Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biokompatibilní materiály terapeutické užití MeSH
- hrudní obratle zranění patologie MeSH
- hydrogely terapeutické užití MeSH
- krysa rodu Rattus MeSH
- methakryláty terapeutické užití MeSH
- poranění míchy patologie terapie MeSH
- poréznost MeSH
- potkani Wistar MeSH
- povrchové vlastnosti MeSH
- regenerace nervu * MeSH
- řízená tkáňová regenerace metody MeSH
- statická elektřina MeSH
- testování materiálů MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- hydrogely MeSH
- hydroxyethyl methacrylate MeSH Prohlížeč
- methakryláty MeSH
Macroporous hydrogels are artificial biomaterials commonly used in tissue engineering, including central nervous system (CNS) repair. Their physical properties may be modified to improve their adhesion properties and promote tissue regeneration. We implanted four types of hydrogels based on 2-hydroxyethyl methacrylate (HEMA) with different surface charges inside a spinal cord hemisection cavity at the Th8 level in rats. The spinal cords were processed 1 and 6 months after implantation and histologically evaluated. Connective tissue deposition was most abundant in the hydrogels with positively-charged functional groups. Axonal regeneration was promoted in hydrogels carrying charged functional groups; hydrogels with positively charged functional groups showed increased axonal ingrowth into the central parts of the implant. Few astrocytes grew into the hydrogels. Our study shows that HEMA-based hydrogels carrying charged functional groups improve axonal ingrowth inside the implants compared to implants without any charge. Further, positively charged functional groups promote connective tissue infiltration and extended axonal regeneration inside a hydrogel bridge.
Zobrazit více v PubMed
Biosens Bioelectron. 2005 Apr 15;20(10):1946-54 PubMed
Physiol Res. 2008;57 Suppl 3:S121-S132 PubMed
J Biomater Sci Polym Ed. 1998;9(10):1049-69 PubMed
Bioelectrochemistry. 2004 Apr;62(1):19-27 PubMed
Biomaterials. 2002 Sep;23(18):3843-51 PubMed
Biomacromolecules. 2003 Jan-Feb;4(1):96-106 PubMed
J Long Term Eff Med Implants. 1995;5(3):209-31 PubMed
Neurochem Res. 2003 Nov;28(11):1639-48 PubMed
Annu Rev Biomed Eng. 2003;5:293-347 PubMed
J Mater Sci Mater Med. 2006 Sep;17(9):829-33 PubMed
J Am Chem Soc. 2004 Dec 22;126(50):16286-7 PubMed
J Neurotrauma. 2006 Sep;23(9):1379-91 PubMed
J Neural Transplant Plast. 1992 Jan-Mar;3(1):21-34 PubMed
J Neural Transplant Plast. 1995;5(4):245-55 PubMed
Exp Neurol. 1997 Feb;143(2):287-99 PubMed
J Neurosurg Spine. 2004 Oct;1(3):322-9 PubMed
Tissue Eng. 1999 Oct;5(5):467-88 PubMed
J Biomater Sci Polym Ed. 2005;16(2):237-51 PubMed
Biotechnol Lett. 2005 Jan;27(1):53-8 PubMed
Brain Res Brain Res Protoc. 2000 Jul;5(3):282-9 PubMed
Biomaterials. 2007 Feb;28(5):851-60 PubMed
IEEE Trans Biomed Eng. 2000 Mar;47(3):290-300 PubMed
J Biomater Appl. 2004 Jul;19(1):59-75 PubMed
J Mater Sci Mater Med. 2005 Aug;16(8):767-73 PubMed
Neuropathology. 2002 Dec;22(4):275-9 PubMed
J Mater Sci Mater Med. 2005 Aug;16(8):783-6 PubMed
J Biomed Mater Res. 1990 Apr;24(4):463-70 PubMed
Biomacromolecules. 2004 Mar-Apr;5(2):284-94 PubMed
J Chem Neuroanat. 2002 May;23(4):243-7 PubMed
Biomacromolecules. 2004 Sep-Oct;5(5):1908-16 PubMed
Biomaterials and Magnetic Stem Cell Delivery in the Treatment of Spinal Cord Injury
Modified Methacrylate Hydrogels Improve Tissue Repair after Spinal Cord Injury