Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31741193
DOI
10.1007/s12015-019-09907-1
PII: 10.1007/s12015-019-09907-1
Knihovny.cz E-zdroje
- Klíčová slova
- B7-H3, CD276, Cell therapy, Human umbilical cord, Immunomodulation, Lymphocyte inhibition, Regenerative medicine, Stem cells, Wharton’s jelly mesenchymal stromal cells,
- MeSH
- aktivace lymfocytů imunologie MeSH
- antigeny B7 antagonisté a inhibitory imunologie MeSH
- buněčná diferenciace * MeSH
- cytokiny imunologie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie imunologie MeSH
- proliferace buněk MeSH
- pupečník cytologie imunologie MeSH
- techniky in vitro MeSH
- Whartonův rosol cytologie imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny B7 MeSH
- CD276 protein, human MeSH Prohlížeč
- cytokiny MeSH
Therapeutic options for end-stage organ failure are often limited to whole organ transplantation. The tolerance or rejection of the transplanted organ is driven by both early non-specific innate and specific adaptive responses. The use of mesenchymal stromal cells (MSCs) is considered a promising tool in regenerative medicine. Human umbilical cord (HUC) is an easily available source of MSCs, without relevant ethical issues. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs), showed consistent immunomodulatory features that may be useful to promote immune tolerance in the host after transplantation. Few data are available on the phenotype of WJ-MSCs in situ. We investigated the expression of immune-related molecules, such as HLAs, IDO, CD276/B7-H3, and others, both in situ (HUC) and in in vitro-cultured WJ-MSCs. Morphological and biochemical techniques were used to define the expression of such molecules. In addition, we focused on the possible role of CD276/B7-H3 on T cells proliferation inhibition. We assessed CD276/B7-H3 expression by WJ-MSCs both in situ and alongside cell culture. WJ-MSCs were able to suppress T cell proliferation in mixed lymphocyte reaction (MLR). Moreover, we describe for the first time a specific role for CD276/B7-H3, since the immunomodulatory ability of WJ-MSCs was abolished upon anti-CD276/B7-H3 antibody addition to the MLR. These results further detail the immune regulation properties and tolerance induction exerted by human WJ-MSCs, in particular pointing to CD276/B7-H3 as one of the main involved factors. These data further suggest WJ-MSCs as potent tools to modulate local immune response in "support-type" regenerative medicine approaches.
Campus of Hematology F and P Cutino Villa Sofia Cervello Hospital Palermo Italy
Comenius University in Bratislava Bratislava Slovakia
Department of Biology Jessenius Faculty of Medicine in Martin Martin Slovakia
Department of Internal Medicine Brothers of Mercy Hospital Brno Czech Republic
Department of Neuroscience and Cell Biology University of Texas Medical Branch Galveston TX USA
Department PROMISE University of Palermo Palermo Italy
Zobrazit více v PubMed
Eur J Immunol. 2009 Jul;39(7):1754-64 PubMed
Br J Cancer. 2005 Mar 14;92(5):888-90 PubMed
Stem Cells Dev. 2012 Oct 10;21(15):2900-3 PubMed
Front Immunol. 2019 Mar 06;10:309 PubMed
Curr Stem Cell Res Ther. 2013 Jan;8(1):100-13 PubMed
Blood. 2015 May 21;125(21):3335-46 PubMed
Int J Clin Exp Pathol. 2015 Nov 01;8(11):13987-95 PubMed
Basic Res Cardiol. 2009 May;104(3):307-20 PubMed
Histol Histopathol. 2013 Oct;28(10):1235-44 PubMed
Nat Rev Nephrol. 2018 Sep;14(9):558-570 PubMed
Stem Cells Dev. 2013 Jan 1;22(1):1-17 PubMed
J Tissue Eng Regen Med. 2007 Jul-Aug;1(4):296-305 PubMed
Stem Cells Dev. 2013 Oct 1;22(19):2619-29 PubMed
Int J Oncol. 2011 Feb;38(2):385-90 PubMed
Stem Cell Res Ther. 2016 Feb 11;7:29 PubMed
Transplantation. 1968 Mar;6(2):230-47 PubMed
Genomics. 2003 Sep;82(3):365-77 PubMed
Hum Vaccin Immunother. 2016;12(1):85-96 PubMed
Cancer Cell. 2004 Mar;5(3):241-51 PubMed
Stem Cells Int. 2016;2016:4709572 PubMed
Int J Organ Transplant Med. 2017;8(3):125-131 PubMed
Histopathology. 2008 Jan;52(2):203-12 PubMed
Open Biol. 2014 Oct;4(10): PubMed
Nat Immunol. 2001 Mar;2(3):269-74 PubMed
Eur J Immunol. 2012 Sep;42(9):2343-53 PubMed
Blood. 2002 May 15;99(10):3838-43 PubMed
Oncol Lett. 2015 Oct;10(4):2204-2208 PubMed
Pharmaceuticals (Basel). 2015 Apr 16;8(2):196-220 PubMed
Blood. 2007 May 15;109(10):4119-26 PubMed
Brain Behav Immun. 2015 Mar;45:180-8 PubMed
Stem Cells Transl Med. 2017 Dec;6(12):2053-2061 PubMed
Glycobiology. 2006 Nov;16(11):137R-157R PubMed
Cell Transplant. 2014;23(10):1169-85 PubMed
Cytotherapy. 2006;8(4):315-7 PubMed
Clin Exp Immunol. 2013 May;172(2):158-68 PubMed
Life Sci. 2010 Jan 30;86(5-6):145-52 PubMed
Biomedicines. 2017 Jul 01;5(3): PubMed
J Clin Invest. 2017 Jun 30;127(7):2492-2504 PubMed
Cell Immunol. 2018 Apr;326:24-32 PubMed
Front Bioeng Biotechnol. 2018 Jul 24;6:93 PubMed
Stem Cells Dev. 2010 Apr;19(4):423-38 PubMed
Immunol Rev. 2017 Mar;276(1):26-39 PubMed
Clin Cancer Res. 2016 Jul 15;22(14):3425-3431 PubMed
Cell Transplant. 2018 Jan;27(1):31-44 PubMed
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8680-5 PubMed
Histochem Cell Biol. 2009 Feb;131(2):267-82 PubMed
Genes Immun. 2011 Apr;12(3):157-68 PubMed
Gut. 2012 Jun;61(6):894-906 PubMed
Cold Spring Harb Perspect Med. 2013 Nov 01;3(11): PubMed
Int J Mol Sci. 2013 Sep 03;14(9):17986-8001 PubMed
Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications