A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
32152403
PubMed Central
PMC7062771
DOI
10.1038/s41598-020-61167-z
PII: 10.1038/s41598-020-61167-z
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace * MeSH
- buňky kostní dřeně cytologie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- nervové kmenové buňky cytologie metabolismus MeSH
- proliferace buněk MeSH
- regenerace nervu * MeSH
- tuková tkáň cytologie metabolismus MeSH
- Whartonův rosol cytologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Multipotent mesenchymal stromal cells (MSCs) can be considered an accessible therapeutic tool for regenerative medicine. Here, we compared the growth kinetics, immunophenotypic and immunomodulatory properties, gene expression and secretome profile of MSCs derived from human adult bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and Wharton's jelly (WJ-MSCs) cultured in clinically-relevant conditions, with the focus on the neuroregenerative potential. All the cell types were positive for CD10/CD29/CD44/CD73/CD90/CD105/HLA-ABC and negative for CD14/CD45/CD235a/CD271/HLA-DR/VEGFR2 markers, but they differed in the expression of CD34/CD133/CD146/SSEA-4/MSCA-1/CD271/HLA-DR markers. BM-MSCs displayed the highest immunomodulatory activity compared to AT- and WJ-MSCs. On the other hand, BM-MSCs secreted the lower content and had the lower gene expression of neurotrophic growth factors compared to other cell lines, which may be caused by the higher sensitivity of BM-MSCs to nutrient limitations. Despite the differences in growth factor secretion, the MSC secretome derived from all cell sources had a pronounced neurotrophic potential to stimulate the neurite outgrowth of DRG-neurons and reduce the cell death of neural stem/progenitor cells after H2O2 treatment. Overall, our study provides important information for the transfer of basic MSC research towards clinical-grade manufacturing and therapeutic applications.
Zobrazit více v PubMed
Rodgers K, Jadhav SS. The application of mesenchymal stem cells to treat thermal and radiation burns. Adv. Drug. Deliv. Rev. 2018;123:75–81. doi: 10.1016/j.addr.2017.10.003. PubMed DOI
Duscher D, et al. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. Gerontology. 2016;62:216–225. doi: 10.1159/000381877. PubMed DOI
Rodeo SA. Cell therapy in orthopaedics: where are we in 2019? bone Jt. J. 2019;101-B:361–364. doi: 10.1302/0301-620X.101B4.BJJ-2019-0013.R1. PubMed DOI
Kebriaei P, et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol. Blood Marrow Transpl. 2009;15:804–811. doi: 10.1016/j.bbmt.2008.03.012. PubMed DOI
Madonna R, Geng YJ, De Caterina R. Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler. Thromb. Vasc. Biol. 2009;29:1723–1729. doi: 10.1161/ATVBAHA.109.187179. PubMed DOI
Berry MF, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am. J. Physiol. Heart Circ. Physiol. 2006;290:H2196–2203. doi: 10.1152/ajpheart.01017.2005. PubMed DOI
Rehorova M, et al. A Combination of Intrathecal and Intramuscular Application of Human Mesenchymal Stem Cells Partly Reduces the Activation of Necroptosis in the Spinal Cord of SOD1(G93A) Rats. Stem Cell Transl. Med. 2019;8:535–547. doi: 10.1002/sctm.18-0223. PubMed DOI PMC
Krupa P, et al. The Effect of Human Mesenchymal Stem Cells Derived from Wharton’s Jelly in Spinal Cord Injury Treatment Is Dose-Dependent and Can Be Facilitated by Repeated Application. Int. J. Mol. Sci. 2018;19:E1503. doi: 10.3390/ijms19051503. PubMed DOI PMC
Hou ZL, et al. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adh Migr. 2013;7:404–407. doi: 10.4161/cam.26941. PubMed DOI PMC
Ruzicka J, et al. A Comparative Study of Three Different Types of Stem Cells for Treatment of Rat Spinal Cord Injury. Cell Transpl. 2017;26:585–603. doi: 10.3727/096368916X693671. PubMed DOI PMC
Chudickova Milada, Vackova Irena, Machova Urdzikova Lucia, Jancova Pavlina, Kekulova Kristyna, Rehorova Monika, Turnovcova Karolina, Jendelova Pavla, Kubinova Sarka. The Effect of Wharton Jelly-Derived Mesenchymal Stromal Cells and Their Conditioned Media in the Treatment of a Rat Spinal Cord Injury. International Journal of Molecular Sciences. 2019;20(18):4516. doi: 10.3390/ijms20184516. PubMed DOI PMC
Cizkova D, et al. Localized Intrathecal Delivery of Mesenchymal Stromal Cells Conditioned Medium Improves Functional Recovery in a Rat Model of Spinal Cord Injury. Int. J. Mol. Sci. 2018;19:870. doi: 10.3390/ijms19030870. PubMed DOI PMC
Teixeira FG, et al. Impact of the Secretome of Human Mesenchymal Stem Cells on Brain Structure and Animal Behavior in a Rat Model of Parkinson’s Disease. Stem Cell Transl. Med. 2017;6:634–646. doi: 10.5966/sctm.2016-0071. PubMed DOI PMC
Mita T, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behavioural brain Res. 2015;293:189–197. doi: 10.1016/j.bbr.2015.07.043. PubMed DOI
Berebichez-Fridman R, Montero-Olvera PR. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ. Med. J. 2018;18:e264–e277. doi: 10.18295/squmj.2018.18.03.002. PubMed DOI PMC
Song SW, et al. Proteomic Analysis and Identification of Paracrine Factors in Mesenchymal Stem Cell-Conditioned Media under Hypoxia. Cell Physiol. Biochem. 2016;40:400–410. doi: 10.1159/000452555. PubMed DOI
Romaldini A, Mastrogiacomo M, Cancedda R, Descalzi F. Platelet Lysate Activates Human Subcutaneous Adipose Tissue Cells by Promoting Cell Proliferation and Their Paracrine Activity Toward Epidermal Keratinocytes. Front. Bioeng. Biotechnol. 2018;6:203. doi: 10.3389/fbioe.2018.00203. PubMed DOI PMC
Fekete N, et al. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy. 2012;14:540–554. doi: 10.3109/14653249.2012.655420. PubMed DOI PMC
Burnouf T, Strunk D, Koh MBC, Schallmoser K. Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation? Biomater. 2015;76:371–387. doi: 10.1016/j.biomaterials.2015.10.065. PubMed DOI
Oikonomopoulos A, et al. Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci. Rep. 2015;5:16570. doi: 10.1038/srep16570. PubMed DOI PMC
Shih DT, Burnouf T. Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. N. Biotechnol. 2015;32:199–211. doi: 10.1016/j.nbt.2014.06.001. PubMed DOI PMC
Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Bourin P, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) Cytotherapy. 2013;15:641–648. doi: 10.1016/j.jcyt.2013.02.006. PubMed DOI PMC
Suga H, et al. Functional implications of CD34 expression in human adipose-derived stem/progenitor cells. Stem Cell Dev. 2009;18:1201–1210. doi: 10.1089/scd.2009.0003. PubMed DOI
Kim JH, et al. Transplantation of Immortalized CD34+ and CD34- Adipose-Derived Stem Cells Improve Cardiac Function and Mitigate Systemic Pro-Inflammatory Responses. PLoS One. 2016;11:e0147853. doi: 10.1371/journal.pone.0147853. PubMed DOI PMC
Baer PC. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro. World J. Stem Cell. 2014;6:256–265. doi: 10.4252/wjsc.v6.i3.256. PubMed DOI PMC
Zimmerlin L, et al. Stromal vascular progenitors in adult human adipose tissue. Cytometry. Part. A: J. Int. Soc. Anal. Cytology. 2010;77:22–30. doi: 10.1002/cyto.a.20813. PubMed DOI PMC
Li Z. CD133: a stem cell biomarker and beyond. Exp. Hematol. Oncol. 2013;2:17. doi: 10.1186/2162-3619-2-17. PubMed DOI PMC
Lv FJ, Tuan RS, Cheung KM, Leung VY. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cell. 2014;32:1408–1419. doi: 10.1002/stem.1681. PubMed DOI
Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood. 2007;109:1743–1751. doi: 10.1182/blood-2005-11-010504. PubMed DOI
Zeddou M, et al. The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell Biol. Int. 2010;34:693–701. doi: 10.1042/CBI20090414. PubMed DOI
Esteve D, et al. Multiple Functions of MSCA-1/TNAP in Adult Mesenchymal Progenitor/Stromal Cells. Stem Cell Int. 2016;2016:1815982. doi: 10.1155/2016/1815982. PubMed DOI PMC
Devito L, et al. Wharton’s jelly mesenchymal stromal/stem cells derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1(+) subpopulation. Regen. Med. 2014;9:723–732. doi: 10.2217/rme.14.60. PubMed DOI
Lu LL, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91:1017–1026. PubMed
Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cell. 2007;25:1384–1392. doi: 10.1634/stemcells.2006-0709. PubMed DOI
Batsali AK, et al. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton’s jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Res. Ther. 2017;8:102. doi: 10.1186/s13287-017-0555-9. PubMed DOI PMC
Choudhery MS, Badowski M, Muise A, Harris DT. Comparison of human mesenchymal stem cells derived from adipose and cord tissue. Cytotherapy. 2013;15:330–343. doi: 10.1016/j.jcyt.2012.11.010. PubMed DOI
Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res. Ther. 2014;5:53. doi: 10.1186/scrt442. PubMed DOI PMC
Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cell. 2006;24:1294–1301. doi: 10.1634/stemcells.2005-0342. PubMed DOI
Dmitrieva RI, et al. Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities. Cell cycle (Georgetown. Tex.) 2012;11:377–383. PubMed
Mattar P, Bieback K. Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells. Front. immunology. 2015;6:560. doi: 10.3389/fimmu.2015.00560. PubMed DOI PMC
Davies LC, Heldring N, Kadri N, Le Blanc K. Mesenchymal Stromal Cell Secretion of Programmed Death-1 Ligands Regulates T Cell Mediated Immunosuppression. Stem Cell. 2017;35:766–776. doi: 10.1002/stem.2509. PubMed DOI PMC
Guan Q, Li Y, Shpiruk T, Bhagwat S, Wall DA. Inducible indoleamine 2,3-dioxygenase 1 and programmed death ligand 1 expression as the potency marker for mesenchymal stromal cells. Cytotherapy. 2018;20:639–649. doi: 10.1016/j.jcyt.2018.02.003. PubMed DOI
Schabitz WR, et al. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke. 2000;31:2212–2217. doi: 10.1161/01.STR.31.9.2212. PubMed DOI
Martins LF, et al. Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci. Rep. 2017;7:4153. doi: 10.1038/s41598-017-03592-1. PubMed DOI PMC
Lopatina T, et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One. 2011;6:e17899. doi: 10.1371/journal.pone.0017899. PubMed DOI PMC
Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res. Ther. 2016;7:131. doi: 10.1186/s13287-016-0394-0. PubMed DOI PMC
Hamanoue M., Takemoto N., Matsumoto K., Nakamura T., Nakajima K., Kohsaka S. Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro. Journal of Neuroscience Research. 1996;43(5):554–564. doi: 10.1002/(SICI)1097-4547(19960301)43:5<554::AID-JNR5>3.0.CO;2-H. PubMed DOI
Koyama J, et al. Neurotrophic effect of hepatocyte growth factor on neonatal facial motor neurons. Neurological Res. 2003;25:701–707. doi: 10.1179/016164103101202192. PubMed DOI
Tassi E, et al. Effects on neurite outgrowth and cell survival of a secreted fibroblast growth factor binding protein upregulated during spinal cord injury. Am. J. Physiol. Regulatory, Integr. Comp. physiology. 2007;293:R775–783. doi: 10.1152/ajpregu.00737.2006. PubMed DOI
Di Pierdomenico J, et al. Neuroprotective Effects of FGF2 and Minocycline in Two Animal Models of Inherited Retinal Degeneration. Invest. Ophthalmol. Vis. Sci. 2018;59:4392–4403. doi: 10.1167/iovs.18-24621. PubMed DOI
Kusuma GD, Carthew J, Lim R, Frith JE. Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect. Stem Cell Dev. 2017 doi: 10.1089/scd.2016.0349. PubMed DOI
Sulpice E, et al. Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biol. Cell. 2009;101:525–539. doi: 10.1042/BC20080221. PubMed DOI
Dilwali S, Roberts D, Stankovic KM. Interplay between VEGF-A and cMET signaling in human vestibular schwannomas and schwann cells. Cancer Biol. Ther. 2015;16:170–175. doi: 10.4161/15384047.2014.972765. PubMed DOI PMC
Pires AO, et al. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cell Dev. 2016;25:1073–1083. doi: 10.1089/scd.2016.0048. PubMed DOI
Assuncao-Silva RC, et al. Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth. Biochim. 2018;155:83–91. doi: 10.1016/j.biochi.2018.07.026. PubMed DOI
Francois M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol. therapy: J. Am. Soc. Gene Ther. 2012;20:187–195. doi: 10.1038/mt.2011.189. PubMed DOI
Szabo E, et al. Licensing by Inflammatory Cytokines Abolishes Heterogeneity of Immunosuppressive Function of Mesenchymal Stem Cell Population. Stem Cell Dev. 2015;24:2171–2180. doi: 10.1089/scd.2014.0581. PubMed DOI
Sponer P, et al. Utilizing Autologous Multipotent Mesenchymal Stromal Cells and beta-Tricalcium Phosphate Scaffold in Human Bone Defects: A Prospective, Controlled Feasibility Trial. Biomed. Res. Int. 2016;2016:2076061. doi: 10.1155/2016/2076061. PubMed DOI PMC
Petrenko Y, et al. Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells. Stem Cell Int. 2019;2019:5909524. doi: 10.1155/2019/5909524. PubMed DOI PMC
Koci Z, et al. Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues. Tissue Eng. Part. C. Methods. 2017;23:333–345. doi: 10.1089/ten.TEC.2017.0089. PubMed DOI
Vackova I, et al. Absence of maternal cell contamination in mesenchymal stromal cell cultures derived from equine umbilical cord tissue. Placenta. 2014;35:655–657. doi: 10.1016/j.placenta.2014.04.005. PubMed DOI
Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell Biochem. 1997;64:278–294. doi: 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F. PubMed DOI
Greenwood SK, et al. Population doubling: a simple and more accurate estimation of cell growth suppression in the in vitro assay for chromosomal aberrations that reduces irrelevant positive results. Environ. Mol. mutagenesis. 2004;43:36–44. doi: 10.1002/em.10207. PubMed DOI
Petrenko YA, Gorokhova NA, Tkachova EN, Petrenko AY. The reduction of Alamar Blue by peripheral blood lymphocytes and isolated mitochondria. Ukr. Biokhim Zh. 1999;77(100-105):2005. PubMed
Valekova I, Skalnikova HK, Jarkovska K, Motlik J, Kovarova H. Multiplex immunoassays for quantification of cytokines, growth factors, and other proteins in stem cell communication. Methods Mol. Biol. 2015;1212:39–63. doi: 10.1007/7651_2014_94. PubMed DOI
Sanz H, et al. drLumi: An open-source package to manage data, calibrate, and conduct quality control of multiplex bead-based immunoassays data analysis. PLoS one. 2017;12:e0187901–e0187901. doi: 10.1371/journal.pone.0187901. PubMed DOI PMC
R Core Team R: A language and environment for statistical computing (2019) http://www.R-project.org/.
Cocks G, et al. Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons. Stem Cell Res. Ther. 2013;4:69. doi: 10.1186/scrt220. PubMed DOI PMC
Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications
Mesenchymal Stem Cells in Treatment of Spinal Cord Injury and Amyotrophic Lateral Sclerosis