Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications

. 2022 ; 2022 () : 2454168. [epub] 20220106

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35035489

Chondropathies are increasing worldwide, but effective treatments are currently lacking. Mesenchymal stromal cell (MSCs) transplantation represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA) and rheumatoid arthritis (RA). Umbilical cord- (UC-) MSCs gained increasing interest due to their multilineage differentiation potential, immunomodulatory, and anti-inflammatory properties as well as higher proliferation rates, abundant supply along with no risks for the donor compared to adult MSCs. In addition, UC-MSCs are physiologically adapted to survive in an ischemic and nutrient-poor environment as well as to produce an extracellular matrix (ECM) similar to that of the cartilage. All these characteristics make UC-MSCs a pivotal source for a stem cell-based treatment of chondropathies. In this review, the regenerative potential of UC-MSCs for the treatment of cartilage diseases will be discussed focusing on in vitro, in vivo, and clinical studies.

Zobrazit více v PubMed

Krishnan Y., Grodzinsky A. J. Cartilage diseases. Matrix Biology . 2018;71-72:51–69. doi: 10.1016/j.matbio.2018.05.005. PubMed DOI PMC

Cieza A., Causey K., Kamenov K., Hanson S. W., Chatterji S., Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet . 2021;396(10267):2006–2017. PubMed PMC

Li Y. P., Wei X. C., Zhou J. M., Wei L. The age-related changes in cartilage and osteoarthritis. BioMed Research International . 2013;2013:12. doi: 10.1155/2013/916530.916530 PubMed DOI PMC

Arden N., Nevitt M. Osteoarthritis: epidemiology. Best Practice & Research. Clinical Rheumatology . 2006;20(1):3–25. doi: 10.1016/j.berh.2005.09.007. PubMed DOI

Hopman W. M., Harrison M. B., Coo H., Friedberg E., Buchanan M., VanDenKerkhof E. G. Associations between chronic disease, age and physical and mental health status. Chronic Diseases in Canada . 2009;29(3):108–117. doi: 10.24095/hpcdp.29.3.03. PubMed DOI

Umlauf D., Frank S., Pap T., Bertrand J. Cartilage biology, pathology, and repair. Cellular and Molecular Life Sciences . 2010;67(24):4197–4211. doi: 10.1007/s00018-010-0498-0. PubMed DOI PMC

O’Neill T. W., Felson D. T. Mechanisms of osteoarthritis (OA) pain. Current Osteoporosis Reports . 2018;16(5):611–616. doi: 10.1007/s11914-018-0477-1. PubMed DOI PMC

Reid M. C., Shengelia R., Parker S. J. Pharmacologic management of osteoarthritis-related pain in older adults. HSS Journal . 2012;8(2):159–164. doi: 10.1007/s11420-012-9273-0. PubMed DOI PMC

Orth P., Rey-Rico A., Venkatesan J. K., Madry H., Cucchiarini M. Current perspectives in stem cell research for knee cartilage repair. Stem Cells Cloning . 2014;7:1–17. PubMed PMC

Troyer D. L., Weiss M. L. Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells . 2008;26(3):591–599. doi: 10.1634/stemcells.2007-0439. PubMed DOI PMC

Davies J. E., Walker J. T., Keating A. Concise review: Wharton's jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Translational Medicine . 2017;6(7):1620–1630. doi: 10.1002/sctm.16-0492. PubMed DOI PMC

Liu S., Hou K. D., Yuan M., et al. Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage. Journal of Bioscience and Bioengineering . 2014;117(2):229–235. doi: 10.1016/j.jbiosc.2013.07.001. PubMed DOI

Yin Y., Li X., He X. T., Wu R. X., Sun H. H., Chen F. M. Leveraging stem cell homing for therapeutic regeneration. Journal of Dental Research . 2017;96(6):601–609. doi: 10.1177/0022034517706070. PubMed DOI

Eseonu O. I., De Bari C. Homing of mesenchymal stem cells: mechanistic or stochastic? Implications for targeted delivery in arthritis. Rheumatology . 2015;54(2):210–218. doi: 10.1093/rheumatology/keu377. PubMed DOI

Shen C., Lie P., Miao T., et al. Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Molecular Medicine Reports . 2015;12(1):20–30. doi: 10.3892/mmr.2015.3409. PubMed DOI PMC

Kitaori T., Ito H., Schwarz E. M., et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis and Rheumatism . 2009;60(3):813–823. doi: 10.1002/art.24330. PubMed DOI

Zhang W., Chen J., Tao J., et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials . 2013;34(3):713–723. doi: 10.1016/j.biomaterials.2012.10.027. PubMed DOI

Petty J. M., Lenox C. C., Weiss D. J., Poynter M. E., Suratt B. T. Crosstalk between CXCR4/Stromal Derived Factor-1 and VLA-4/VCAM-1 pathways regulates neutrophil retention in the bone marrow. The Journal of Immunology . 2009;182(1):604–612. doi: 10.4049/jimmunol.182.1.604. PubMed DOI PMC

Cox D., Brennan M., Moran N. Integrins as therapeutic targets: lessons and opportunities. Nature Reviews Drug Discovery . 2010;9(10):804–820. doi: 10.1038/nrd3266. PubMed DOI

Payne N. L., Sun G., McDonald C., et al. Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Cell Transplantation . 2013;22(8):1409–1425. doi: 10.3727/096368912X657620. PubMed DOI

Zou C., Luo Q., Qin J., et al. Osteopontin promotes mesenchymal stem cell migration and lessens cell stiffness via integrin β1, FAK, and ERK pathways. Cell Biochemistry and Biophysics . 2013;65(3):455–462. doi: 10.1007/s12013-012-9449-8. PubMed DOI

Lund S. A., Giachelli C. M., Scatena M. The role of osteopontin in inflammatory processes. Journal of Cell Communication and Signaling . 2009;3(3-4):311–322. doi: 10.1007/s12079-009-0068-0. PubMed DOI PMC

Zhang F., Luo W., Li Y., Gao S., Lei G. Role of osteopontin in rheumatoid arthritis. Rheumatology International . 2015;35(4):589–595. doi: 10.1007/s00296-014-3122-z. PubMed DOI

Cheng C., Gao S., Lei G. Association of osteopontin with osteoarthritis. Rheumatology International . 2014;34(12):1627–1631. doi: 10.1007/s00296-014-3036-9. PubMed DOI

Schneider R. K., Puellen A., Kramann R., et al. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials . 2010;31(3):467–480. doi: 10.1016/j.biomaterials.2009.09.059. PubMed DOI

Fu X., Liu G., Halim A., Ju Y., Luo Q., Song G. Mesenchymal stem cell migration and tissue repair. Cell . 2019;8(8):p. 784. doi: 10.3390/cells8080784. PubMed DOI PMC

Pattappa G., Johnstone B., Zellner J., Docheva D., Angele P. The importance of physioxia in mesenchymal stem cell chondrogenesis and the mechanisms controlling its response. International Journal of Molecular Sciences . 2019;20(3):p. 484. doi: 10.3390/ijms20030484. PubMed DOI PMC

Chow D. C., Wenning L. A., Miller W. M., Papoutsakis E. T. Modeling pO2 Distributions in the Bone Marrow Hematopoietic Compartment. I. Krogh's Model. Biophysical Journal . 2001;81(2):675–684. doi: 10.1016/S0006-3495(01)75732-3. PubMed DOI PMC

Bizzarri A., Koehler H., Cajlakovic M., et al. Continuous oxygen monitoring in subcutaneous adipose tissue using microdialysis. Analytica Chimica Acta . 2006;573-574:48–56. doi: 10.1016/j.aca.2006.03.101. PubMed DOI

Fischer B., Bavister B. D. Oxygen-tension in the oviduct and uterus of rhesus-monkeys, hamsters and rabbits. Journal of Reproduction and Fertility . 1993;99(2):673–679. doi: 10.1530/jrf.0.0990673. PubMed DOI

Marmotti A., Mattia S., Castoldi F., et al. Allogeneic umbilical cord-derived mesenchymal stem cells as a potential source for cartilage and bone regeneration: an in vitro study. Stem Cells International . 2017;2017:16. doi: 10.1155/2017/1732094.1732094 PubMed DOI PMC

Lavrentieva A., Majore I., Kasper C., Hass R. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Communication and Signaling: CCS . 2010;8(1):p. 18. doi: 10.1186/1478-811X-8-18. PubMed DOI PMC

Nekanti U., Dastidar S., Venugopal P., Totey S., Ta M. Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchymal stromal cells under hypoxia. International Journal of Biological Sciences . 2010;6(5):499–512. doi: 10.7150/ijbs.6.499. PubMed DOI PMC

Russo E., Lee J. Y., Nguyen H., et al. Energy metabolism analysis of three different mesenchymal stem cell populations of umbilical cord under normal and pathologic conditions. Stem Cell Reviews and Reports . 2020;16(3):585–595. doi: 10.1007/s12015-020-09967-8. PubMed DOI PMC

Kaneko Y., Lee J. Y., Tajiri N., et al. Translating intracarotid artery transplantation of bone marrow-derived NCS-01 cells for ischemic stroke: behavioral and histological readouts and mechanistic insights into stem cell therapy. Stem Cells Translational Medicine . 2020;9(2):203–220. doi: 10.1002/sctm.19-0229. PubMed DOI PMC

Neal E. G., Liska M. G., Lippert T., et al. An update on intracerebral stem cell grafts. Expert Review of Neurotherapeutics . 2018;18(7):557–572. doi: 10.1080/14737175.2018.1491309. PubMed DOI

Cozene B., Russo E., Anzalone R., La Rocca G., Borlongan C. Mitochondrial activity of human umbilical cord mesenchymal stem cells. Brain Circulation . 2021;7(1):33–36. PubMed PMC

Russo E., Lippert T., Tuazon J. P., Borlongan C. V. Advancing stem cells: new therapeutic strategies for treating central nervous system disorders. Brain Circulation . 2018;4(3):81–83. PubMed PMC

Sobolewski K., Małkowski A., Bańkowski E., Jaworski S. Wharton's jelly as a reservoir of peptide growth factors. Placenta . 2005;26(10):747–752. doi: 10.1016/j.placenta.2004.10.008. PubMed DOI

Qin L., Beier F. EGFR Signaling: friend or foe for cartilage? JBMR Plus . 2019;3(2, article e10177) doi: 10.1002/jbm4.10177. PubMed DOI PMC

Long D. L., Ulici V., Chubinskaya S., Loeser R. F. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is increased in osteoarthritis and regulates chondrocyte catabolic and anabolic activities. Osteoarthritis and Cartilage . 2015;23(9):1523–1531. doi: 10.1016/j.joca.2015.04.019. PubMed DOI PMC

Zhang X., Liu S., Wang Z., et al. Implanted 3D gelatin microcryogel enables low-dose cell therapy for osteoarthritis by preserving the viability and function of umbilical cord MSCs. Chemical Engineering Journal . 2021;416, article 129140 doi: 10.1016/j.cej.2021.129140. DOI

Tonomura H., Nagae M., Takatori R., Ishibashi H., Itsuji T., Takahashi K. The potential role of hepatocyte growth factor in degenerative disorders of the synovial joint and spine. International Journal of Molecular Sciences . 2020;21(22):p. 8717. doi: 10.3390/ijms21228717. PubMed DOI PMC

Wang Y., Yuan M., Guo Q., Lu S., Peng J. Mesenchymal stem cells for treating articular cartilage defects and osteoarthritis. Cell Transplantation . 2015;24(9):1661–1678. doi: 10.3727/096368914X683485. PubMed DOI

Petrenko Y., Vackova I., Kekulova K., et al. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Scientific Reports . 2020;10(1):p. 4290. doi: 10.1038/s41598-020-61167-z. PubMed DOI PMC

Sulpice E., Ding S., Muscatelli-Groux B., et al. Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biology of the Cell . 2009;101(9):525–539. doi: 10.1042/BC20080221. PubMed DOI

Bobick B. E., Chen F. H., Le A. M., Tuan R. S. Regulation of the chondrogenic phenotype in culture. Birth Defects Research Part C: Embryo Today: Reviews . 2009;87(4):351–371. doi: 10.1002/bdrc.20167. PubMed DOI

Tao Y., Zhou X., Liang C., et al. TGF-β3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through MAPK/ERK signaling. Growth Factors . 2015;33(5-6):326–336. doi: 10.3109/08977194.2015.1088532. PubMed DOI

Palka J., Bańkowski E., Jaworski S. An accumulation of IGF-I and IGF-binding proteins in human umbilical cord. Molecular and Cellular Biochemistry . 2000;206(1/2):133–139. doi: 10.1023/A:1007005610960. PubMed DOI

La Rocca G., Lo Iacono M., Corsello T., Corrao S., Farina F., Anzalone R. Human Wharton's jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy. Current Stem Cell Research & Therapy . 2013;8(1):100–113. doi: 10.2174/1574888X11308010012. PubMed DOI

Wang W., Rigueur D., Lyons K. M. TGFβ signaling in cartilage development and maintenance. Birth Defects Research Part C: Embryo Today: Reviews . 2014;102(1):37–51. doi: 10.1002/bdrc.21058. PubMed DOI PMC

Patil A. S., Sable R. B., Kothari R. M. An update on transforming growth factor-β (TGF-β): sources, types, functions and clinical applicability for cartilage/bone healing. Journal of Cellular Physiology . 2011;226(12):3094–3103. doi: 10.1002/jcp.22698. PubMed DOI

Liu G. Y., Xu Y., Li Y., Wang L. H., Liu Y. J., Zhu D. Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells. Cytotherapy . 2013;15(10):1208–1217. doi: 10.1016/j.jcyt.2013.05.011. PubMed DOI

Donders R., Bogie J. F., Ravanidis S., et al. Human Wharton's jelly-derived stem cells display a distinct immunomodulatory and proregenerative transcriptional signature compared to bone marrow-derived stem cells. Stem Cells and Development . 2018;27(2):65–84. doi: 10.1089/scd.2017.0029. PubMed DOI

Copland I. B., Adamson S. L., Post M., Lye S. J., Caniggia I. TGF-β3 Expression During Umbilical Cord Development and its Alteration in Pre- eclampsia. Placenta . 2002;23(4):311–321. doi: 10.1053/plac.2001.0778. PubMed DOI

Deng Z. H., Li Y. S., Gao X., Lei G. H., Huard J. Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis and Cartilage . 2018;26(9):1153–1161. doi: 10.1016/j.joca.2018.03.007. PubMed DOI

Scarfì S. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World Journal of Stem Cells . 2016;8(1):1–12. doi: 10.4252/wjsc.v8.i1.1. PubMed DOI PMC

Kosinski M., Figiel-Dabrowska A., Lech W., et al. Bone defect repair using a bone substitute supported by mesenchymal stem cells derived from the umbilical cord. Stem Cells International . 2020;2020:15. doi: 10.1155/2020/1321283.1321283 PubMed DOI PMC

Choi J., Bae T., Byambasuren N., et al. CRISPR-Cpf1 Activation of Endogenous _BMP4_ Gene for Osteogenic Differentiation of Umbilical-Cord-Derived Mesenchymal Stem Cells. Molecular Therapy - Methods & Clinical Development . 2020;17:309–316. doi: 10.1016/j.omtm.2019.12.010. PubMed DOI PMC

Guo D. B., Zhu X. Q., Li Q. Q., et al. Efficacy and mechanisms underlying the effects of allogeneic umbilical cord mesenchymal stem cell transplantation on acute radiation injury in tree shrews. Cytotechnology . 2018;70(5):1447–1468. doi: 10.1007/s10616-018-0239-z. PubMed DOI PMC

Zeng J., Wang F., Mao M. Co-culture of fibroblast-like synoviocytes with umbilical cord-mesenchymal stem cells inhibits expression of pro-inflammatory proteins, induces apoptosis and promotes chondrogenesis. Molecular Medicine Reports . 2016;14(4):3887–3893. doi: 10.3892/mmr.2016.5721. PubMed DOI

Wang Q., Xu L., Willumeit-Römer R., Luthringer-Feyerabend B. J. Macrophage-derived oncostatin M/bone morphogenetic protein 6 in response to Mg-based materials influences pro-osteogenic activity of human umbilical cord perivascular cells. Acta Biomaterialia . 2020;133:268–279. PubMed

Frenkel S. R., Saadeh P. B., Mehrara B. J., et al. Transforming growth factor beta superfamily members: role in cartilage modeling. Plastic and Reconstructive Surgery . 2000;105(3):980–990. doi: 10.1097/00006534-200003000-00022. PubMed DOI

Tuan R. S., Chen A. F., Klatt B. A. Cartilage regeneration. The Journal of the American Academy of Orthopaedic Surgeons . 2013;21(5):303–311. doi: 10.5435/JAAOS-21-05-303. PubMed DOI PMC

Kangari P., Talaei-Khozani T., Razeghian-Jahromi I., Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Research & Therapy . 2020;11(1):p. 492. doi: 10.1186/s13287-020-02001-1. PubMed DOI PMC

Mauro A., Buscemi M., Gerbino A. Immunohistochemical and transcriptional expression of matrix metalloproteinases in full-term human umbilical cord and human umbilical vein endothelial cells. Journal of Molecular Histology . 2010;41(6):367–377. doi: 10.1007/s10735-010-9298-y. PubMed DOI

Lo Iacono M., Russo E., Anzalone R., et al. Wharton's jelly mesenchymal stromal cells support the expansion of cord blood-derived CD34+Cells mimicking a hematopoietic niche in a direct cell-cell contact culture system. Cell Transplantation . 2018;27(1):117–129. doi: 10.1177/0963689717737089. PubMed DOI PMC

Gupta A., el-Amin S. F., III, Levy H. J., Sze-Tu R., Ibim S. E., Maffulli N. Umbilical cord-derived Wharton's jelly for regenerative medicine applications. Journal of Orthopaedic Surgery and Research . 2020;15(1):p. 49. doi: 10.1186/s13018-020-1553-7. PubMed DOI PMC

Trapani M., La Rocca G., Parolini O. Placenta: The Tree of Life . Boca Raton, FL, USA: CRC Press; 2016. Chapter 6. The immunomodulatory features of mesenchymal stromal cells derived from Wharton’s jelly, amniotic membrane, and chorionic villi: in vitro and in vivo data; pp. 91–128.

la Rocca G., Anzalone R., Corrao S., et al. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology . 2009;131(2):267–282. doi: 10.1007/s00418-008-0519-3. PubMed DOI

La Rocca G., Corrao S., Lo Iacono M., Corsello T., Farina F., Anzalone R. Novel immunomodulatory markers expressed by human WJ-MSC: an updated review in regenerative and reparative medicine. The Open Tissue Engineering and Regenerative Medicine Journal . 2012;5(1):50–58. doi: 10.2174/1875043501205010050. DOI

Anzalone R., Lo Iacono M., Loria T., et al. Wharton's jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Reviews and Reports . 2011;7(2):342–363. doi: 10.1007/s12015-010-9196-4. PubMed DOI

Corsello T., Amico G., Corrao S., et al. Wharton's jelly mesenchymal stromal cells from human umbilical cord: a close-up on immunomodulatory molecules featured in situ and in vitro. Stem Cell Reviews and Reports . 2019;15(6):900–918. doi: 10.1007/s12015-019-09907-1. PubMed DOI

Wang Q., Yang Q., Wang Z., et al. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton's jelly as sources of cell immunomodulatory therapy. Human Vaccines & Immunotherapeutics . 2016;12(1):85–96. doi: 10.1080/21645515.2015.1030549. PubMed DOI PMC

Najar M., Raicevic G., Boufker H. I., et al. Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: combined comparison of adipose tissue, Wharton's Jelly and bone marrow sources. Cellular Immunology . 2010;264(2):171–179. doi: 10.1016/j.cellimm.2010.06.006. PubMed DOI

Anzalone R., Iacono M. L., Corrao S., et al. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells and Development . 2010;19(4):423–438. doi: 10.1089/scd.2009.0299. PubMed DOI

di Nicola M., Carlo-Stella C., Magni M., et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood . 2002;99(10):3838–3843. doi: 10.1182/blood.V99.10.3838. PubMed DOI

Ma L., Zhou Z., Zhang D., et al. Immunosuppressive function of mesenchymal stem cells from human umbilical cord matrix in immune thrombocytopenia patients. Thrombosis and Haemostasis . 2012;107(5):937–950. doi: 10.1160/TH11-08-0596. PubMed DOI

Li W., Zhang Q., Wang M., et al. Macrophages are involved in the protective role of human umbilical cord- derived stromal cells in renal ischemia-reperfusion injury. Stem Cell Research . 2013;10(3):p. 405. doi: 10.1016/j.scr.2013.01.005. PubMed DOI

Zhao X., Zhao Y., Sun X., Xing Y., Wang X., Yang Q. Immunomodulation of MSCs and MSC-derived extracellular vesicles in osteoarthritis. Frontiers in Bioengineering and Biotechnology . 2020;8, article 575057 doi: 10.3389/fbioe.2020.575057. PubMed DOI PMC

Tong W., Zhang X., Zhang Q., et al. Multiple umbilical cord-derived MSCs administrations attenuate rat osteoarthritis progression via preserving articular cartilage superficial layer cells and inhibiting synovitis. Journal of Orthopaedic Translation . 2020;23:21–28. doi: 10.1016/j.jot.2020.03.007. PubMed DOI PMC

Zhang Q., Xiang E., Rao W., et al. Intra-articular injection of human umbilical cord mesenchymal stem cells ameliorates monosodium iodoacetate-induced osteoarthritis in rats by inhibiting cartilage degradation and inflammation. Bone & Joint Research . 2021;10(3):226–236. doi: 10.1302/2046-3758.103.BJR-2020-0206.R2. PubMed DOI PMC

Kim H., Yang G., Park J., Choi J., Kang E., Lee B. K. Therapeutic effect of mesenchymal stem cells derived from human umbilical cord in rabbit temporomandibular joint model of osteoarthritis. Scientific Reports . 2019;9(1, article 13854) doi: 10.1038/s41598-019-50435-2. PubMed DOI PMC

Voisin C., Cauchois G., Reppel L., et al. Are the immune properties of mesenchymal stem cells from Wharton's jelly maintained during chondrogenic differentiation? Journal of Clinical Medicine . 2020;9(2):p. 423. doi: 10.3390/jcm9020423. PubMed DOI PMC

Giannini D., Antonucci M., Petrelli F., Bilia S., Alunno A., Puxeddu I. One year in review 2020: pathogenesis of rheumatoid arthritis. Clinical and Experimental Rheumatology . 2020;38(3):387–397. PubMed

Zhao C., Zhang L., Kong W., et al. Umbilical cord-derived mesenchymal stem cells inhibit cadherin-11 expression by fibroblast-like synoviocytes in rheumatoid arthritis. Journal of Immunology Research . 2015;2015:10. doi: 10.1155/2015/137695.137695 PubMed DOI PMC

Hildner F., Wolbank S., Redl H., van Griensven M., Peterbauer A. How chondrogenic are human umbilical cord matrix cells? A comparison to adipose-derived stem cells. Journal of Tissue Engineering and Regenerative Medicine . 2010;4(3):242–245. doi: 10.1002/term.236. PubMed DOI

Ruan D., Zhang Y., Wang D., et al. Differentiation of human Wharton's jelly cells toward nucleus pulposus-like cells after coculture with nucleus pulposus CellsIn vitro. Tissue Engineering. Part A . 2012;18(1-2):167–175. doi: 10.1089/ten.tea.2011.0186. PubMed DOI

Chon B. H., Lee E. J., Jing L., Setton L. A., Chen J. Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system. Stem Cell Research & Therapy . 2013;4(5):p. 120. PubMed PMC

Caballero M., Skancke M. D., Halevi A. E., et al. Effects of connective tissue growth factor on the regulation of elastogenesis in human umbilical cord-derived mesenchymal stem cells. Annals of Plastic Surgery . 2013;70(5):568–573. doi: 10.1097/SAP.0b013e31827ed6f4. PubMed DOI

Marmotti A., Mattia S., Bruzzone M., et al. Minced umbilical cord fragments as a source of cells for orthopaedic tissue engineering: an in vitro study. Stem Cells International . 2012;2012:13. doi: 10.1155/2012/326813.326813 PubMed DOI PMC

Danišovič L., Boháč M., Zamborský R., et al. Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering. General Physiology and Biophysics . 2016;35(2):207–214. doi: 10.4149/gpb_2015044. PubMed DOI

Wu H., Zeng X., Yu J., et al. Comparison of nucleus pulposus stem/progenitor cells isolated from degenerated intervertebral discs with umbilical cord derived mesenchymal stem cells. Experimental Cell Research . 2017;361(2):324–332. doi: 10.1016/j.yexcr.2017.10.034. PubMed DOI

Bailey M. M., Wang L., Bode C. J., Mitchell K. E., Detamore M. S. A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Engineering . 2007;13(8):2003–2010. PubMed

Islam A., Urbarova I., Bruun J. A., Martinez-Zubiaurre I. Large-scale secretome analyses unveil the superior immunosuppressive phenotype of umbilical cord stromal cells as compared to other adult mesenchymal stromal cells. European Cells & Materials . 2019;37:153–174. PubMed

Zhang Y., Liu S., Guo W., et al. Coculture of hWJMSCs and pACs in oriented scaffold enhances hyaline cartilage regeneration in vitro. Stem Cells International . 2019;2019:11. doi: 10.1155/2019/5130152.5130152 PubMed DOI PMC

Li X., Liang Y., Xu X., et al. Cell-to-cell culture inhibits dedifferentiation of chondrocytes and induces differentiation of human umbilical cord-derived mesenchymal stem cells. BioMed Research International . 2019;2019:11. doi: 10.1155/2019/5871698.5871698 PubMed DOI PMC

Han Z., Zhang Y., Gao L., Jiang S., Ruan D. Human Wharton's jelly cells activate degenerative nucleus pulposus cells in vitro. Tissue Engineering. Part A . 2018;24(13-14):1035–1043. PubMed

Toh W. S., Lee E. H., Cao T. Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Reviews and Reports . 2011;7(3):544–559. PubMed

Castro-Viñuelas R., Sanjurjo-Rodríguez C., Piñeiro-Ramil M., et al. Induced pluripotent stem cells for cartilage repair: current status and future perspectives. European Cells & Materials . 2018;36:96–109. doi: 10.22203/eCM.v036a08. PubMed DOI

Hwang J. J., Rim Y. A., Nam Y., Ju J. H. Recent developments in clinical applications of mesenchymal stem cells in the treatment of rheumatoid arthritis and osteoarthritis. Frontiers in Immunology . 2021;12, article 631291 PubMed PMC

Jyothi Prasanna S., Sowmya Jahnavi V. Wharton's jelly mesenchymal stem cells as off-the-shelf cellular therapeutics: a closer look into their regenerative and immunomodulatory properties. The Open Tissue Engineering and Regenerative Medicine Journal . 2011;4(SPEC. ISSUE 1):28–38.

Khan W. S., Tew S. R., Adesida A. B., Hardingham T. E. Human infrapatellar fat pad-derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2. Arthritis Research & Therapy . 2008;10(4):p. R74. PubMed PMC

Hatakeyama A., Uchida S., Utsunomiya H., et al. Isolation and characterization of synovial mesenchymal stem cell derived from hip joints: a comparative analysis with a matched control knee group. Stem Cells International . 2017;2017:13. doi: 10.1155/2017/9312329.9312329 PubMed DOI PMC

Amable P. R., Teixeira M. V., Carias R. B., Granjeiro J. M., Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Research & Therapy . 2014;5(2):p. 53. PubMed PMC

Raicevic G., Najar M., Stamatopoulos B., et al. The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties. Cellular Immunology . 2011;270(2):207–216. doi: 10.1016/j.cellimm.2011.05.010. PubMed DOI

Balasubramanian S., Venugopal P., Sundarraj S., Zakaria Z., Majumdar A. S., Ta M. Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells. Cytotherapy . 2012;14(1):26–33. PubMed

Mckinnirey F., Herbert B., Vesey G., McCracken S. Immune modulation via adipose derived mesenchymal stem cells is driven by donor sex in vitro. Scientific Reports . 2021;11(1):p. 12454. PubMed PMC

Mohamed-Ahmed S., Fristad I., Lie S. A., et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Research & Therapy . 2018;9(1):p. 168. doi: 10.1186/s13287-018-0914-1. PubMed DOI PMC

Mead B., Logan A., Berry M., Leadbeater W., Scheven B. A. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One . 2014;9(10, article e109305) PubMed PMC

Batsali A. K., Pontikoglou C., Koutroulakis D., et al. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton’s jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Research & Therapy . 2017;8(1):p. 102. doi: 10.1186/s13287-017-0555-9. PubMed DOI PMC

Li C. Y., Wu X. Y., Tong J. B., et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Research & Therapy . 2015;6(1):p. 55. doi: 10.1186/s13287-015-0066-5. PubMed DOI PMC

Shin S., Lee J., Kwon Y., et al. Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and Wharton's jelly. International Journal of Molecular Sciences . 2021;22(2):p. 845. doi: 10.3390/ijms22020845. PubMed DOI PMC

Heirani-Tabasi A., Toosi S., Mirahmadi M., et al. Chemokine receptors expression in MSCs: comparative analysis in different sources and passages. Tissue engineering and regenerative medicine . 2017;14(5):605–615. doi: 10.1007/s13770-017-0069-7. PubMed DOI PMC

Najar M., Raicevic G., Jebbawi F., et al. Characterization and functionality of the CD200-CD200R system during mesenchymal stromal cell interactions with T-lymphocytes. Immunology Letters . 2012;146(1-2):50–56. doi: 10.1016/j.imlet.2012.04.017. PubMed DOI

Karaöz E., Demircan P. C., Erman G., Güngörürler E., Sarıboyaci A. E. Comparative analyses of immunosuppressive characteristics of bone-marrow, Wharton’s jelly, and adipose tissue-derived human mesenchymal stem cells. Turkish Journal of Haematology . 2017;34(3):213–225. PubMed PMC

Purandare B., Teklemariam T., Zhao L., Hantash B. M. Temporal HLA profiling and immunomodulatory effects of human adult bone marrow- and adipose-derived mesenchymal stem cells. Regenerative Medicine . 2014;9(1):67–79. PubMed

Mennan C., Garcia J., Roberts S., Hulme C., Wright K. A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells. Stem Cell Research & Therapy . 2019;10(1):p. 99. PubMed PMC

Camilleri E. T., Gustafson M. P., Dudakovic A., et al. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production. Stem Cell Research & Therapy . 2016;7(1):p. 107. doi: 10.1186/s13287-016-0370-8. PubMed DOI PMC

Pappa A. K., Caballero M., Dennis R. G., et al. Biochemical properties of tissue-engineered cartilage. The Journal of Craniofacial Surgery . 2014;25(1):111–115. doi: 10.1097/SCS.0b013e3182a2eb56. PubMed DOI PMC

Cashion A. T., Caballero M., Halevi A., Pappa A., Dennis R. G., van Aalst J. A. Programmable mechanobioreactor for exploration of the effects of periodic vibratory stimulus on mesenchymal stem cell differentiation. BioResearch Open Access . 2014;3(1):19–28. doi: 10.1089/biores.2013.0048. PubMed DOI PMC

Remya N. S., Nair P. D. Mechanoresponsiveness of human umbilical cord mesenchymal stem cells in in vitro chondrogenesis-a comparative study with growth factor induction. Journal of Biomedical Materials Research. Part A . 2016;104(10):2554–2566. PubMed

Zhao L., Detamore M. S. Chondrogenic differentiation of stem cells in human umbilical cord stroma with PGA and PLLA scaffolds. Journal of Biomedical Science and Engineering . 2010;3(11):1041–1049. PubMed PMC

Fong C. Y., Subramanian A., Gauthaman K., et al. Human umbilical cord Wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Reviews and Reports . 2012;8(1):195–209. doi: 10.1007/s12015-011-9289-8. PubMed DOI

Chen X., Zhang F., He X., et al. Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury . 2013;44(4):540–549. doi: 10.1016/j.injury.2012.09.024. PubMed DOI

Nirmal R. S., Nair P. D. Significance of soluble growth factors in the chondrogenic response of human umbilical cord matrix stem cells in a porous three dimensional scaffold. European Cells & Materials . 2013;26:234–251. PubMed

Sridharan B., Lin S. M., Hwu A. T., Laflin A. D., Detamore M. S. Stem cells in aggregate form to enhance chondrogenesis in hydrogels. PLoS One . 2015;10(12, article e0141479) PubMed PMC

Jaipaew J., Wangkulangkul P., Meesane J., Raungrut P., Puttawibul P. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: morphological, mechanical, and physical clues. Materials Science & Engineering. C, Materials for Biological Applications . 2016;64:173–182. PubMed

Wang J., Sun B., Tian L., et al. Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord. Materials Science & Engineering. C, Materials for Biological Applications . 2017;70, Part 1:637–645. doi: 10.1016/j.msec.2016.09.044. PubMed DOI

Aleksander-Konert E., Paduszyński P., Zajdel A., Dzierżewicz Z., Wilczok A. In vitro chondrogenesis of Wharton's jelly mesenchymal stem cells in hyaluronic acid-based hydrogels. Cellular & Molecular Biology Letters . 2016;21:p. 11. PubMed PMC

Zhang W., Yang J., Zhu Y., et al. Extracellular matrix derived by human umbilical cord-deposited mesenchymal stem cells accelerates chondrocyte proliferation and differentiation potential in vitro. Cell and Tissue Banking . 2019;20(3):351–365. doi: 10.1007/s10561-019-09774-7. PubMed DOI

Wang L., Tran I., Seshareddy K., Weiss M. L., Detamore M. S. A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Engineering. Part A . 2009;15(8):2259–2266. doi: 10.1089/ten.tea.2008.0393. PubMed DOI

Wang L., Seshareddy K., Weiss M. L., Detamore M. S. Effect of initial seeding density on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering. Tissue Engineering. Part A . 2009;15(5):1009–1017. PubMed PMC

Wang L., Zhao L., Detamore M. S. Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering. Journal of Tissue Engineering and Regenerative Medicine . 2011;5(9):712–721. PubMed PMC

Qi L., Wang R., Shi Q., Yuan M., Jin M., Li D. Umbilical cord mesenchymal stem cell conditioned medium restored the expression of collagen II and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose. Journal of Bone and Mineral Metabolism . 2019;37(3):455–466. PubMed

Penolazzi L., Pozzobon M., Bergamin L. S., et al. Extracellular matrix from decellularized Wharton's jelly improves the behavior of cells from degenerated intervertebral disc. Frontiers in Bioengineering and Biotechnology . 2020;8:p. 262. doi: 10.3389/fbioe.2020.00262. PubMed DOI PMC

Leckie S. K., Sowa G. A., Bechara B. P., et al. Injection of human umbilical tissue-derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo. The Spine Journal . 2013;13(3):263–272. doi: 10.1016/j.spinee.2012.12.004. PubMed DOI PMC

Beeravolu N., Brougham J., Khan I., McKee C., Perez-Cruet M., Chaudhry G. R. Human umbilical cord derivatives regenerate intervertebral disc. Journal of Tissue Engineering and Regenerative Medicine . 2018;12(1):e579–e591. PubMed

Perez-Cruet M., Beeravolu N., McKee C., et al. Potential of human nucleus pulposus-like cells derived from umbilical cord to treat degenerative disc disease. Neurosurgery . 2019;84(1):272–283. doi: 10.1093/neuros/nyy012. PubMed DOI PMC

Ekram S., Khalid S., Bashir I., Salim A., Khan I. Human umbilical cord-derived mesenchymal stem cells and their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral disc degeneration model. Molecular and Cellular Biochemistry . 2021;476(8):3191–3205. doi: 10.1007/s11010-021-04155-9. PubMed DOI

Saulnier N., Viguier E., Perrier-Groult E., et al. Intra-articular administration of xenogeneic neonatal mesenchymal stromal cells early after meniscal injury down-regulates metalloproteinase gene expression in synovium and prevents cartilage degradation in a rabbit model of osteoarthritis. Osteoarthritis and Cartilage . 2015;23(1):122–133. doi: 10.1016/j.joca.2014.09.007. PubMed DOI

Raines A. L., Shih M., Chua L., Su C., Tseng S. C., O'Connell J. Efficacy of particulate amniotic membrane and umbilical cord tissues in attenuating cartilage destruction in an osteoarthritis model. Tissue Engineering. Part A . 2017;23(1-2):12–19. PubMed

Chang H. S., Wu K. C., Liu H. W., Chu T. Y., Ding D. C. Human umbilical cord-derived mesenchymal stem cells reduce monosodium iodoacetate-induced apoptosis in cartilage. Ci Ji Yi Xue Za Zhi . 2018;30(2):71–80. PubMed PMC

Zhang B. Y., Wang B. Y., Li S. C., et al. Evaluation of the curative effect of umbilical cord mesenchymal stem cell therapy for knee arthritis in dogs using imaging technology. Stem Cells International . 2018;2018:12. doi: 10.1155/2018/1983025.1983025 PubMed DOI PMC

Kim S. E., Pozzi A., Yeh J. C., et al. Intra-articular umbilical cord derived mesenchymal stem cell therapy for chronic elbow osteoarthritis in dogs: a Double-Blinded, Placebo-Controlled Clinical Trial. Frontiers in veterinary science . 2019;6:p. 474. doi: 10.3389/fvets.2019.00474. PubMed DOI PMC

Geng Y., Chen J., Alahdal M., et al. Intra-articular injection of hUC-MSCs expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis. Journal of Bone and Mineral Metabolism . 2020;38(3):277–288. doi: 10.1007/s00774-019-01055-3. PubMed DOI

Wu K. C., Chang Y. H., Liu H. W., Ding D. C. Transplanting human umbilical cord mesenchymal stem cells and hyaluronate hydrogel repairs cartilage of osteoarthritis in the minipig model. Ci Ji Yi Xue Za Zhi . 2019;31(1):11–19. doi: 10.4103/tcmj.tcmj_87_18. PubMed DOI PMC

Magri C., Schramme M., Febre M., et al. Comparison of efficacy and safety of single versus repeated intra-articular injection of allogeneic neonatal mesenchymal stem cells for treatment of osteoarthritis of the metacarpophalangeal/metatarsophalangeal joint in horses: a clinical pilot study. PLoS One . 2019;14(8, article e0221317) doi: 10.1371/journal.pone.0221317. PubMed DOI PMC

Perry J., McCarthy H. S., Bou-Gharios G., et al. Injected human umbilical cord-derived mesenchymal stromal cells do not appear to elicit an inflammatory response in a murine model of osteoarthritis. Osteoarthritis and cartilage open . 2020;2(2, article 100044) doi: 10.1016/j.ocarto.2020.100044. PubMed DOI PMC

Xing D., Wu J., Wang B., et al. Intra-articular delivery of umbilical cord-derived mesenchymal stem cells temporarily retard the progression of osteoarthritis in a rat model. International Journal of Rheumatic Diseases . 2020;23(6):778–787. doi: 10.1111/1756-185X.13834. PubMed DOI

Wang X. D., Wan X. C., Liu A. F., Li R., Wei Q. Effects of umbilical cord mesenchymal stem cells loaded with graphene oxide granular lubrication on cytokine levels in animal models of knee osteoarthritis. International Orthopaedics . 2021;45(2):381–390. doi: 10.1007/s00264-020-04584-z. PubMed DOI

Liu Y., Mu R., Wang S., et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Research & Therapy . 2010;12(6):p. R210. doi: 10.1186/ar3187. PubMed DOI PMC

Wu C. C., Wu T. C., Liu F. L., Sytwu H. K., Chang D. M. TNF-α inhibitor reverse the effects of human umbilical cord-derived stem cells on experimental arthritis by increasing immunosuppression. Cellular Immunology . 2012;273(1):30–40. PubMed

Gu J., Gu W., Lin C., et al. Human umbilical cord mesenchymal stem cells improve the immune-associated inflammatory and prothrombotic state in collagen type-II-induced arthritic rats. Molecular Medicine Reports . 2015;12(5):7463–7470. doi: 10.3892/mmr.2015.4394. PubMed DOI

Zhang Q., Li Q., Zhu J., et al. Comparison of therapeutic effects of different mesenchymal stem cells on rheumatoid arthritis in mice. PeerJ . 2019;7:p. e7023. doi: 10.7717/peerj.7023. PubMed DOI PMC

Ma D., Xu K., Zhang G., et al. Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. International Immunopharmacology . 2019;74, article 105687 doi: 10.1016/j.intimp.2019.105687. PubMed DOI

Vohra M., Sharma A., Bagga R., Arora S. K. Human umbilical cord-derived mesenchymal stem cells induce tissue repair and regeneration in collagen-induced arthritis in rats. Journal of Clinical and Translational Research . 2020;6(6):203–216. PubMed PMC

Xu K., Ma D., Zhang G., et al. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles ameliorate collagen-induced arthritis via immunomodulatory T lymphocytes. Molecular Immunology . 2021;135:36–44. doi: 10.1016/j.molimm.2021.04.001. PubMed DOI

Zhao P., Liu S., Bai Y., et al. hWJECM-derived oriented scaffolds with autologous chondrocytes for rabbit cartilage defect repairing. Tissue Engineering. Part A . 2018;24(11-12):905–914. doi: 10.1089/ten.tea.2017.0223. PubMed DOI

Zhang Y., Liu S., Guo W., et al. Human umbilical cord Wharton's jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthritis and Cartilage . 2018;26(7):954–965. doi: 10.1016/j.joca.2018.01.019. PubMed DOI

Zhang Y., Hao C., Guo W., et al. Co-culture of hWJMSCs and pACs in double biomimetic ACECM oriented scaffold enhances mechanical properties and accelerates articular cartilage regeneration in a caprine model. Stem Cell Research & Therapy . 2020;11(1):p. 180. doi: 10.1186/s13287-020-01670-2. PubMed DOI PMC

Yan L., Wu X. Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity. Cell Biology and Toxicology . 2020;36(2):165–178. PubMed PMC

Li Z., Bi Y., Wu Q., et al. A composite scaffold of Wharton's jelly and chondroitin sulphate loaded with human umbilical cord mesenchymal stem cells repairs articular cartilage defects in rat knee. Journal of Materials Science. Materials in Medicine . 2021;32(4):p. 36. doi: 10.1007/s10856-021-06506-w. PubMed DOI PMC

Dormer N. H., Singh M., Zhao L., Mohan N., Berkland C. J., Detamore M. S. Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. Journal of Biomedical Materials Research. Part A . 2012;100(1):162–170. PubMed PMC

Liu S., Jia Y., Yuan M., et al. Repair of Osteochondral Defects Using Human Umbilical Cord Wharton’s Jelly- Derived Mesenchymal Stem Cells in a Rabbit Model. BioMed Research International . 2017;2017:12. doi: 10.1155/2017/8760383.8760383 PubMed DOI PMC

Jiang S., Tian G., Yang Z., et al. Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration. Bioactive Materials . 2021;6(9):2711–2728. doi: 10.1016/j.bioactmat.2021.01.031. PubMed DOI PMC

Matas J., Orrego M., Amenabar D., et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem Cells Translational Medicine . 2019;8(3):215–224. doi: 10.1002/sctm.18-0053. PubMed DOI PMC

Dilogo I. H., Canintika A. F., Hanitya A. L., Pawitan J. A., Liem I. K., Pandelaki J. Umbilical cord-derived mesenchymal stem cells for treating osteoarthritis of the knee: a single-arm, open-label study. European Journal of Orthopaedic Surgery and Traumatology . 2020;30(5):799–807. PubMed

Mead O. G., Mead L. P. Intra-articular injection of amniotic membrane and umbilical cord particulate for the management of moderate to severe knee osteoarthritis. Orthopedic Research and Reviews . 2020;12:161–170. PubMed PMC

Wang L., Huang S., Li S., et al. Efficacy and safety of umbilical cord mesenchymal stem cell therapy for rheumatoid arthritis patients: a prospective phase I/II study. Drug Design, Development and Therapy . 2019;Volume 13:4331–4340. doi: 10.2147/DDDT.S225613. PubMed DOI PMC

Qi T., Gao H., Dang Y., Huang S., Peng M. Cervus and cucumis peptides combined umbilical cord mesenchymal stem cells therapy for rheumatoid arthritis. Medicine (Baltimore) . 2020;99(28, article e21222) PubMed PMC

He X., Yang Y., Yao M., et al. Combination of human umbilical cord mesenchymal stem (stromal) cell transplantation with IFN-γ treatment synergistically improves the clinical outcomes of patients with rheumatoid arthritis. Annals of the Rheumatic Diseases . 2020;79(10):1298–1304. doi: 10.1136/annrheumdis-2020-217798. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...