A Combination of Intrathecal and Intramuscular Application of Human Mesenchymal Stem Cells Partly Reduces the Activation of Necroptosis in the Spinal Cord of SOD1G93A Rats
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30802001
PubMed Central
PMC6525562
DOI
10.1002/sctm.18-0223
Knihovny.cz E-zdroje
- Klíčová slova
- Amyotrophic lateral sclerosis, Apoptosis, Autophagy, Mesenchymal stem cells, Necroptosis,
- MeSH
- amyotrofická laterální skleróza terapie MeSH
- beclin 1 metabolismus MeSH
- čtyřhlavý sval stehenní cytologie metabolismus MeSH
- dlouhověkost MeSH
- injekce intramuskulární MeSH
- kaspasa 9 metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- mícha cytologie metabolismus MeSH
- modely nemocí na zvířatech MeSH
- motorické neurony metabolismus MeSH
- nekroptóza * MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní MeSH
- protein-serin-threoninkinasy interagující s receptory MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- spinální injekce MeSH
- superoxid dismutáza 1 genetika metabolismus MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beclin 1 MeSH
- kaspasa 9 MeSH
- protein-serin-threoninkinasy interagující s receptory MeSH
- protein-serin-threoninkinasy MeSH
- RIPK1 protein, rat MeSH Prohlížeč
- superoxid dismutáza 1 MeSH
An increasing number of studies have demonstrated the beneficial effects of human mesenchymal stem cells (hMSC) in the treatment of amyotrophic lateral sclerosis (ALS). We compared the effect of repeated intrathecal applications of hMSC or their conditioned medium (CondM) using lumbar puncture or injection into the muscle (quadriceps femoris), or a combination of both applications in symptomatic SOD1G93A rats. We further assessed the effect of the treatment on three major cell death pathways (necroptosis, apoptosis, and autophagy) in the spinal cord tissue. All the animals were behaviorally tested (grip strength test, Basso Beattie Bresnahan (BBB) test, and rotarod), and the tissue was analyzed immunohistochemically, by qPCR and Western blot. All symptomatic SOD1 rats treated with hMSC had a significantly increased lifespan, improved motor activity and reduced number of Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells. Moreover, a combined hMSC delivery increased motor neuron survival, maintained neuromuscular junctions in quadriceps femoris and substantially reduced the levels of proteins involved in necroptosis (Rip1, mixed lineage kinase-like protein, cl-casp8), apoptosis (cl-casp 9) and autophagy (beclin 1). Furthermore, astrogliosis and elevated levels of Connexin 43 were decreased after combined hMSC treatment. The repeated application of CondM, or intramuscular injections alone, improved motor activity; however, this improvement was not supported by changes at the molecular level. Our results provide new evidence that a combination of repeated intrathecal and intramuscular hMSC applications protects motor neurons and neuromuscular junctions, not only through a reduction of apoptosis and autophagy but also through the necroptosis pathway, which is significantly involved in cell death in rodent SOD1G93A model of ALS. Stem Cells Translational Medicine 2019;8:535-547.
2nd Faculty of Medicine Charles University Prague Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Science Liběchov Czech Republic
Institute of Experimental Medicine Czech Academy of Science Prague Czech Republic
Institute of Neuroimmunology Slovak Academy of Science Bratislava Slovakia
Zobrazit více v PubMed
Renton AE, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014;17:17–23. PubMed PMC
Riva N, Agosta F, Lunetta C et al. Recent advances in amyotrophic lateral sclerosis. J Neurol 2016;263:1241–1254. PubMed PMC
Bunton‐Stasyshyn RKA, Saccon RA, Fratta P et al. SOD1 function and its implications for amyotrophic lateral sclerosis pathology: New and renascent themes. Neuroscientist 2015;21:519–529. PubMed
Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig. Nat Rev Neurosci 2001;2:806–819. PubMed
Chen Y, Shao JZ, Xiang LX et al. Mesenchymal stem cells: A promising candidate in regenerative medicine. Int J Biochem Cell Biol 2008;40:815–820. PubMed
Garbuzova‐Davis S, Willing AE, Saporta S et al. Chapter 14 novel cell therapy approaches for brain repair. Prog Brain Res 2006;157:207–222. PubMed
Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: A new strategy for immunosuppression? Trends Immunol 2007;28:219–226. PubMed
Li Y, Chen J, Chen XG et al. Human marrow stromal cell therapy for stroke in rat: Neurotrophins and functional recovery. Neurology 2002;59:514–523. PubMed
Zhang J, Li Y, Chen J et al. Expression of insulin‐like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res 2004;1030:19–27. PubMed
Uccelli A, Milanese M, Principato MC et al. Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis. Mol Med 2012;18:794–804. PubMed PMC
Vercelli A, Mereuta OM, Garbossa D et al. Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2008;31:395–405. PubMed
Prabhakar S, Rajan R, Sharma R et al. Autologous bone marrow‐derived stem cells in amyotrophic lateral sclerosis: A pilot study. Neurol India 2012;60:465. PubMed
Karussis D, Karageorgiou C, Vaknin‐Dembinsky A et al. Safety and Immunological effects pf mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2011;67:1187–1194. PubMed PMC
Syková E, Rychmach P, Drahorádová I et al. Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: Results of phase I/IIa clinical trial. Cell Transplant 2017;26:647–658. PubMed PMC
Staff NP, Madigan NN, Morris J et al. Safety of intrathecal autologous adipose‐derived mesenchymal stromal cells in patients with ALS. Neurology 2016;87:2230–2234. PubMed PMC
Kim HY, Kim H, Oh K‐W et al. Biological markers of mesenchymal stromal cells as predictors of response to autologous stem cell transplantation in patients with amyotrophic lateral sclerosis: An investigator‐initiated trial and in vivo study. Stem Cells 2014;32:2724–2731. PubMed
Petrou P, Gothelf Y, Argov Z et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis. JAMA Neurol 2016;73:337–344. PubMed
Fontanilla CV, Gu H, Liu Q et al. Adipose‐derived stem cell conditioned media extends survival time of a mouse model of amyotrophic lateral sclerosis. Sci Rep 2015;5:1–10. PubMed PMC
Lee M, Ban J‐J, Kim KY et al. Adipose‐derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis in vitro. Biochem Biophys Res Commun 2016;479:434–439. PubMed
Sathasivam S, Shaw PJ. Apoptosis in amyotrophic lateral sclerosis—What is the evidence? Lancet Neurol 2005;4:500–509. PubMed
Raoul C, Barthelemy C, Couzinet A et al. Expression of a dominant negative form of Daxx in vivo rescues motoneurons from Fas (CD95)‐induced cell death. J Neurobiol 2005;62:178–188. PubMed
Nagley P, Higgins GC, Atkin JD et al. Multifaceted deaths orchestrated by mitochondria in neurones. Biochim Biophys Acta Mol Basis Dis 2010;1802:167–185. PubMed
Johann S, Heitzer M, Kanagaratnam M et al. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia 2015;63:2260–2273. PubMed
Re DB, Le Verche V, Yu C et al. Report necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 2014;81:1001–1008. PubMed PMC
Li M, Ona VO, Guégan C et al. Functional role of caspase‐1 and caspase‐3 in an ALS transgenic mouse model. Science 2000;288:335–339. PubMed
Ito Y, Ofengeim D, Najafov A et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 2016;353:603–608. PubMed PMC
Cirulli ET, Lasseigne BN, Petrovski S et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 2015;347:1436–1441. PubMed PMC
Forostyak S, Homola A, Turnovcova K et al. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells 2014;32:3163–3172. PubMed PMC
Oh K‐W, Moon C, Kim HY et al. Phase I trial of repeated intrathecal autologous bone marrow‐derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Translational Medicine 2015;4:590–597. PubMed PMC
Kim H, Kim HY, Choi MR et al. Dose‐dependent efficacy of ALS‐human mesenchymal stem cells transplantation into cisterna magna in SOD1‐G93A ALS mice. Neurosci Lett 2010;468:190–194. PubMed
Gothelf Y, Abramov N, Harel A et al. Safety of repeated transplantations of neurotrophic factors‐secreting human mesenchymal stromal stem cells. Clin Transl Med 2014;3:21. PubMed PMC
Teixeira FG, Carvalho MM, Neves‐Carvalho A et al. Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation. Stem Cell Rev 2015;11:288–297. PubMed
Liu J‐F, Zheng O‐X, Xin J‐G et al. How are necroptosis, immune dysfunction, and motoneuron death connected in amyotrophic lateral sclerosis? Neuroimmunol Neuroinflam 2017;4:109.
Frakes AE, Ferraiuolo L, Haidet‐Phillips AM et al. Microglia induce motor neuron death via the classical NF‐κB pathway in amyotrophic lateral sclerosis. Neuron 2014;81:1009–1023. PubMed PMC
Gowing G, Dequen F, Soucy G et al. Absence of tumor necrosis factor‐alpha does not affect motor neuron disease caused by superoxide dismutase 1 mutations. J Neurosci 2006;26:11397–11402. PubMed PMC
Boucherie C, Schäfer S, Lavand'homme P et al. Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J Neurosci Res 2009;87:2034–2046. PubMed
Boido M, Piras A, Valsecchi V et al. Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateral sclerosis. Cytotherapy 2014;16:1059–1072. PubMed
Czabotar PE, Lessene G, Strasser A et al. Control of apoptosis by the BCL‐2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol 2014;15:49–63. PubMed
Morrice JR, Gregory‐evans CY, Shaw CA. Necroptosis in amyotrophic lateral sclerosis and other neurological disorders. Biochim Biophys Acta Mol Basis Dis 2017;1863:347–353. PubMed
Raoul C, Estévez AG, Nishimune H et al. Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS‐linked SOD1 mutations. Neuron 2002;35:1067–1083. PubMed
Kostic V, Jackson‐Lewis V, de Bilbao F et al. Bcl‐2: Prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 1997;277:559–562. PubMed
Reyes NA, Fisher JK, Austgen K et al. Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J Clin Invest 2010;120:3673–3679. PubMed PMC
Inoue H, Tsukita K, Iwasato T et al. The crucial role of caspase‐9 in the disease progression of a transgenic ALS mouse model. EMBO J 2003;22:6665–6674. PubMed PMC
Hsueh K‐W, Chiou T‐W, Chiang S‐F et al. Autophagic down‐regulation in motor neurons remarkably prolongs the survival of ALS mice. Neuropharmacology 2016;108:152–160. PubMed
Rudnick ND, Griffey CJ, Guarnieri P et al. Distinct roles for motor neuron autophagy early and late in the SOD1G93A mouse model of ALS. Proc Natl Acad Sci USA 2017;114:E8294–E8303. PubMed PMC
Dutta K, Patel P, Julien J‐P. Protective effects of Withania somnifera extract in SOD1G93A mouse model of amyotrophic lateral sclerosis. Exp Neurol 2018;309:193–204. PubMed
Vandenabeele P, Galluzzi L, Vanden Berghe T et al. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat Rev Mol Cell Biol 2010;11:700–714. PubMed
Sun L, Wang H, Wang Z et al. Mixed lineage kinase domain‐like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 2012;148:213–227. PubMed
Liu J, Wu P, Wang Y et al. Ad‐HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis. Am J Transl Res 2016;8:4605–4627. PubMed PMC
Dadon‐Nachum M, Melamed E, Offen D. The “Dying‐Back” phenomenon of motor neurons in ALS. J Mol Neurosci 2011;43:470–477. PubMed
Rando A, Pastor D, Viso‐León MC et al. Intramuscular transplantation of bone marrow cells prolongs the lifespan of SOD1 G93A mice and modulates expression of prognosis biomarkers of the disease. Stem Cell Res Ther 2018;9:90. PubMed PMC
Barres BA. The mystery and magic of glia: A perspective on their roles in health and disease. Neuron 2008;60:430–440. PubMed
Parpura V, Heneka MT, Montana V et al. Glial cells in (patho)physiology. J Neurochem 2012;121:4–27. PubMed PMC
Yamanaka K, Komine O. The multi‐dimensional roles of astrocytes in ALS. Neurosci Res 2018;126:31–38. PubMed
Almad AA, Doreswamy A, Gross SK et al. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia 2016;64:1154–1169. PubMed PMC
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1
Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment