Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35035489
PubMed Central
PMC8758292
DOI
10.1155/2022/2454168
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Chondropathies are increasing worldwide, but effective treatments are currently lacking. Mesenchymal stromal cell (MSCs) transplantation represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA) and rheumatoid arthritis (RA). Umbilical cord- (UC-) MSCs gained increasing interest due to their multilineage differentiation potential, immunomodulatory, and anti-inflammatory properties as well as higher proliferation rates, abundant supply along with no risks for the donor compared to adult MSCs. In addition, UC-MSCs are physiologically adapted to survive in an ischemic and nutrient-poor environment as well as to produce an extracellular matrix (ECM) similar to that of the cartilage. All these characteristics make UC-MSCs a pivotal source for a stem cell-based treatment of chondropathies. In this review, the regenerative potential of UC-MSCs for the treatment of cartilage diseases will be discussed focusing on in vitro, in vivo, and clinical studies.
Zobrazit více v PubMed
Krishnan Y., Grodzinsky A. J. Cartilage diseases. Matrix Biology . 2018;71-72:51–69. doi: 10.1016/j.matbio.2018.05.005. PubMed DOI PMC
Cieza A., Causey K., Kamenov K., Hanson S. W., Chatterji S., Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet . 2021;396(10267):2006–2017. PubMed PMC
Li Y. P., Wei X. C., Zhou J. M., Wei L. The age-related changes in cartilage and osteoarthritis. BioMed Research International . 2013;2013:12. doi: 10.1155/2013/916530.916530 PubMed DOI PMC
Arden N., Nevitt M. Osteoarthritis: epidemiology. Best Practice & Research. Clinical Rheumatology . 2006;20(1):3–25. doi: 10.1016/j.berh.2005.09.007. PubMed DOI
Hopman W. M., Harrison M. B., Coo H., Friedberg E., Buchanan M., VanDenKerkhof E. G. Associations between chronic disease, age and physical and mental health status. Chronic Diseases in Canada . 2009;29(3):108–117. doi: 10.24095/hpcdp.29.3.03. PubMed DOI
Umlauf D., Frank S., Pap T., Bertrand J. Cartilage biology, pathology, and repair. Cellular and Molecular Life Sciences . 2010;67(24):4197–4211. doi: 10.1007/s00018-010-0498-0. PubMed DOI PMC
O’Neill T. W., Felson D. T. Mechanisms of osteoarthritis (OA) pain. Current Osteoporosis Reports . 2018;16(5):611–616. doi: 10.1007/s11914-018-0477-1. PubMed DOI PMC
Reid M. C., Shengelia R., Parker S. J. Pharmacologic management of osteoarthritis-related pain in older adults. HSS Journal . 2012;8(2):159–164. doi: 10.1007/s11420-012-9273-0. PubMed DOI PMC
Orth P., Rey-Rico A., Venkatesan J. K., Madry H., Cucchiarini M. Current perspectives in stem cell research for knee cartilage repair. Stem Cells Cloning . 2014;7:1–17. PubMed PMC
Troyer D. L., Weiss M. L. Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells . 2008;26(3):591–599. doi: 10.1634/stemcells.2007-0439. PubMed DOI PMC
Davies J. E., Walker J. T., Keating A. Concise review: Wharton's jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Translational Medicine . 2017;6(7):1620–1630. doi: 10.1002/sctm.16-0492. PubMed DOI PMC
Liu S., Hou K. D., Yuan M., et al. Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage. Journal of Bioscience and Bioengineering . 2014;117(2):229–235. doi: 10.1016/j.jbiosc.2013.07.001. PubMed DOI
Yin Y., Li X., He X. T., Wu R. X., Sun H. H., Chen F. M. Leveraging stem cell homing for therapeutic regeneration. Journal of Dental Research . 2017;96(6):601–609. doi: 10.1177/0022034517706070. PubMed DOI
Eseonu O. I., De Bari C. Homing of mesenchymal stem cells: mechanistic or stochastic? Implications for targeted delivery in arthritis. Rheumatology . 2015;54(2):210–218. doi: 10.1093/rheumatology/keu377. PubMed DOI
Shen C., Lie P., Miao T., et al. Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Molecular Medicine Reports . 2015;12(1):20–30. doi: 10.3892/mmr.2015.3409. PubMed DOI PMC
Kitaori T., Ito H., Schwarz E. M., et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis and Rheumatism . 2009;60(3):813–823. doi: 10.1002/art.24330. PubMed DOI
Zhang W., Chen J., Tao J., et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials . 2013;34(3):713–723. doi: 10.1016/j.biomaterials.2012.10.027. PubMed DOI
Petty J. M., Lenox C. C., Weiss D. J., Poynter M. E., Suratt B. T. Crosstalk between CXCR4/Stromal Derived Factor-1 and VLA-4/VCAM-1 pathways regulates neutrophil retention in the bone marrow. The Journal of Immunology . 2009;182(1):604–612. doi: 10.4049/jimmunol.182.1.604. PubMed DOI PMC
Cox D., Brennan M., Moran N. Integrins as therapeutic targets: lessons and opportunities. Nature Reviews Drug Discovery . 2010;9(10):804–820. doi: 10.1038/nrd3266. PubMed DOI
Payne N. L., Sun G., McDonald C., et al. Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Cell Transplantation . 2013;22(8):1409–1425. doi: 10.3727/096368912X657620. PubMed DOI
Zou C., Luo Q., Qin J., et al. Osteopontin promotes mesenchymal stem cell migration and lessens cell stiffness via integrin β1, FAK, and ERK pathways. Cell Biochemistry and Biophysics . 2013;65(3):455–462. doi: 10.1007/s12013-012-9449-8. PubMed DOI
Lund S. A., Giachelli C. M., Scatena M. The role of osteopontin in inflammatory processes. Journal of Cell Communication and Signaling . 2009;3(3-4):311–322. doi: 10.1007/s12079-009-0068-0. PubMed DOI PMC
Zhang F., Luo W., Li Y., Gao S., Lei G. Role of osteopontin in rheumatoid arthritis. Rheumatology International . 2015;35(4):589–595. doi: 10.1007/s00296-014-3122-z. PubMed DOI
Cheng C., Gao S., Lei G. Association of osteopontin with osteoarthritis. Rheumatology International . 2014;34(12):1627–1631. doi: 10.1007/s00296-014-3036-9. PubMed DOI
Schneider R. K., Puellen A., Kramann R., et al. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials . 2010;31(3):467–480. doi: 10.1016/j.biomaterials.2009.09.059. PubMed DOI
Fu X., Liu G., Halim A., Ju Y., Luo Q., Song G. Mesenchymal stem cell migration and tissue repair. Cell . 2019;8(8):p. 784. doi: 10.3390/cells8080784. PubMed DOI PMC
Pattappa G., Johnstone B., Zellner J., Docheva D., Angele P. The importance of physioxia in mesenchymal stem cell chondrogenesis and the mechanisms controlling its response. International Journal of Molecular Sciences . 2019;20(3):p. 484. doi: 10.3390/ijms20030484. PubMed DOI PMC
Chow D. C., Wenning L. A., Miller W. M., Papoutsakis E. T. Modeling pO2 Distributions in the Bone Marrow Hematopoietic Compartment. I. Krogh's Model. Biophysical Journal . 2001;81(2):675–684. doi: 10.1016/S0006-3495(01)75732-3. PubMed DOI PMC
Bizzarri A., Koehler H., Cajlakovic M., et al. Continuous oxygen monitoring in subcutaneous adipose tissue using microdialysis. Analytica Chimica Acta . 2006;573-574:48–56. doi: 10.1016/j.aca.2006.03.101. PubMed DOI
Fischer B., Bavister B. D. Oxygen-tension in the oviduct and uterus of rhesus-monkeys, hamsters and rabbits. Journal of Reproduction and Fertility . 1993;99(2):673–679. doi: 10.1530/jrf.0.0990673. PubMed DOI
Marmotti A., Mattia S., Castoldi F., et al. Allogeneic umbilical cord-derived mesenchymal stem cells as a potential source for cartilage and bone regeneration: an in vitro study. Stem Cells International . 2017;2017:16. doi: 10.1155/2017/1732094.1732094 PubMed DOI PMC
Lavrentieva A., Majore I., Kasper C., Hass R. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Communication and Signaling: CCS . 2010;8(1):p. 18. doi: 10.1186/1478-811X-8-18. PubMed DOI PMC
Nekanti U., Dastidar S., Venugopal P., Totey S., Ta M. Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchymal stromal cells under hypoxia. International Journal of Biological Sciences . 2010;6(5):499–512. doi: 10.7150/ijbs.6.499. PubMed DOI PMC
Russo E., Lee J. Y., Nguyen H., et al. Energy metabolism analysis of three different mesenchymal stem cell populations of umbilical cord under normal and pathologic conditions. Stem Cell Reviews and Reports . 2020;16(3):585–595. doi: 10.1007/s12015-020-09967-8. PubMed DOI PMC
Kaneko Y., Lee J. Y., Tajiri N., et al. Translating intracarotid artery transplantation of bone marrow-derived NCS-01 cells for ischemic stroke: behavioral and histological readouts and mechanistic insights into stem cell therapy. Stem Cells Translational Medicine . 2020;9(2):203–220. doi: 10.1002/sctm.19-0229. PubMed DOI PMC
Neal E. G., Liska M. G., Lippert T., et al. An update on intracerebral stem cell grafts. Expert Review of Neurotherapeutics . 2018;18(7):557–572. doi: 10.1080/14737175.2018.1491309. PubMed DOI
Cozene B., Russo E., Anzalone R., La Rocca G., Borlongan C. Mitochondrial activity of human umbilical cord mesenchymal stem cells. Brain Circulation . 2021;7(1):33–36. PubMed PMC
Russo E., Lippert T., Tuazon J. P., Borlongan C. V. Advancing stem cells: new therapeutic strategies for treating central nervous system disorders. Brain Circulation . 2018;4(3):81–83. PubMed PMC
Sobolewski K., Małkowski A., Bańkowski E., Jaworski S. Wharton's jelly as a reservoir of peptide growth factors. Placenta . 2005;26(10):747–752. doi: 10.1016/j.placenta.2004.10.008. PubMed DOI
Qin L., Beier F. EGFR Signaling: friend or foe for cartilage? JBMR Plus . 2019;3(2, article e10177) doi: 10.1002/jbm4.10177. PubMed DOI PMC
Long D. L., Ulici V., Chubinskaya S., Loeser R. F. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is increased in osteoarthritis and regulates chondrocyte catabolic and anabolic activities. Osteoarthritis and Cartilage . 2015;23(9):1523–1531. doi: 10.1016/j.joca.2015.04.019. PubMed DOI PMC
Zhang X., Liu S., Wang Z., et al. Implanted 3D gelatin microcryogel enables low-dose cell therapy for osteoarthritis by preserving the viability and function of umbilical cord MSCs. Chemical Engineering Journal . 2021;416, article 129140 doi: 10.1016/j.cej.2021.129140. DOI
Tonomura H., Nagae M., Takatori R., Ishibashi H., Itsuji T., Takahashi K. The potential role of hepatocyte growth factor in degenerative disorders of the synovial joint and spine. International Journal of Molecular Sciences . 2020;21(22):p. 8717. doi: 10.3390/ijms21228717. PubMed DOI PMC
Wang Y., Yuan M., Guo Q., Lu S., Peng J. Mesenchymal stem cells for treating articular cartilage defects and osteoarthritis. Cell Transplantation . 2015;24(9):1661–1678. doi: 10.3727/096368914X683485. PubMed DOI
Petrenko Y., Vackova I., Kekulova K., et al. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Scientific Reports . 2020;10(1):p. 4290. doi: 10.1038/s41598-020-61167-z. PubMed DOI PMC
Sulpice E., Ding S., Muscatelli-Groux B., et al. Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biology of the Cell . 2009;101(9):525–539. doi: 10.1042/BC20080221. PubMed DOI
Bobick B. E., Chen F. H., Le A. M., Tuan R. S. Regulation of the chondrogenic phenotype in culture. Birth Defects Research Part C: Embryo Today: Reviews . 2009;87(4):351–371. doi: 10.1002/bdrc.20167. PubMed DOI
Tao Y., Zhou X., Liang C., et al. TGF-β3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through MAPK/ERK signaling. Growth Factors . 2015;33(5-6):326–336. doi: 10.3109/08977194.2015.1088532. PubMed DOI
Palka J., Bańkowski E., Jaworski S. An accumulation of IGF-I and IGF-binding proteins in human umbilical cord. Molecular and Cellular Biochemistry . 2000;206(1/2):133–139. doi: 10.1023/A:1007005610960. PubMed DOI
La Rocca G., Lo Iacono M., Corsello T., Corrao S., Farina F., Anzalone R. Human Wharton's jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy. Current Stem Cell Research & Therapy . 2013;8(1):100–113. doi: 10.2174/1574888X11308010012. PubMed DOI
Wang W., Rigueur D., Lyons K. M. TGFβ signaling in cartilage development and maintenance. Birth Defects Research Part C: Embryo Today: Reviews . 2014;102(1):37–51. doi: 10.1002/bdrc.21058. PubMed DOI PMC
Patil A. S., Sable R. B., Kothari R. M. An update on transforming growth factor-β (TGF-β): sources, types, functions and clinical applicability for cartilage/bone healing. Journal of Cellular Physiology . 2011;226(12):3094–3103. doi: 10.1002/jcp.22698. PubMed DOI
Liu G. Y., Xu Y., Li Y., Wang L. H., Liu Y. J., Zhu D. Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells. Cytotherapy . 2013;15(10):1208–1217. doi: 10.1016/j.jcyt.2013.05.011. PubMed DOI
Donders R., Bogie J. F., Ravanidis S., et al. Human Wharton's jelly-derived stem cells display a distinct immunomodulatory and proregenerative transcriptional signature compared to bone marrow-derived stem cells. Stem Cells and Development . 2018;27(2):65–84. doi: 10.1089/scd.2017.0029. PubMed DOI
Copland I. B., Adamson S. L., Post M., Lye S. J., Caniggia I. TGF-β3 Expression During Umbilical Cord Development and its Alteration in Pre- eclampsia. Placenta . 2002;23(4):311–321. doi: 10.1053/plac.2001.0778. PubMed DOI
Deng Z. H., Li Y. S., Gao X., Lei G. H., Huard J. Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis and Cartilage . 2018;26(9):1153–1161. doi: 10.1016/j.joca.2018.03.007. PubMed DOI
Scarfì S. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World Journal of Stem Cells . 2016;8(1):1–12. doi: 10.4252/wjsc.v8.i1.1. PubMed DOI PMC
Kosinski M., Figiel-Dabrowska A., Lech W., et al. Bone defect repair using a bone substitute supported by mesenchymal stem cells derived from the umbilical cord. Stem Cells International . 2020;2020:15. doi: 10.1155/2020/1321283.1321283 PubMed DOI PMC
Choi J., Bae T., Byambasuren N., et al. CRISPR-Cpf1 Activation of Endogenous _BMP4_ Gene for Osteogenic Differentiation of Umbilical-Cord-Derived Mesenchymal Stem Cells. Molecular Therapy - Methods & Clinical Development . 2020;17:309–316. doi: 10.1016/j.omtm.2019.12.010. PubMed DOI PMC
Guo D. B., Zhu X. Q., Li Q. Q., et al. Efficacy and mechanisms underlying the effects of allogeneic umbilical cord mesenchymal stem cell transplantation on acute radiation injury in tree shrews. Cytotechnology . 2018;70(5):1447–1468. doi: 10.1007/s10616-018-0239-z. PubMed DOI PMC
Zeng J., Wang F., Mao M. Co-culture of fibroblast-like synoviocytes with umbilical cord-mesenchymal stem cells inhibits expression of pro-inflammatory proteins, induces apoptosis and promotes chondrogenesis. Molecular Medicine Reports . 2016;14(4):3887–3893. doi: 10.3892/mmr.2016.5721. PubMed DOI
Wang Q., Xu L., Willumeit-Römer R., Luthringer-Feyerabend B. J. Macrophage-derived oncostatin M/bone morphogenetic protein 6 in response to Mg-based materials influences pro-osteogenic activity of human umbilical cord perivascular cells. Acta Biomaterialia . 2020;133:268–279. PubMed
Frenkel S. R., Saadeh P. B., Mehrara B. J., et al. Transforming growth factor beta superfamily members: role in cartilage modeling. Plastic and Reconstructive Surgery . 2000;105(3):980–990. doi: 10.1097/00006534-200003000-00022. PubMed DOI
Tuan R. S., Chen A. F., Klatt B. A. Cartilage regeneration. The Journal of the American Academy of Orthopaedic Surgeons . 2013;21(5):303–311. doi: 10.5435/JAAOS-21-05-303. PubMed DOI PMC
Kangari P., Talaei-Khozani T., Razeghian-Jahromi I., Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Research & Therapy . 2020;11(1):p. 492. doi: 10.1186/s13287-020-02001-1. PubMed DOI PMC
Mauro A., Buscemi M., Gerbino A. Immunohistochemical and transcriptional expression of matrix metalloproteinases in full-term human umbilical cord and human umbilical vein endothelial cells. Journal of Molecular Histology . 2010;41(6):367–377. doi: 10.1007/s10735-010-9298-y. PubMed DOI
Lo Iacono M., Russo E., Anzalone R., et al. Wharton's jelly mesenchymal stromal cells support the expansion of cord blood-derived CD34+Cells mimicking a hematopoietic niche in a direct cell-cell contact culture system. Cell Transplantation . 2018;27(1):117–129. doi: 10.1177/0963689717737089. PubMed DOI PMC
Gupta A., el-Amin S. F., III, Levy H. J., Sze-Tu R., Ibim S. E., Maffulli N. Umbilical cord-derived Wharton's jelly for regenerative medicine applications. Journal of Orthopaedic Surgery and Research . 2020;15(1):p. 49. doi: 10.1186/s13018-020-1553-7. PubMed DOI PMC
Trapani M., La Rocca G., Parolini O. Placenta: The Tree of Life . Boca Raton, FL, USA: CRC Press; 2016. Chapter 6. The immunomodulatory features of mesenchymal stromal cells derived from Wharton’s jelly, amniotic membrane, and chorionic villi: in vitro and in vivo data; pp. 91–128.
la Rocca G., Anzalone R., Corrao S., et al. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology . 2009;131(2):267–282. doi: 10.1007/s00418-008-0519-3. PubMed DOI
La Rocca G., Corrao S., Lo Iacono M., Corsello T., Farina F., Anzalone R. Novel immunomodulatory markers expressed by human WJ-MSC: an updated review in regenerative and reparative medicine. The Open Tissue Engineering and Regenerative Medicine Journal . 2012;5(1):50–58. doi: 10.2174/1875043501205010050. DOI
Anzalone R., Lo Iacono M., Loria T., et al. Wharton's jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Reviews and Reports . 2011;7(2):342–363. doi: 10.1007/s12015-010-9196-4. PubMed DOI
Corsello T., Amico G., Corrao S., et al. Wharton's jelly mesenchymal stromal cells from human umbilical cord: a close-up on immunomodulatory molecules featured in situ and in vitro. Stem Cell Reviews and Reports . 2019;15(6):900–918. doi: 10.1007/s12015-019-09907-1. PubMed DOI
Wang Q., Yang Q., Wang Z., et al. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton's jelly as sources of cell immunomodulatory therapy. Human Vaccines & Immunotherapeutics . 2016;12(1):85–96. doi: 10.1080/21645515.2015.1030549. PubMed DOI PMC
Najar M., Raicevic G., Boufker H. I., et al. Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: combined comparison of adipose tissue, Wharton's Jelly and bone marrow sources. Cellular Immunology . 2010;264(2):171–179. doi: 10.1016/j.cellimm.2010.06.006. PubMed DOI
Anzalone R., Iacono M. L., Corrao S., et al. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells and Development . 2010;19(4):423–438. doi: 10.1089/scd.2009.0299. PubMed DOI
di Nicola M., Carlo-Stella C., Magni M., et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood . 2002;99(10):3838–3843. doi: 10.1182/blood.V99.10.3838. PubMed DOI
Ma L., Zhou Z., Zhang D., et al. Immunosuppressive function of mesenchymal stem cells from human umbilical cord matrix in immune thrombocytopenia patients. Thrombosis and Haemostasis . 2012;107(5):937–950. doi: 10.1160/TH11-08-0596. PubMed DOI
Li W., Zhang Q., Wang M., et al. Macrophages are involved in the protective role of human umbilical cord- derived stromal cells in renal ischemia-reperfusion injury. Stem Cell Research . 2013;10(3):p. 405. doi: 10.1016/j.scr.2013.01.005. PubMed DOI
Zhao X., Zhao Y., Sun X., Xing Y., Wang X., Yang Q. Immunomodulation of MSCs and MSC-derived extracellular vesicles in osteoarthritis. Frontiers in Bioengineering and Biotechnology . 2020;8, article 575057 doi: 10.3389/fbioe.2020.575057. PubMed DOI PMC
Tong W., Zhang X., Zhang Q., et al. Multiple umbilical cord-derived MSCs administrations attenuate rat osteoarthritis progression via preserving articular cartilage superficial layer cells and inhibiting synovitis. Journal of Orthopaedic Translation . 2020;23:21–28. doi: 10.1016/j.jot.2020.03.007. PubMed DOI PMC
Zhang Q., Xiang E., Rao W., et al. Intra-articular injection of human umbilical cord mesenchymal stem cells ameliorates monosodium iodoacetate-induced osteoarthritis in rats by inhibiting cartilage degradation and inflammation. Bone & Joint Research . 2021;10(3):226–236. doi: 10.1302/2046-3758.103.BJR-2020-0206.R2. PubMed DOI PMC
Kim H., Yang G., Park J., Choi J., Kang E., Lee B. K. Therapeutic effect of mesenchymal stem cells derived from human umbilical cord in rabbit temporomandibular joint model of osteoarthritis. Scientific Reports . 2019;9(1, article 13854) doi: 10.1038/s41598-019-50435-2. PubMed DOI PMC
Voisin C., Cauchois G., Reppel L., et al. Are the immune properties of mesenchymal stem cells from Wharton's jelly maintained during chondrogenic differentiation? Journal of Clinical Medicine . 2020;9(2):p. 423. doi: 10.3390/jcm9020423. PubMed DOI PMC
Giannini D., Antonucci M., Petrelli F., Bilia S., Alunno A., Puxeddu I. One year in review 2020: pathogenesis of rheumatoid arthritis. Clinical and Experimental Rheumatology . 2020;38(3):387–397. PubMed
Zhao C., Zhang L., Kong W., et al. Umbilical cord-derived mesenchymal stem cells inhibit cadherin-11 expression by fibroblast-like synoviocytes in rheumatoid arthritis. Journal of Immunology Research . 2015;2015:10. doi: 10.1155/2015/137695.137695 PubMed DOI PMC
Hildner F., Wolbank S., Redl H., van Griensven M., Peterbauer A. How chondrogenic are human umbilical cord matrix cells? A comparison to adipose-derived stem cells. Journal of Tissue Engineering and Regenerative Medicine . 2010;4(3):242–245. doi: 10.1002/term.236. PubMed DOI
Ruan D., Zhang Y., Wang D., et al. Differentiation of human Wharton's jelly cells toward nucleus pulposus-like cells after coculture with nucleus pulposus CellsIn vitro. Tissue Engineering. Part A . 2012;18(1-2):167–175. doi: 10.1089/ten.tea.2011.0186. PubMed DOI
Chon B. H., Lee E. J., Jing L., Setton L. A., Chen J. Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system. Stem Cell Research & Therapy . 2013;4(5):p. 120. PubMed PMC
Caballero M., Skancke M. D., Halevi A. E., et al. Effects of connective tissue growth factor on the regulation of elastogenesis in human umbilical cord-derived mesenchymal stem cells. Annals of Plastic Surgery . 2013;70(5):568–573. doi: 10.1097/SAP.0b013e31827ed6f4. PubMed DOI
Marmotti A., Mattia S., Bruzzone M., et al. Minced umbilical cord fragments as a source of cells for orthopaedic tissue engineering: an in vitro study. Stem Cells International . 2012;2012:13. doi: 10.1155/2012/326813.326813 PubMed DOI PMC
Danišovič L., Boháč M., Zamborský R., et al. Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering. General Physiology and Biophysics . 2016;35(2):207–214. doi: 10.4149/gpb_2015044. PubMed DOI
Wu H., Zeng X., Yu J., et al. Comparison of nucleus pulposus stem/progenitor cells isolated from degenerated intervertebral discs with umbilical cord derived mesenchymal stem cells. Experimental Cell Research . 2017;361(2):324–332. doi: 10.1016/j.yexcr.2017.10.034. PubMed DOI
Bailey M. M., Wang L., Bode C. J., Mitchell K. E., Detamore M. S. A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Engineering . 2007;13(8):2003–2010. PubMed
Islam A., Urbarova I., Bruun J. A., Martinez-Zubiaurre I. Large-scale secretome analyses unveil the superior immunosuppressive phenotype of umbilical cord stromal cells as compared to other adult mesenchymal stromal cells. European Cells & Materials . 2019;37:153–174. PubMed
Zhang Y., Liu S., Guo W., et al. Coculture of hWJMSCs and pACs in oriented scaffold enhances hyaline cartilage regeneration in vitro. Stem Cells International . 2019;2019:11. doi: 10.1155/2019/5130152.5130152 PubMed DOI PMC
Li X., Liang Y., Xu X., et al. Cell-to-cell culture inhibits dedifferentiation of chondrocytes and induces differentiation of human umbilical cord-derived mesenchymal stem cells. BioMed Research International . 2019;2019:11. doi: 10.1155/2019/5871698.5871698 PubMed DOI PMC
Han Z., Zhang Y., Gao L., Jiang S., Ruan D. Human Wharton's jelly cells activate degenerative nucleus pulposus cells in vitro. Tissue Engineering. Part A . 2018;24(13-14):1035–1043. PubMed
Toh W. S., Lee E. H., Cao T. Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Reviews and Reports . 2011;7(3):544–559. PubMed
Castro-Viñuelas R., Sanjurjo-Rodríguez C., Piñeiro-Ramil M., et al. Induced pluripotent stem cells for cartilage repair: current status and future perspectives. European Cells & Materials . 2018;36:96–109. doi: 10.22203/eCM.v036a08. PubMed DOI
Hwang J. J., Rim Y. A., Nam Y., Ju J. H. Recent developments in clinical applications of mesenchymal stem cells in the treatment of rheumatoid arthritis and osteoarthritis. Frontiers in Immunology . 2021;12, article 631291 PubMed PMC
Jyothi Prasanna S., Sowmya Jahnavi V. Wharton's jelly mesenchymal stem cells as off-the-shelf cellular therapeutics: a closer look into their regenerative and immunomodulatory properties. The Open Tissue Engineering and Regenerative Medicine Journal . 2011;4(SPEC. ISSUE 1):28–38.
Khan W. S., Tew S. R., Adesida A. B., Hardingham T. E. Human infrapatellar fat pad-derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2. Arthritis Research & Therapy . 2008;10(4):p. R74. PubMed PMC
Hatakeyama A., Uchida S., Utsunomiya H., et al. Isolation and characterization of synovial mesenchymal stem cell derived from hip joints: a comparative analysis with a matched control knee group. Stem Cells International . 2017;2017:13. doi: 10.1155/2017/9312329.9312329 PubMed DOI PMC
Amable P. R., Teixeira M. V., Carias R. B., Granjeiro J. M., Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Research & Therapy . 2014;5(2):p. 53. PubMed PMC
Raicevic G., Najar M., Stamatopoulos B., et al. The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties. Cellular Immunology . 2011;270(2):207–216. doi: 10.1016/j.cellimm.2011.05.010. PubMed DOI
Balasubramanian S., Venugopal P., Sundarraj S., Zakaria Z., Majumdar A. S., Ta M. Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells. Cytotherapy . 2012;14(1):26–33. PubMed
Mckinnirey F., Herbert B., Vesey G., McCracken S. Immune modulation via adipose derived mesenchymal stem cells is driven by donor sex in vitro. Scientific Reports . 2021;11(1):p. 12454. PubMed PMC
Mohamed-Ahmed S., Fristad I., Lie S. A., et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Research & Therapy . 2018;9(1):p. 168. doi: 10.1186/s13287-018-0914-1. PubMed DOI PMC
Mead B., Logan A., Berry M., Leadbeater W., Scheven B. A. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One . 2014;9(10, article e109305) PubMed PMC
Batsali A. K., Pontikoglou C., Koutroulakis D., et al. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton’s jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Research & Therapy . 2017;8(1):p. 102. doi: 10.1186/s13287-017-0555-9. PubMed DOI PMC
Li C. Y., Wu X. Y., Tong J. B., et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Research & Therapy . 2015;6(1):p. 55. doi: 10.1186/s13287-015-0066-5. PubMed DOI PMC
Shin S., Lee J., Kwon Y., et al. Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and Wharton's jelly. International Journal of Molecular Sciences . 2021;22(2):p. 845. doi: 10.3390/ijms22020845. PubMed DOI PMC
Heirani-Tabasi A., Toosi S., Mirahmadi M., et al. Chemokine receptors expression in MSCs: comparative analysis in different sources and passages. Tissue engineering and regenerative medicine . 2017;14(5):605–615. doi: 10.1007/s13770-017-0069-7. PubMed DOI PMC
Najar M., Raicevic G., Jebbawi F., et al. Characterization and functionality of the CD200-CD200R system during mesenchymal stromal cell interactions with T-lymphocytes. Immunology Letters . 2012;146(1-2):50–56. doi: 10.1016/j.imlet.2012.04.017. PubMed DOI
Karaöz E., Demircan P. C., Erman G., Güngörürler E., Sarıboyaci A. E. Comparative analyses of immunosuppressive characteristics of bone-marrow, Wharton’s jelly, and adipose tissue-derived human mesenchymal stem cells. Turkish Journal of Haematology . 2017;34(3):213–225. PubMed PMC
Purandare B., Teklemariam T., Zhao L., Hantash B. M. Temporal HLA profiling and immunomodulatory effects of human adult bone marrow- and adipose-derived mesenchymal stem cells. Regenerative Medicine . 2014;9(1):67–79. PubMed
Mennan C., Garcia J., Roberts S., Hulme C., Wright K. A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells. Stem Cell Research & Therapy . 2019;10(1):p. 99. PubMed PMC
Camilleri E. T., Gustafson M. P., Dudakovic A., et al. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Research & Therapy . 2016;7(1):p. 107. doi: 10.1186/s13287-016-0370-8. PubMed DOI PMC
Pappa A. K., Caballero M., Dennis R. G., et al. Biochemical properties of tissue-engineered cartilage. The Journal of Craniofacial Surgery . 2014;25(1):111–115. doi: 10.1097/SCS.0b013e3182a2eb56. PubMed DOI PMC
Cashion A. T., Caballero M., Halevi A., Pappa A., Dennis R. G., van Aalst J. A. Programmable mechanobioreactor for exploration of the effects of periodic vibratory stimulus on mesenchymal stem cell differentiation. BioResearch Open Access . 2014;3(1):19–28. doi: 10.1089/biores.2013.0048. PubMed DOI PMC
Remya N. S., Nair P. D. Mechanoresponsiveness of human umbilical cord mesenchymal stem cells in in vitro chondrogenesis-a comparative study with growth factor induction. Journal of Biomedical Materials Research. Part A . 2016;104(10):2554–2566. PubMed
Zhao L., Detamore M. S. Chondrogenic differentiation of stem cells in human umbilical cord stroma with PGA and PLLA scaffolds. Journal of Biomedical Science and Engineering . 2010;3(11):1041–1049. PubMed PMC
Fong C. Y., Subramanian A., Gauthaman K., et al. Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Reviews and Reports . 2012;8(1):195–209. doi: 10.1007/s12015-011-9289-8. PubMed DOI
Chen X., Zhang F., He X., et al. Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury . 2013;44(4):540–549. doi: 10.1016/j.injury.2012.09.024. PubMed DOI
Nirmal R. S., Nair P. D. Significance of soluble growth factors in the chondrogenic response of human umbilical cord matrix stem cells in a porous three dimensional scaffold. European Cells & Materials . 2013;26:234–251. PubMed
Sridharan B., Lin S. M., Hwu A. T., Laflin A. D., Detamore M. S. Stem cells in aggregate form to enhance chondrogenesis in hydrogels. PLoS One . 2015;10(12, article e0141479) PubMed PMC
Jaipaew J., Wangkulangkul P., Meesane J., Raungrut P., Puttawibul P. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: morphological, mechanical, and physical clues. Materials Science & Engineering. C, Materials for Biological Applications . 2016;64:173–182. PubMed
Wang J., Sun B., Tian L., et al. Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord. Materials Science & Engineering. C, Materials for Biological Applications . 2017;70, Part 1:637–645. doi: 10.1016/j.msec.2016.09.044. PubMed DOI
Aleksander-Konert E., Paduszyński P., Zajdel A., Dzierżewicz Z., Wilczok A. In vitro chondrogenesis of Wharton's jelly mesenchymal stem cells in hyaluronic acid-based hydrogels. Cellular & Molecular Biology Letters . 2016;21:p. 11. PubMed PMC
Zhang W., Yang J., Zhu Y., et al. Extracellular matrix derived by human umbilical cord-deposited mesenchymal stem cells accelerates chondrocyte proliferation and differentiation potential in vitro. Cell and Tissue Banking . 2019;20(3):351–365. doi: 10.1007/s10561-019-09774-7. PubMed DOI
Wang L., Tran I., Seshareddy K., Weiss M. L., Detamore M. S. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Engineering. Part A . 2009;15(8):2259–2266. doi: 10.1089/ten.tea.2008.0393. PubMed DOI
Wang L., Seshareddy K., Weiss M. L., Detamore M. S. Effect of initial seeding density on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering. Tissue Engineering. Part A . 2009;15(5):1009–1017. PubMed PMC
Wang L., Zhao L., Detamore M. S. Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering. Journal of Tissue Engineering and Regenerative Medicine . 2011;5(9):712–721. PubMed PMC
Qi L., Wang R., Shi Q., Yuan M., Jin M., Li D. Umbilical cord mesenchymal stem cell conditioned medium restored the expression of collagen II and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose. Journal of Bone and Mineral Metabolism . 2019;37(3):455–466. PubMed
Penolazzi L., Pozzobon M., Bergamin L. S., et al. Extracellular matrix from decellularized Wharton's jelly improves the behavior of cells from degenerated intervertebral disc. Frontiers in Bioengineering and Biotechnology . 2020;8:p. 262. doi: 10.3389/fbioe.2020.00262. PubMed DOI PMC
Leckie S. K., Sowa G. A., Bechara B. P., et al. Injection of human umbilical tissue-derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo. The Spine Journal . 2013;13(3):263–272. doi: 10.1016/j.spinee.2012.12.004. PubMed DOI PMC
Beeravolu N., Brougham J., Khan I., McKee C., Perez-Cruet M., Chaudhry G. R. Human umbilical cord derivatives regenerate intervertebral disc. Journal of Tissue Engineering and Regenerative Medicine . 2018;12(1):e579–e591. PubMed
Perez-Cruet M., Beeravolu N., McKee C., et al. Potential of human nucleus pulposus-like cells derived from umbilical cord to treat degenerative disc disease. Neurosurgery . 2019;84(1):272–283. doi: 10.1093/neuros/nyy012. PubMed DOI PMC
Ekram S., Khalid S., Bashir I., Salim A., Khan I. Human umbilical cord-derived mesenchymal stem cells and their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral disc degeneration model. Molecular and Cellular Biochemistry . 2021;476(8):3191–3205. doi: 10.1007/s11010-021-04155-9. PubMed DOI
Saulnier N., Viguier E., Perrier-Groult E., et al. Intra-articular administration of xenogeneic neonatal mesenchymal stromal cells early after meniscal injury down-regulates metalloproteinase gene expression in synovium and prevents cartilage degradation in a rabbit model of osteoarthritis. Osteoarthritis and Cartilage . 2015;23(1):122–133. doi: 10.1016/j.joca.2014.09.007. PubMed DOI
Raines A. L., Shih M., Chua L., Su C., Tseng S. C., O'Connell J. Efficacy of particulate amniotic membrane and umbilical cord tissues in attenuating cartilage destruction in an osteoarthritis model. Tissue Engineering. Part A . 2017;23(1-2):12–19. PubMed
Chang H. S., Wu K. C., Liu H. W., Chu T. Y., Ding D. C. Human umbilical cord-derived mesenchymal stem cells reduce monosodium iodoacetate-induced apoptosis in cartilage. Ci Ji Yi Xue Za Zhi . 2018;30(2):71–80. PubMed PMC
Zhang B. Y., Wang B. Y., Li S. C., et al. Evaluation of the curative effect of umbilical cord mesenchymal stem cell therapy for knee arthritis in dogs using imaging technology. Stem Cells International . 2018;2018:12. doi: 10.1155/2018/1983025.1983025 PubMed DOI PMC
Kim S. E., Pozzi A., Yeh J. C., et al. Intra-articular umbilical cord derived mesenchymal stem cell therapy for chronic elbow osteoarthritis in dogs: a Double-Blinded, Placebo-Controlled Clinical Trial. Frontiers in veterinary science . 2019;6:p. 474. doi: 10.3389/fvets.2019.00474. PubMed DOI PMC
Geng Y., Chen J., Alahdal M., et al. Intra-articular injection of hUC-MSCs expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis. Journal of Bone and Mineral Metabolism . 2020;38(3):277–288. doi: 10.1007/s00774-019-01055-3. PubMed DOI
Wu K. C., Chang Y. H., Liu H. W., Ding D. C. Transplanting human umbilical cord mesenchymal stem cells and hyaluronate hydrogel repairs cartilage of osteoarthritis in the minipig model. Ci Ji Yi Xue Za Zhi . 2019;31(1):11–19. doi: 10.4103/tcmj.tcmj_87_18. PubMed DOI PMC
Magri C., Schramme M., Febre M., et al. Comparison of efficacy and safety of single versus repeated intra-articular injection of allogeneic neonatal mesenchymal stem cells for treatment of osteoarthritis of the metacarpophalangeal/metatarsophalangeal joint in horses: a clinical pilot study. PLoS One . 2019;14(8, article e0221317) doi: 10.1371/journal.pone.0221317. PubMed DOI PMC
Perry J., McCarthy H. S., Bou-Gharios G., et al. Injected human umbilical cord-derived mesenchymal stromal cells do not appear to elicit an inflammatory response in a murine model of osteoarthritis. Osteoarthritis and cartilage open . 2020;2(2, article 100044) doi: 10.1016/j.ocarto.2020.100044. PubMed DOI PMC
Xing D., Wu J., Wang B., et al. Intra-articular delivery of umbilical cord-derived mesenchymal stem cells temporarily retard the progression of osteoarthritis in a rat model. International Journal of Rheumatic Diseases . 2020;23(6):778–787. doi: 10.1111/1756-185X.13834. PubMed DOI
Wang X. D., Wan X. C., Liu A. F., Li R., Wei Q. Effects of umbilical cord mesenchymal stem cells loaded with graphene oxide granular lubrication on cytokine levels in animal models of knee osteoarthritis. International Orthopaedics . 2021;45(2):381–390. doi: 10.1007/s00264-020-04584-z. PubMed DOI
Liu Y., Mu R., Wang S., et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Research & Therapy . 2010;12(6):p. R210. doi: 10.1186/ar3187. PubMed DOI PMC
Wu C. C., Wu T. C., Liu F. L., Sytwu H. K., Chang D. M. TNF-α inhibitor reverse the effects of human umbilical cord-derived stem cells on experimental arthritis by increasing immunosuppression. Cellular Immunology . 2012;273(1):30–40. PubMed
Gu J., Gu W., Lin C., et al. Human umbilical cord mesenchymal stem cells improve the immune-associated inflammatory and prothrombotic state in collagen type-II-induced arthritic rats. Molecular Medicine Reports . 2015;12(5):7463–7470. doi: 10.3892/mmr.2015.4394. PubMed DOI
Zhang Q., Li Q., Zhu J., et al. Comparison of therapeutic effects of different mesenchymal stem cells on rheumatoid arthritis in mice. PeerJ . 2019;7:p. e7023. doi: 10.7717/peerj.7023. PubMed DOI PMC
Ma D., Xu K., Zhang G., et al. Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. International Immunopharmacology . 2019;74, article 105687 doi: 10.1016/j.intimp.2019.105687. PubMed DOI
Vohra M., Sharma A., Bagga R., Arora S. K. Human umbilical cord-derived mesenchymal stem cells induce tissue repair and regeneration in collagen-induced arthritis in rats. Journal of Clinical and Translational Research . 2020;6(6):203–216. PubMed PMC
Xu K., Ma D., Zhang G., et al. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles ameliorate collagen-induced arthritis via immunomodulatory T lymphocytes. Molecular Immunology . 2021;135:36–44. doi: 10.1016/j.molimm.2021.04.001. PubMed DOI
Zhao P., Liu S., Bai Y., et al. hWJECM-derived oriented scaffolds with autologous chondrocytes for rabbit cartilage defect repairing. Tissue Engineering. Part A . 2018;24(11-12):905–914. doi: 10.1089/ten.tea.2017.0223. PubMed DOI
Zhang Y., Liu S., Guo W., et al. Human umbilical cord Wharton's jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthritis and Cartilage . 2018;26(7):954–965. doi: 10.1016/j.joca.2018.01.019. PubMed DOI
Zhang Y., Hao C., Guo W., et al. Co-culture of hWJMSCs and pACs in double biomimetic ACECM oriented scaffold enhances mechanical properties and accelerates articular cartilage regeneration in a caprine model. Stem Cell Research & Therapy . 2020;11(1):p. 180. doi: 10.1186/s13287-020-01670-2. PubMed DOI PMC
Yan L., Wu X. Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity. Cell Biology and Toxicology . 2020;36(2):165–178. PubMed PMC
Li Z., Bi Y., Wu Q., et al. A composite scaffold of Wharton's jelly and chondroitin sulphate loaded with human umbilical cord mesenchymal stem cells repairs articular cartilage defects in rat knee. Journal of Materials Science. Materials in Medicine . 2021;32(4):p. 36. doi: 10.1007/s10856-021-06506-w. PubMed DOI PMC
Dormer N. H., Singh M., Zhao L., Mohan N., Berkland C. J., Detamore M. S. Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. Journal of Biomedical Materials Research. Part A . 2012;100(1):162–170. PubMed PMC
Liu S., Jia Y., Yuan M., et al. Repair of Osteochondral Defects Using Human Umbilical Cord Wharton’s Jelly- Derived Mesenchymal Stem Cells in a Rabbit Model. BioMed Research International . 2017;2017:12. doi: 10.1155/2017/8760383.8760383 PubMed DOI PMC
Jiang S., Tian G., Yang Z., et al. Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioactive Materials . 2021;6(9):2711–2728. doi: 10.1016/j.bioactmat.2021.01.031. PubMed DOI PMC
Matas J., Orrego M., Amenabar D., et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem Cells Translational Medicine . 2019;8(3):215–224. doi: 10.1002/sctm.18-0053. PubMed DOI PMC
Dilogo I. H., Canintika A. F., Hanitya A. L., Pawitan J. A., Liem I. K., Pandelaki J. Umbilical cord-derived mesenchymal stem cells for treating osteoarthritis of the knee: a single-arm, open-label study. European Journal of Orthopaedic Surgery and Traumatology . 2020;30(5):799–807. PubMed
Mead O. G., Mead L. P. Intra-articular injection of amniotic membrane and umbilical cord particulate for the management of moderate to severe knee osteoarthritis. Orthopedic Research and Reviews . 2020;12:161–170. PubMed PMC
Wang L., Huang S., Li S., et al. Efficacy and safety of umbilical cord mesenchymal stem cell therapy for rheumatoid arthritis patients: a prospective phase I/II study. Drug Design, Development and Therapy . 2019;Volume 13:4331–4340. doi: 10.2147/DDDT.S225613. PubMed DOI PMC
Qi T., Gao H., Dang Y., Huang S., Peng M. Cervus and cucumis peptides combined umbilical cord mesenchymal stem cells therapy for rheumatoid arthritis. Medicine (Baltimore) . 2020;99(28, article e21222) PubMed PMC
He X., Yang Y., Yao M., et al. Combination of human umbilical cord mesenchymal stem (stromal) cell transplantation with IFN-γ treatment synergistically improves the clinical outcomes of patients with rheumatoid arthritis. Annals of the Rheumatic Diseases . 2020;79(10):1298–1304. doi: 10.1136/annrheumdis-2020-217798. PubMed DOI