Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu hodnotící studie, časopisecké články
Grantová podpora
14-14961S
Grantová Agentura České Republiky
LO1309
Ministerstvo Školství, Mládeže a Tělovýchovy
17-11140S
Grantová Agentura České Republiky
PubMed
29938301
DOI
10.1007/s10856-018-6100-2
PII: 10.1007/s10856-018-6100-2
Knihovny.cz E-zdroje
- MeSH
- axony patologie MeSH
- biokompatibilní materiály chemie MeSH
- časové faktory MeSH
- fyziologická neovaskularizace MeSH
- hydrogely MeSH
- krysa rodu Rattus MeSH
- oligopeptidy chemie MeSH
- polyhydroxyethylmethakrylát chemie MeSH
- poranění míchy patologie patofyziologie terapie MeSH
- poréznost MeSH
- potkani Wistar MeSH
- regenerace míchy fyziologie MeSH
- testování materiálů MeSH
- tkáňové podpůrné struktury chemie MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- hydrogely MeSH
- oligopeptidy MeSH
- polyhydroxyethylmethakrylát MeSH
- seryl-isoleucyl-lysyl-valyl-alanyl-valinamide MeSH Prohlížeč
While many types of biomaterials have been evaluated in experimental spinal cord injury (SCI) research, little is known about the time-related dynamics of the tissue infiltration of these scaffolds. We analyzed the ingrowth of connective tissue, axons and blood vessels inside the superporous poly (2-hydroxyethyl methacrylate) hydrogel with oriented pores. The hydrogels, either plain or seeded with mesenchymal stem cells (MSCs), were implanted in spinal cord transection at the level of Th8. The animals were sacrificed at days 2, 7, 14, 28, 49 and 6 months after SCI and histologically evaluated. We found that within the first week, the hydrogels were already infiltrated with connective tissue and blood vessels, which remained stable for the next 6 weeks. Axons slowly and gradually infiltrated the hydrogel within the first month, after which the numbers became stable. Six months after SCI we observed rare axons crossing the hydrogel bridge and infiltrating the caudal stump. There was no difference in the tissue infiltration between the plain hydrogels and those seeded with MSCs. We conclude that while connective tissue and blood vessels quickly infiltrate the scaffold within the first week, axons show a rather gradual infiltration over the first month, and this is not facilitated by the presence of MSCs inside the hydrogel pores. Further research which is focused on the permissive micro-environment of the hydrogel scaffold is needed, to promote continuous and long-lasting tissue regeneration across the spinal cord lesion.
Zobrazit více v PubMed
J Reconstr Microsurg. 2006 Jul;22(5):343-8 PubMed
Blood Rev. 2015 May;29(3):153-62 PubMed
J Neurosurg Spine. 2008 Jan;8(1):67-73 PubMed
Acta Neurobiol Exp (Wars). 2013;73(1):102-15 PubMed
J Control Release. 2018 May 28;278:49-56 PubMed
Biochem Biophys Res Commun. 2017 Sep 9;491(1):112-118 PubMed
J Neurosci Res. 2010 Nov 1;88(14):3161-70 PubMed
Exp Neurol. 2006 Jul;200(1):89-103 PubMed
J Neurochem. 2010 Mar;112(6):1527-38 PubMed
Metab Brain Dis. 2014 Mar;29(1):193-205 PubMed
Exp Neurol. 2002 Apr;174(2):125-36 PubMed
Biomaterials. 2010 Aug;31(23):5966-75 PubMed
J Spinal Cord Med. 2014 Jan;37(1):54-71 PubMed
Stem Cells Int. 2017;2017:6319129 PubMed
J Neurosci. 2009 Apr 29;29(17):5546-57 PubMed
Stem Cells Int. 2017;2017:5251313 PubMed
Biomaterials. 2014 Aug;35(25):6776-86 PubMed
Biomaterials. 2017 Jul;134:128-142 PubMed
Stem Cells Dev. 2013 Oct 15;22(20):2794-805 PubMed
J Mater Sci Mater Med. 2009 Jul;20(7):1571-7 PubMed
Stem Cells Dev. 2010 Oct;19(10 ):1535-46 PubMed
FEBS Lett. 1997 May 5;407(3):313-9 PubMed
J Neurosci. 2016 Jul 6;36(27):7283-97 PubMed
Neurosurgery. 2008 Jul;63(1):127-41; discussion 141-3 PubMed
J Neurosci. 2008 Apr 2;28(14):3814-23 PubMed
Neurosci Lett. 2006 Jun 12;400(3):208-12 PubMed
Physiol Res. 2008;57 Suppl 3:S121-32 PubMed
J Neurosci. 2013 Mar 27;33(13):5655-67 PubMed
J Neurosci. 1999 Oct 1;19(19):8182-98 PubMed
Acta Pharmacol Sin. 2017 May;38(5):623-637 PubMed
Restor Neurol Neurosci. 2017;35(4):395-411 PubMed
Acta Biomater. 2015 Nov;27:140-150 PubMed
J Tissue Eng Regen Med. 2015 Nov;9(11):1298-309 PubMed
Cell Biol Int. 2014 Sep;38(9):1050-9 PubMed
J Neurosci Res. 2006 Sep;84(4):724-34 PubMed
Biomaterials. 2004 Oct;25(22):5249-60 PubMed
J Biol Chem. 1989 Sep 25;264(27):16174-82 PubMed
Biomaterials. 2014 Dec;35(37):9755-9766 PubMed
Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis
Biomaterials and Magnetic Stem Cell Delivery in the Treatment of Spinal Cord Injury
Modified Methacrylate Hydrogels Improve Tissue Repair after Spinal Cord Injury