hotta A., Yasuda A., Nori S., et al. (2014). Focal transplantation of human iPSC-derived glial-rich neural progenitors improves lifespan of ALS mice. Stem Cell Rep. 3, 242–249. 10.1016/j.stemcr.2014.05.017 PubMed DOI PMC
Krause D. S. (2002). Plasticity of marrow-derived stem cells. Gene Ther. 9, 754–758. 10.1038/sj.gt.3301760 PubMed DOI
Kuzuhara S., Kokubo Y. (2005). Atypical parkinsonism of Japan: amyotrophic lateral sclerosis-parkinsonism-dementia complex of the Kii peninsula of Japan (Muro disease): an update. Mov. Disord. 20 (Suppl. 12,) S108–S113. 10.1002/mds.20548 PubMed DOI
Lacomblez L., Bensimon G., Leigh P. N., Guillet P., Meininger V. (1996). Dose-ranging study of riluzole in amyotrophic lateral sclerosis. amyotrophic lateral sclerosis/riluzole study group II. Lancet 347, 1425–1431. 10.1016/S0140-6736(96)91680-3 PubMed DOI
Le Blanc K. (2003). Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5, 485–489. 10.1080/14653240310003611 PubMed DOI
Lee H., Shamy G. A., Elkabetz Y., Schofield C. M., Harrsion N. L., Panagiotakos G., et al. (2007). Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 25, 1931–1939. 10.1634/stemcells.2007-0097 PubMed DOI
Lepore A. C., Rauck B., Dejea C., Pardo A. C., Rao M. S., Rothstein J. D., et al. (2008). Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat. Neurosci. 11, 1294–1301. 10.1038/nn.2210 PubMed DOI PMC
Levy G., Kaufmann P., Buchsbaum R., Montes J., Barsdorf A., Arbing R., et al. (2006). A two-stage design for a phase II clinical trial of coenzyme Q10 in ALS. Neurology 66, 660–663. 10.1212/01.wnl.0000201182.60750.66 PubMed DOI
Lindvall O., Kokaia Z. (2006). Stem cells for the treatment of neurological disorders. Nature 441, 1094–1096. 10.1038/nature04960 PubMed DOI
Lunn J. S., Sakowski S. A., Federici T., Glass J. D., Boulis N. M., Feldman E. L. (2011). Stem cell technology for the study and treatment of motor neuron diseases. Regen. Med. 6, 201–213. 10.2217/rme.11.6 PubMed DOI PMC
Mahoney C. J., Beck J., Rohrer J. D., Lashley T., Mok K., Shakespeare T., et al. (2012). Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain 135(Pt 3), 736–750. 10.1093/brain/awr361 PubMed DOI PMC
Martinez H. R., Gonzalez-Garza M. T., Moreno-Cuevas J. E., Caro E., Gutierrez-Jimenez E., Segura J. J. (2009). Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy 11, 26–34. 10.1080/14653240802644651 PubMed DOI
Mazzini L., Fagioli F., Boccaletti R. (2004). Stem-cell therapy in amyotrophic lateral sclerosis. Lancet 364, 1936–1937. 10.1016/S0140-6736(04)17470-9 PubMed DOI
Mazzini L., Fagioli F., Boccaletti R., Mareschi K., Oliveri G., Olivieri C., et al. (2003). Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 4, 158–161. 10.1080/14660820310014653 PubMed DOI
Mazzini L., Ferrero I., Luparello V., Rustichelli D., Gunetti M., Mareschi K., et al. (2010). Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp. Neurol. 223, 229–237. 10.1016/j.expneurol.2009.08.007 PubMed DOI
Mazzini L., Gelati M., Profico D. C., Sgaravizzi G., Projetti Pensi M., Vescovi A. L. (2015). Human neural stem cell transplantation in ALS: initial results from a phase I trial. J. Transl. Med. 13, 17. 10.1186/s12967-014-0371-2 PubMed DOI PMC
Mazzini L., Mareschi K., Ferrero I., Miglioretti M., Stecco A., Servo S., et al. (2011). Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 4, 56–60. 10.3109/14653249.2011.613929 PubMed DOI
McGeer E. G., McGeer P. L. (2005). Pharmacologic approaches to the treatment of amyotrophic lateral sclerosis. Biodrugs 19, 31–37. 10.2165/00063030-200519010-00004 PubMed DOI
Mezey E., Chandross K. J., Harta G., Maki R. A., McKercher S. R. (2000). Turning blood into brain: cells bearing neuronal antigens generated PubMed DOI
Mustfa N., Walsh E., Bryant V., Lyall R. A., Addington-Hall J., Goldstein L. H., et al. (2006). The effect of noninvasive ventilation on ALS patients and their caregivers. Neurology 66, 1211–1217. 10.1212/01.wnl.0000208957.88534.11 PubMed DOI
Nagano I., Ilieva H., Shiote M., Murakami T., Yokoyama M., Shoji M., et al. (2005). Therapeutic benefit of intrathecal injection of insulin-like growth factor-1 in a mouse model of Amyotrophic Lateral Sclerosis. J. Neurol. Sci. 235, 61–68. 10.1016/j.jns.2005.04.011 PubMed DOI
Neumann M., Galushko M., Karbach U., Goldblatt H., Visser A., Wirtz M., et al. (2009). Barriers to using psycho-oncology services: a qualitative research into the perspectives of users, their relatives, non-users, physicians, and nurses. Support. Care Cancer 18, 1147–1156. 10.1007/s00520-009-0731-2 PubMed DOI
Nishimura A. L., Mitne-Neto M., Silva H. C., Richieri-Costa A., Middleton S., Cascio D., et al. (2004). A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822–831. 10.1086/425287 PubMed DOI PMC
Nistor G. I., Totoiu M. O., Haque N., Carpenter M. K., Keirstead H. S. (2005). Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49, 85–396. 10.1002/glia.20127 PubMed DOI
Papadeas S. T., Maragakis N. J. (2009). Advances in stem cell research for Amyotrophic Lateral Sclerosis. Curr. Opin. Biotechnol. 20, 545–551. 10.1016/j.copbio.2009.09.003 PubMed DOI
Petri S., Kiaei M., Damiano M., Hiller A., Wille E., Manfredi G., et al. (2006). Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J. Neurochem. 98, 1141–1148. 10.1111/j.1471-4159.2006.04018.x PubMed DOI
Petrou P., Gothelf Y., Argov Z., Gotkine M., Levy Y. S., Karussis D., et al. (2016). Safety and Clinical Effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 73, 337–344. 10.1001/jamaneurol.2015.4321 PubMed DOI
Popescu I. R., Nicaise C., Liu S., Bisch G., Knippenberg S., Daubie V., et al. (2013). Neural progenitors derived from human induced pluripotent stem cells survive and differentiate upon transplantation into a rat model of amyotrophic lateral sclerosis. Stem Cells Transl. Med. 2, 167–174. 10.5966/sctm.2012-0042 PubMed DOI PMC
Renton A. E., Majounie E., Waite A., Simon-Sanchez J., Rollinson S., Gibbs J. R., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268. 10.1016/j.neuron.2011.09.010 PubMed DOI PMC
Rice C. M., Scolding N. J. (2008). Autologous bone marrow stem cells–properties and advantages. J. Neurol. Sci. 265, 59–62. 10.1016/j.jns.2007.06.011 PubMed DOI
Riley J., Federici T., Polak M., Kelly C., Glass J., Raore B., et al. (2012). Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery 71, 405–416; discussion 416. 10.1227/NEU.0b013e31825ca05f PubMed DOI
Robberecht W., Philips T. (2013). The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14, 248–264. 10.1038/nrn3430 PubMed DOI
Rosen D. R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62. 10.1038/362059a0 PubMed DOI
Sapp P. C., Hosler B. A. D., McKenna-Yasek Chin W., Gann A., Genise H., et al. (2003). Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am. J. Hum. Genet. 73, 397–403. 10.1086/377158 PubMed DOI PMC
Seminatore C., Polentes J., Ellman D., Kozubenko N., Itier V., Tine S., et al. (2010). The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke 41, 153–159. 10.1161/STROKEAHA.109.563015 PubMed DOI
Son E. Y., Ichida J. K., Wainger B. J., Toma J. S., Rafuse V. F., Woolf C., et al. (2011). Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205–218. 10.1016/j.stem.2011.07.014 PubMed DOI PMC
Sorenson E. J., Windbank A. J., Mandrekar J. N., Bamlet W. R., Appel S. H., Armon C., et al. (2008). Subcutaneous IGF-1 is not beneficial in 2-year ALS trial. Neurology 71, 1770–1775. 10.1212/01.wnl.0000335970.78664.36 PubMed DOI PMC
Sreedharan J., Blair I. P., Tripathi V. B., Hu X., Vance C., Rogelj B., et al. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672. 10.1126/science.1154584 PubMed DOI PMC
Steele J. C. (2005). Parkinsonism-dementia complex of Guam. Mov. Disord. 20 (Suppl. 12), S99–S107. 10.1002/mds.20547 PubMed DOI
Sun S., Sun Y., Ling S. C., Ferraiuolo L. M., McAlonis-Downes Zou Y. (2015). Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS. Proc. Natl. Acad. Sci. U.S.A. 112, E6993–E7002. 10.1073/pnas.1520639112 PubMed DOI PMC
Sykova E., Rychmach P., Drahoradova I., Konradova S., Ruzickova K., Vorisek I., et al. (2017). Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: results of phase I/IIa clinical trial. Cell Transplant. 26, 647–658. 10.3727/096368916X693716 PubMed DOI PMC
Takahashi K., Yamanaka S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676. 10.1016/j.cell.2006.07.024 PubMed DOI
Tropel P., Platet N., Platel J. C., Noel D., Albrieux M., Benabid A. L., et al. (2006). Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 24, 2868–2876. 10.1634/stemcells.2005-0636 PubMed DOI
Urushitani M., Ezzi S. A., Julien J. P. (2007). Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U.S.A. 104, 2495–2500. 10.1073/pnas.0606201104 PubMed DOI PMC
Vance C., Rogelj B., Hortobagyi T., De Vos K. J., Nishimura A. L., Sreedharan J., et al. (2009). Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211. 10.1126/science.1165942 PubMed DOI PMC
Van Den Bosch L., Storkebaum E., Vleminckx V., Moons L., Vanopdenbosch L., Scheveneels W., et al. (2004). Effects of vascular endothelial growth factor (VEGF) on motor neuron degeneration. Neurobiol. Dis. 17, 21–28. 10.1016/j.nbd.2004.06.004 PubMed DOI
van Es M. A., Dahlberg C., Birve A., Veldink J. H., van den Berg L. H., Andersen P. M. (2010). Large-scale SOD1 mutation screening provides evidence for genetic heterogeneity in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatr. 81, 562–566. 10.1136/jnnp.2009.181453 PubMed DOI
Vercelli A., Mereuta O. M., Garbossa D., Muraca G., Mareschi K., Rustichelli D., et al. (2008). Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 31, 395–405. 10.1016/j.nbd.2008.05.016 PubMed DOI
Wang R., Zhang D. (2005). Memantine prolongs survival in an amyotrophic lateral sclerosis mouse model. Eur. J. Neurosci. 22, 2376–2380. 10.1111/j.1460-9568.2005.04431.x PubMed DOI
Wang Y., Mao X. O., Xie L., Banwait S., Marti H. H., Greenberg D. A., et al. (2007). Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. J. Neurosci. 27, 304–307. 10.1523/JNEUROSCI.4433-06.2007 PubMed DOI PMC
Wichterle H., Lieberam I., Porter J. A., Jessell T. M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397. 10.1016/S0092-8674(02)00835-8 PubMed DOI
Wichterle H., Przedborski S. (2010). What can pluripotent stem cells teach us about neurodegenerative diseases? Nat. Neurosci. 13, 800–804. 10.1038/nn.2577 PubMed DOI PMC
Xu L., Ryugo D. K., Pongstaporn T., Johe K., Koliatsos V. E. (2009). Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. J. Comp. Neurol. 514, 297–309. 10.1002/cne.22022 PubMed DOI PMC
Yohn D. C., Miles G. B., Rafuse V. F., Brownstone R. M. (2008). Transplanted mouse embryonic stem-cell-derived motoneurons form functional motor units and reduce muscle atrophy. J. Neurosci. 28, 12409–12418. 10.1523/JNEUROSCI.1761-08.2008 PubMed DOI PMC
Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis