Facing the Challenges in the COVID-19 Pandemic Era: From Standard Treatments to the Umbilical Cord-Derived Mesenchymal Stromal Cells as a New Therapeutic Strategy

. 2023 Jun 19 ; 12 (12) : . [epub] 20230619

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37371134

Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which counts more than 650 million cases and more than 6.6 million of deaths worldwide, affects the respiratory system with typical symptoms such as fever, cough, sore throat, acute respiratory distress syndrome (ARDS), and fatigue. Other nonpulmonary manifestations are related with abnormal inflammatory response, the "cytokine storm", that could lead to a multiorgan disease and to death. Evolution of effective vaccines against SARS-CoV-2 provided multiple options to prevent the infection, but the treatment of the severe forms remains difficult to manage. The cytokine storm is usually counteracted with standard medical care and anti-inflammatory drugs, but researchers moved forward their studies on new strategies based on cell therapy approaches. The perinatal tissues, such as placental membranes, amniotic fluid, and umbilical cord derivatives, are enriched in mesenchymal stromal cells (MSCs) that exert a well-known anti-inflammatory role, immune response modulation, and tissue repair. In this review, we focused on umbilical-cord-derived MSCs (UC-MSCs) used in in vitro and in vivo studies in order to evaluate the weakening of the severe symptoms, and on recent clinical trials from different databases, supporting the favorable potential of UC-MSCs as therapeutic strategy.

Zobrazit více v PubMed

Kilbourne E.D. Influenza pandemics of the 20th century. Emerg. Infect. Dis. 2006;12:9–14. doi: 10.3201/eid1201.051254. PubMed DOI PMC

She J., Jiang J., Ye L., Hu L., Bai C., Song Y. 2019 novel coronavirus of pneumonia in Wuhan, China: Emerging attack and management strategies. Clin. Transl. Med. 2020;9:19. doi: 10.1186/s40169-020-00271-z. PubMed DOI PMC

Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017. PubMed DOI PMC

WHO Novel Coronavirus (2019-nCoV): Situation Report, 1. [(accessed on 21 December 2022)]. Available online: https://apps.who.int/iris/handle/10665/330760.

WHO Novel Coronavirus (2019-nCoV) Report-1. 2020. [(accessed on 21 December 2022)]. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4.

WHO Statement on the Second Meeting of the International Health Regulations. Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV) 2005. [(accessed on 21 December 2022)]. Available online: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)

Nie J., Li Q., Zhang L., Cao Y., Zhang Y., Li T., Wu J., Liu S., Zhang M., Zhao C., et al. Functional comparison of SARS-CoV-2 with closely related pangolin and bat coronaviruses. Cell Discov. 2021;7:21. doi: 10.1038/s41421-021-00256-3. PubMed DOI PMC

WHO Naming the Coronavirus Disease (COVID-19) and the Virus that Causes It. [(accessed on 21 December 2022)]. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.

Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. PubMed DOI PMC

Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. PubMed DOI PMC

Chan J.F., Kok K.H., Zhu Z., Chu H., To K.K., Yuan S., Yuen K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020;9:221–236. doi: 10.1080/22221751.2020.1719902. PubMed DOI PMC

Hu B., Guo H., Zhou P., Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021;19:141–154. doi: 10.1038/s41579-020-00459-7. PubMed DOI PMC

WHO WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 2020. [(accessed on 21 December 2022)]. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC

WHO Living Guidance for Clinical Management of COVID-19. [(accessed on 22 December 2022)]. Available online: https://apps.who.int/iris/bitstream/handle/10665/349321/WHO-2019-nCoV-clinical-2021.2-eng.pdf.

Samanipour R., Tabatabaee S., Delyanee M., Tavakoli A. The promising approach of MSCs therapy for COVID-19 treatment. Cell Tissue Bank. 2022;16:1–16. doi: 10.1007/s10561-022-10060-2. PubMed DOI PMC

Cozene B.M., Russo E., Anzalone R., Rocca G., Borlongan C.V. Mitochondrial activity of human umbilical cord mesenchymal stem cells. Brain. Circ. 2021;7:33–36. doi: 10.4103/bc.bc_15_21. PubMed DOI PMC

Yaghoubi Y., Movassaghpour A., Zamani M., Talebi M., Mehdizadeh A., Yousefi M. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci. 2019;233:116733. doi: 10.1016/j.lfs.2019.116733. PubMed DOI

Alzahrani F.A., Saadeldin I.M., Ahmad A., Kumar D., Azhar E.I., Siddiqui A.J., Kurdi B., Sajini A., Alrefaei A.F., Jahan S. The Potential Use of Mesenchymal Stem Cells and Their Derived Exosomes as Immunomodulatory Agents for COVID-19 Patients. Stem Cells Int. 2020;2020:8835986. doi: 10.1155/2020/8835986. PubMed DOI PMC

Russo E., Caprnda M., Kruzliak P., Conaldi P.G., Borlongan C.V., La Rocca G. Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications. Stem Cells Int. 2022;2022:2454168. doi: 10.1155/2022/2454168. PubMed DOI PMC

Zhang Y.Z., Holmes E.C. A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell. 2020;181:223–227. doi: 10.1016/j.cell.2020.03.035. PubMed DOI PMC

Peiris J.S., Guan Y., Yuen K.Y. Severe acute respiratory syndrome. Nat. Med. 2004;10:S88–S97. doi: 10.1038/nm1143. PubMed DOI PMC

Morrison C.B., Edwards C.E., Shaffer K.M., Araba K.C., Wykoff J.A., Williams D.R., Asakura T., Dang H., Morton L.C., Gilmore R.C., et al. SARS-CoV-2 infection of airway cells causes intense viral and cell shedding, two spreading mechanisms affected by IL-13. Proc. Natl. Acad. Sci. USA. 2022;119:e2119680119. doi: 10.1073/pnas.2119680119. PubMed DOI PMC

Mishra D., Suri G.S., Kaur G., Tiwari M. A comparative insight into genomic landscape of SARS-CoV-2 and identification of mutations associated with origin of infection and diversity. J. Med. Virol. 2020;93:2406–2419. doi: 10.1002/jmv.26744. PubMed DOI

Forster P., Forster L., Renfrew C., Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. USA. 2020;117:9241–9243. doi: 10.1073/pnas.2004999117. PubMed DOI PMC

Wise J. Covid-19: New coronavirus variant is identified in UK. BMJ. 2020;371:m4857. doi: 10.1136/bmj.m4857. PubMed DOI

Scovino A., Dahab E., Vieira G., Freire-de-Lima L., Freire-de-Lima C., Morrot A. SARS-CoV-2’s Variants of Concern: A Brief Characterization. Front. Immunol. 2022;13:834098. doi: 10.3389/fimmu.2022.834098. PubMed DOI PMC

Stefanelli P., Trentini F., Guzzetta G., Marziano V., Mammone A., Sane Schepisi M., Poletti P., Molina Grane C., Manica M., Del Manso M., et al. Co-circulation of SARS-CoV-2 Alpha and Gamma variants in Italy, February and March 2021. Euro. Surveill. 2022;27:2100429. doi: 10.2807/1560-7917.ES.2022.27.5.2100429. PubMed DOI PMC

Stefanelli P., Trentini F., Petrone D., Mammone A., Ambrosio L., Manica M., Guzzetta G., d’Andrea V., Marziano V., Zardini A., et al. Tracking the progressive spread of the SARS-CoV-2 Omicron variant in Italy, December 2021 to January 2022. Euro. Surveill. 2022;27:2200125. doi: 10.2807/1560-7917.ES.2022.27.45.2200125. PubMed DOI PMC

Di Domenico M., De Rosa A., Di Gaudio F., Internicola P., Bettini C., Salzano N., Castrianni D., Marotta A., Boccellino M. Diagnostic Accuracy of a New Antigen Test for SARS-CoV-2 Detection. Int. J. Env. Res. Public Health. 2021;18:6310. doi: 10.3390/ijerph18126310. PubMed DOI PMC

Di Gaudio F., Brunacci G., Contino F., Gallo A., Centineo F. Technical and health governance aspects of the External Quality Assessment Scheme for the SARS-CoV-2 molecular tests: Institutional experience performed in all clinical laboratories of a Regional Health Service. Clin. Chem. Lab. Med. 2023;61:173–179. doi: 10.1515/cclm-2022-0780. PubMed DOI

Delorey T.M., Ziegler C.G.K., Heimberg G., Normand R., Yang Y., Segerstolpe A., Abbondanza D., Fleming S.J., Subramanian A., Montoro D.T., et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595:107–113. doi: 10.1038/s41586-021-03570-8. PubMed DOI PMC

Liskova A., Samec M., Koklesova L., Samuel S.M., Zhai K., Al-Ishaq R.K., Abotaleb M., Nosal V., Kajo K., Ashrafizadeh M., et al. Flavonoids against the SARS-CoV-2 induced inflammatory storm. Biomed. Pharmacother. 2021;138:111430. doi: 10.1016/j.biopha.2021.111430. PubMed DOI PMC

Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145. PubMed DOI PMC

Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S. SARS-CoV-2 Cell Entry Depends on ACE2 aTMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280.e278. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC

Hussman J.P. Cellular and Molecular Pathways of COVID-19 and Potential Points of Therapeutic Intervention. Front. Pharmacol. 2020;11:1169. doi: 10.3389/fphar.2020.01169. PubMed DOI PMC

Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., Cao Y., Yousif A.S., Bals J., Hauser B.M., et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181:1016–1035.e1019. doi: 10.1016/j.cell.2020.04.035. PubMed DOI PMC

Albini A., Di Guardo G., McClain Noonan D., Lombardo M. The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: Implications for ACE-inhibitor-and angiotensin II receptor blocker-based cardiovascular therapies. Intern. Emerg. Med. 2020;15:759–766. doi: 10.1007/s11739-020-02364-6. PubMed DOI PMC

Abobaker A., Raba A.A., Alzwi A. Extrapulmonary and atypical clinical presentations of COVID-19. J. Med. Virol. 2020;92:2458–2464. doi: 10.1002/jmv.26157. PubMed DOI PMC

Zirpe K.G., Dixit S., Kulkarni A.P., Sapra H., Kakkar G., Gupta R., Bansal A.R. Pathophysiological Mechanisms and Neurological Manifestations in COVID-19. Indian J. Crit. Care Med. 2020;24:975–980. PubMed PMC

Jothimani D., Venugopal R., Abedin M.F., Kaliamoorthy I., Rela M. COVID-19 and the liver. J. Hepatol. 2020;73:1231–1240. doi: 10.1016/j.jhep.2020.06.006. PubMed DOI PMC

Cuschieria S., Grech S. COVID-19 and diabetes: The why, the what and the how. J. Diabetes Complicat. 2020;34:107637. doi: 10.1016/j.jdiacomp.2020.107637. PubMed DOI PMC

Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.J., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203:631–637. doi: 10.1002/path.1570. PubMed DOI PMC

Amraei R., Yin W., Napoleon M.A., Suder E.L., Berrigan J., Zhao Q., Olejnik J., Chandler K.B., Xia C., Feldman J., et al. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2. bioRxiv. 2021;7:1156–1165. doi: 10.1021/acscentsci.0c01537. PubMed DOI PMC

Gao C., Zeng J., Jia N., Stavenhagen K., Matsumoto Y., Zhang H., Li J. SARS-CoV-2 Spike Protein Interacts with Multiple Innate Immune Receptors. BioRxiv. 2020 doi: 10.1101/2020.07.29.227462. preprint . DOI

Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona A., Graham B.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263. doi: 10.1126/science.abb2507. PubMed DOI PMC

Lamers M.M., Haagmans B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022;20:270–284. doi: 10.1038/s41579-022-00713-0. PubMed DOI

Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S.Y. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients with Lung Cancer. J. Thorac. Oncol. 2020;15:700–704. doi: 10.1016/j.jtho.2020.02.010. PubMed DOI PMC

Mangalmurti N., Hunter C.A. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53:19–25. doi: 10.1016/j.immuni.2020.06.017. PubMed DOI PMC

Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020;20:355–362. doi: 10.1038/s41577-020-0331-4. PubMed DOI PMC

Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032. PubMed DOI PMC

Weiskopf D., Schmitz K.S., Raadsen M.P., Grifoni A., Okba N.M.A., Endeman H., van den Akker J.P.C. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol. 2020;5:eabd2071. doi: 10.1126/sciimmunol.abd2071. PubMed DOI PMC

Blanco-Melo D., Nilsson-Payant B.E., Liu W.C., Uhl S., Hoagland D., Møller R., Jordan T.X. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181:1036–1045. doi: 10.1016/j.cell.2020.04.026. PubMed DOI PMC

Bonaventura A., Vecchié A., Wang T., Lee E., Cremer P., Carey B., Rajendram P. Targeting GM-CSF in COVID-19 Pneumonia: Rationale and Strategies. Front. Immunol. 2020;11:1625. doi: 10.3389/fimmu.2020.01625. PubMed DOI PMC

Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J., Liu Y.J., MacPherson G., Randolph G.J., et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116:e74–e80. doi: 10.1182/blood-2010-02-258558. PubMed DOI

Thomas G., Tacke R., Hedrick C.C., Hanna R.N. Nonclassical patrolling monocyte function in the vasculature. Arterioscler. Thromb. Vasc. Biol. 2015;35:1306–1316. doi: 10.1161/ATVBAHA.114.304650. PubMed DOI PMC

Affandi A.J., Olesek K., Grabowska J., Nijen Twilhaar M.K., Rodriguez E., Saris A., Zwart E.S., Nossent E.J., Kalay H., de Kok M., et al. CD169 Defines Activated CD14(+) Monocytes With Enhanced CD8(+) T Cell Activation Capacity. Front. Immunol. 2021;12:697840. doi: 10.3389/fimmu.2021.697840. PubMed DOI PMC

Abassi Z., Knaney Y., Karram T., Heyman S. The Lung Macrophage in SARS-CoV-2 Infection: A Friend or a Foe? Front. Immunol. 2020;11:1312. doi: 10.3389/fimmu.2020.01312. PubMed DOI PMC

Leisman D.E., Ronner L., Pinotti R., Taylor M.D., Sinha P., Calfee C.S., Hirayama A.V., Mastroiani F., Turtle C.J., Harhay M.O., et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020;8:1233–1244. doi: 10.1016/S2213-2600(20)30404-5. PubMed DOI PMC

Rostami M., Mansouritorghabeh H. D-dimer level in COVID-19 infection: A systematic review. Expert Rev. Hematol. 2020;13:1265–1275. doi: 10.1080/17474086.2020.1831383. PubMed DOI

Gelzo M., Cacciapuoti S., Pinchera B., De Rosa A., Cernera G., Scialo F., Comegna M., Mormile M., Fabbrocini G., Parrella R., et al. Matrix metalloproteinases (MMP) 3 and 9 as biomarkers of severity in COVID-19 patients. Sci. Rep. 2022;12:1212. doi: 10.1038/s41598-021-04677-8. PubMed DOI PMC

Ong S.W.X., Fong S.W., Young B.E., Chan Y.H., Lee B., Amrun S.N., Chee R.S., Yeo N.K., Tambyah P., Pada S., et al. Persistent Symptoms and Association With Inflammatory Cytokine Signatures in Recovered Coronavirus Disease 2019 Patients. Open Forum Infect. Dis. 2021;8:ofab156. doi: 10.1093/ofid/ofab156. PubMed DOI PMC

Ruhl L., Pink I., Kuhne J.F., Beushausen K., Keil J., Christoph S., Sauer A., Boblitz L., Schmidt J., David S., et al. Endothelial dysfunction contributes to severe COVID-19 in combination with dysregulated lymphocyte responses and cytokine networks. Signal Transduct. Target. Ther. 2021;6:418. doi: 10.1038/s41392-021-00819-6. PubMed DOI PMC

Ackermann M., Mentzer S.J., Kolb M., Jonigk D. Inflammation and intussusceptive angiogenesis in COVID-19: Everything in and out of flow. Eur. Respir. J. 2020;56:2003147. doi: 10.1183/13993003.03147-2020. PubMed DOI PMC

Eslamifar Z., Behzadifard M., Soleimani M., Behzadifard S. Coagulation abnormalities in SARS-CoV-2 infection: Overexpression tissue factor. Thromb. J. 2020;18:38. doi: 10.1186/s12959-020-00250-x. PubMed DOI PMC

Miesbach W. Pathological Role of Angiotensin II in Severe COVID-19. TH Open. 2020;4:e138–e144. doi: 10.1055/s-0040-1713678. PubMed DOI PMC

Eguchi S., Kawai T., Scalia R., Rizzo V. Understanding Angiotensin II Type 1 Receptor Signaling in Vascular Pathophysiology. Hypertension. 2018;71:804–810. doi: 10.1161/HYPERTENSIONAHA.118.10266. PubMed DOI PMC

Beltran-Garcia J., Osca-Verdegal R., Pallardo F.V., Ferreres J., Rodriguez M., Mulet S., Sanchis-Gomar F., Carbonell N., Garcia-Gimenez J.L. Oxidative Stress and Inflammation in COVID-19-Associated Sepsis: The Potential Role of Anti-Oxidant Therapy in Avoiding Disease Progression. Antioxidants. 2020;9:936. doi: 10.3390/antiox9100936. PubMed DOI PMC

Montiel V., Lobysheva I., Gerard L., Vermeersch M., Perez-Morga D., Castelein T., Mesland J.B., Hantson P., Collienne C., Gruson D., et al. Oxidative stress-induced endothelial dysfunction and decreased vascular nitric oxide in COVID-19 patients. EBioMedicine. 2022;77:103893. doi: 10.1016/j.ebiom.2022.103893. PubMed DOI PMC

Murakami M., Kamimura D., Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity. 2019;50:812–831. doi: 10.1016/j.immuni.2019.03.027. PubMed DOI

Rupérez M., Lorenzo O., Blanco-Colio L.M., Esteban V., Egido J., Ruiz-Ortega M. Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation. 2003;108:1499–1505. doi: 10.1161/01.CIR.0000089129.51288.BA. PubMed DOI

Mauviel A. Transforming growth factor-beta: A key mediator of fibrosis. Methods Mol. Med. 2005;117:69–80. PubMed

Hirano T., Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020;52:731–733. doi: 10.1016/j.immuni.2020.04.003. PubMed DOI PMC

Hrenak J., Simko F. Renin–Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome. Int. J. Mol. Sci. 2020;21:8038. doi: 10.3390/ijms21218038. PubMed DOI PMC

Murphy A.M., Wong A.L., Bezuhlly M. Modulation of angiotensin II signaling in the prevention of fibrosis. Fibrogenesis Tissue Repair. 2015;8:7. doi: 10.1186/s13069-015-0023-z. PubMed DOI PMC

Zhao W., Li H., Li J., Xu B., Xu J. The mechanism of multiple organ dysfunction syndrome in patients with COVID-19. J. Med. Virol. 2022;94:1886–1892. doi: 10.1002/jmv.27627. PubMed DOI PMC

Chu D.K., Akl E.A., Duda S., Solo K., Yaacoub S., Schunemann H.J., COVID-19 Systematic Urgent Review Group Effort (SURGE) Study Authors Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet. 2020;395:1973–1987. doi: 10.1016/S0140-6736(20)31142-9. PubMed DOI PMC

Kwon S., Joshi A.D., Lo C.H., Drew D.A., Nguyen L.H., Guo C.G., Ma W., Mehta R.S., Warner E.T., Astley C.M., et al. Association of social distancing and masking with risk of COVID-19. medRxiv. 2020;12:3737. doi: 10.1101/2020.11.11.20229500. PubMed DOI PMC

Piechotta V., Iannizzi C., Chai K.L., Valk S.J., Kimber C., Dorando E., Monsef I., Wood E.M., Lamikanra A.A., Roberts D.J., et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: A living systematic review. Cochrane Database Syst. Rev. 2021;5:CD013600. doi: 10.1002/14651858.CD013600.pub4. PubMed DOI PMC

Qian Z., Zhang Z., Ma H., Shao S., Kang H., Tong Z. The efficiency of convalescent plasma in COVID-19 patients: A systematic review and meta-analysis of randomized controlled clinical trials. Front. Immunol. 2022;13:964398. doi: 10.3389/fimmu.2022.964398. PubMed DOI PMC

Tang C., Wang Y., Lv H., Guan Z., Gu J. Caution against corticosteroid-based COVID-19 treatment. Lancet. 2020;395:1759–1760. doi: 10.1016/S0140-6736(20)30749-2. PubMed DOI PMC

Shuto H., Komiya K., Yamasue M., Uchida S., Ogura T., Mukae H., Tateda K., Hiramatsu K., Kadota J.I. A systematic review of corticosteroid treatment for noncritically ill patients with COVID-19. Sci. Rep. 2020;10:20935. doi: 10.1038/s41598-020-78054-2. PubMed DOI PMC

Minkoff J.M., tenOever B. Innate immune evasion strategies of SARS-CoV-2. Nat. Rev. Microbiol. 2023;21:178–194. doi: 10.1038/s41579-022-00839-1. PubMed DOI PMC

Rubbert-Roth A., Furst D.E., Nebesky J.M., Jin A., Berber E. A Review of Recent Advances Using Tocilizumab in the Treatment of Rheumatic Diseases. Rheumatol. Ther. 2018;5:21–42. doi: 10.1007/s40744-018-0102-x. PubMed DOI PMC

WHO WHO Prequalifies First Monoclonal Antibody—Tocilizumab—To Treat COVID-19. [(accessed on 21 December 2022)]. Available online: https://www.who.int/news/item/11-02-2022-who-prequalifies-first-monoclonal-antibody---tocilizumab-to-treat-covid-19.

Brown M.J., Alazawi W., Kanoni S. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N. Engl. J. Med. 2021;385:1147. doi: 10.1056/NEJMc2108482. PubMed DOI

Rosas I.O., Brau N., Waters M., Go R.C., Hunter B.D., Bhagani S., Skiest D., Aziz M.S., Cooper N., Douglas I.S., et al. Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia. N. Engl. J. Med. 2021;384:1503–1516. doi: 10.1056/NEJMoa2028700. PubMed DOI PMC

Shankar-Hari M., Vale C.L., Godolphin P.J., Fisher D., Higgins J.P.T., Spiga F., Savovic J., Tierney J., Baron G., The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group et al. Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA. 2021;326:499–518. doi: 10.1001/jama.2021.11330. PubMed DOI PMC

Campochiaro C., Tomelleri A., Matucci-Cerinic M., Dagna L. One year later: The case of tocilizumab in COVID-19. Eur. J. Intern. Med. 2022;95:5–6. doi: 10.1016/j.ejim.2021.10.024. PubMed DOI PMC

WHO Therapeutics and COVID-19: Living Guideline, 16 September 2022. [(accessed on 21 December 2022)]. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-therapeutics-2022.5.

Focosi D., McConnell S., Casadevall A. The Omicron variant of concern: Diversification and convergent evolution in spike protein, and escape from anti-Spike monoclonal antibodies. Drug. Resist. Updat. 2022;65:100882. doi: 10.1016/j.drup.2022.100882. PubMed DOI PMC

WHO TAG-VE Statement on Omicron Sublineages BQ.1 and XBB. [(accessed on 28 December 2022)]. Available online: https://www.who.int/news/item/27-10-2022-tag-ve-statement-on-omicron-sublineages-bq.1-and-xbb.

Imai M., Ito M., Kiso M., Yamayoshi S., Uraki R., Fukushi S., Watanabe S., Suzuki T., Maeda K., Sakai-Tagawa Y., et al. Efficacy of Antiviral Agents against Omicron Subvariants BQ.1.1 and XBB. N. Engl. J. Med. 2023;388:89–91. doi: 10.1056/NEJMc2214302. PubMed DOI PMC

Radermacher P., Maggiore S.M., Mercat A. Fifty Years of Research in ARDS. Gas Exchange in Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2017;196:964–984. doi: 10.1164/rccm.201610-2156SO. PubMed DOI

Touchon F., Trigui Y., Prud’homme E., Lefebvre L., Giraud A., Dols A.M., Martinez S., Bernardi M., Begne C., Granier P., et al. Awake prone positioning for hypoxaemic respiratory failure: Past, COVID-19 and perspectives. Eur. Respir. Rev. 2021;30:210022. doi: 10.1183/16000617.0022-2021. PubMed DOI PMC

Tobin M.J., Laghi F., Jubran A. Caution about early intubation and mechanical ventilation in COVID-19. Ann. Intensive Care. 2020;10:78. doi: 10.1186/s13613-020-00692-6. PubMed DOI PMC

Cabrera-Benitez N.E., Laffey J.G., Parotto M., Spieth P.M., Villar J., Zhang H., Slutsky A.S. Mechanical Ventilation–associated Lung Fibrosis in Acute Respiratory Distress Syndrome A Significant Contributor to Poor Outcome. Anesthesiology. 2014;121:189–198. doi: 10.1097/ALN.0000000000000264. PubMed DOI PMC

Pierrakos C., Karanikolas M., Scolletta S., Karamouzos V., Velissaris D. Acute Respiratory Distress Syndrome: Pathophysiology and Therapeutic Options. J. Clin. Med. Res. 2012;4:7–16. doi: 10.4021/jocmr761w. PubMed DOI PMC

Hajage D., Combes A., Guervilly C., Lebreton G., Mercat A., Pavot A., Nseir S., Mekontso-Dessap A., Mongardon N., Mira J.P., et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome Associated with COVID-19: An Emulated Target Trial Analysis. Am. J. Respir. Crit. Care Med. 2022;206:281–294. doi: 10.1164/rccm.202111-2495OC. PubMed DOI PMC

Bertini P., Guarracino F., Falcone M., Nardelli P., Landoni G., Nocci M., Paternoster G. ECMO in COVID-19 Patients: A Systematic Review and Meta-analysis. J. Cardiothorac. Vasc. Anesth. 2022;36:2700–2706. doi: 10.1053/j.jvca.2021.11.006. PubMed DOI PMC

Fanelli V., Giani M., Grasselli G., Mojoli F., Martucci G., Grazioli L., Alessandri F., Mongodi S., Sales G., Montrucchio G., et al. Extracorporeal membrane oxygenation for COVID-19 and influenza H1N1 associated acute respiratory distress syndrome: A multicenter retrospective cohort study. Crit. Care. 2022;26:34. doi: 10.1186/s13054-022-03906-4. PubMed DOI PMC

WHO The COVID-19 Vaccine Tracker and Landscape Compiles Detailed Information of Each COVID-19 Vaccine Candidate in Development by Closely Monitoring Their Progress through the Pipeline. [(accessed on 5 January 2023)]. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.

Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S., Perez J.L. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020. online ahead of print . PubMed DOI PMC

Jackson L.A., Anderson E.J., Rouphael N.G., Roberts P.C., Makhene M., Coler R.N., McCullough M.P. An mRNA Vaccine against SARS-CoV-2—Preliminary Report. N. Engl. J. Med. 2020;383:920–1931. doi: 10.1056/NEJMoa2022483. PubMed DOI PMC

Grana C., Ghosn L., Evrenoglou T., Jarde A., Minozzi S., Bergman H., Buckley B.S., Probyn K., Villanueva G., Henschke N., et al. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst. Rev. 2022;12:CD015477. doi: 10.1002/14651858.CD015477. PubMed DOI PMC

Busa R., Miele M., Sorrentino M.C., Amico G., Timoneri F., Miceli V., Di Bella M., Russelli G., Gallo A., Zito G., et al. Long-Term Effectiveness of BNT162b2 Pfizer-BioNTech mRNA-Based Vaccine on B Cell Compartment: Efficient Recall of SARS-CoV-2-Specific Memory B Cells. Int. J. Mol. Sci. 2022;23:15046. doi: 10.3390/ijms232315046. PubMed DOI PMC

Ailsworth S.M., Keshavarz B., Richards N.E., Workman L.J., Murphy D.D., Nelson M.R., Platts-Mills T.A.E., Wilson J.M. Enhanced SARS-CoV-2 IgG durability following COVID-19 mRNA booster vaccination and comparison of BNT162b2 with mRNA-1273. Ann. Allergy Asthma Immunol. 2023;130:67–73. doi: 10.1016/j.anai.2022.10.003. PubMed DOI PMC

Busa R., Russelli G., Miele M., Sorrentino M.C., Di Bella M., Timoneri F., Di Mento G., Mularoni A., Vitulo P., Conaldi P.G., et al. Immune Response after the Fourth Dose of SARS-CoV-2 mRNA Vaccine Compared to Natural Infection in Three Doses’ Vaccinated Solid Organ Transplant Recipients. Viruses. 2022;14:2299. doi: 10.3390/v14102299. PubMed DOI PMC

Emary K., Golubchik T., Aley P., Ariani C., Angus B., Bibi S., Blane B. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): An exploratory analysis of a randomised controlled trial. Lancet. 2021;397:1351–1362. doi: 10.1016/S0140-6736(21)00628-0. PubMed DOI PMC

Krause P., Fleming T., Peto R., Longini I., Figueroa J., Sterne J., Cravioto A. Considerations in boosting COVID-19 vaccine immune responses. Lancet. 2021;398:1377–1380. doi: 10.1016/S0140-6736(21)02046-8. PubMed DOI PMC

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI

Hoang D.M., Pham P.T., Bach T.Q., Ngo A.T.L., Nguyen Q.T., Phan T.T.K., Nguyen G.H., Le P.T.T., Hoang V.T., Forsyth N.R., et al. Stem cell-based therapy for human diseases. Signal Transduct. Target. Ther. 2022;7:272. doi: 10.1038/s41392-022-01134-4. PubMed DOI PMC

Friedenstein A.J., Gorskaja J.F., Kulagina N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 1976;4:267–274. PubMed

Caplan A.I. Mesenchymal stem cells. J. Orthop. Res. 1991;9:641–650. doi: 10.1002/jor.1100090504. PubMed DOI

Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143. PubMed DOI

Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001;7:211–228. doi: 10.1089/107632701300062859. PubMed DOI

Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002;13:4279–4295. doi: 10.1091/mbc.e02-02-0105. PubMed DOI PMC

Gronthos S., Mankani M., Brahim J., Robey P.G., Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 2000;97:13625–13630. doi: 10.1073/pnas.240309797. PubMed DOI PMC

Huang G.T., Gronthos S., Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J. Dent. Res. 2009;88:792–806. doi: 10.1177/0022034509340867. PubMed DOI PMC

Chan R.W., Schwab K.E., Gargett C.E. Clonogenicity of human endometrial epithelial and stromal cells. Biol. Reprod. 2004;70:1738–1750. doi: 10.1095/biolreprod.103.024109. PubMed DOI

Lenero C., Bowles A.C., Correa D., Kouroupis D. Characterization and response to inflammatory stimulation of human endometrial-derived mesenchymal stem/stromal cells. Cytotherapy. 2022;24:124–136. doi: 10.1016/j.jcyt.2021.07.005. PubMed DOI

Meng X., Ichim T.E., Zhong J., Rogers A., Yin Z., Jackson J., Wang H., Ge W., Bogin V., Chan K.W., et al. Endometrial regenerative cells: A novel stem cell population. J. Transl. Med. 2007;5:57. doi: 10.1186/1479-5876-5-57. PubMed DOI PMC

Chen L., Qu J., Xiang C. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Res. Ther. 2019;10:1. doi: 10.1186/s13287-018-1105-9. PubMed DOI PMC

Pang Q.M., Yang R., Zhang M., Zou W.H., Qian N.N., Xu Q.J., Chen H., Peng J.C., Luo X.P., Zhang Q., et al. Peripheral Blood-Derived Mesenchymal Stem Cells Modulate Macrophage Plasticity through the IL-10/STAT3 Pathway. Stem Cells Int. 2022;2022:5181241. doi: 10.1155/2022/5181241. PubMed DOI PMC

Rotter N., Oder J., Schlenke P., Lindner U., Bohrnsen F., Kramer J., Rohwedel J., Huss R., Brandau S., Wollenberg B., et al. Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev. 2008;17:509–518. doi: 10.1089/scd.2007.0180. PubMed DOI

Moon J.H., Kim H.R., Lim J.Y., Lim Y.C. Single clonal glandular stem cells derived from human parotid glands do not attain malignant phenotype during long-term in vitro culture. Neoplasma. 2021;68:1139–1146. doi: 10.4149/neo_2021_210302N272. PubMed DOI

Tappenbeck N., Schroder H.M., Niebergall-Roth E., Hassinger F., Dehio U., Dieter K., Kraft K., Kerstan A., Esterlechner J., Frank N.Y., et al. In vivo safety profile and biodistribution of GMP-manufactured human skin-derived ABCB5-positive mesenchymal stromal cells for use in clinical trials. Cytotherapy. 2019;21:546–560. doi: 10.1016/j.jcyt.2018.12.005. PubMed DOI PMC

Vander Beken S., de Vries J.C., Meier-Schiesser B., Meyer P., Jiang D., Sindrilaru A., Ferreira F.F., Hainzl A., Schatz S., Muschhammer J., et al. Newly Defined ATP-Binding Cassette Subfamily B Member 5 Positive Dermal Mesenchymal Stem Cells Promote Healing of Chronic Iron-Overload Wounds via Secretion of Interleukin-1 Receptor Antagonist. Stem Cells. 2019;37:1057–1074. doi: 10.1002/stem.3022. PubMed DOI PMC

Najar M., Lagneaux L. Foreskin as a source of immunotherapeutic mesenchymal stromal cells. Immunotherapy. 2017;9:207–217. doi: 10.2217/imt-2016-0093. PubMed DOI

Najar M., Merimi M., Faour W.H., Lombard C.A., Moussa Agha D., Ouhaddi Y., Sokal E.M., Lagneaux L., Fahmi H. In Vitro Cellular and Molecular Interplay between Human Foreskin-Derived Mesenchymal Stromal/Stem Cells and the Th17 Cell Pathway. Pharmaceutics. 2021;13:1736. doi: 10.3390/pharmaceutics13101736. PubMed DOI PMC

Neybecker P., Henrionnet C., Pape E., Mainard D., Galois L., Loeuille D., Gillet P., Pinzano A. In vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cells. Stem Cell Res. Ther. 2018;9:329. doi: 10.1186/s13287-018-1071-2. PubMed DOI PMC

Amemiya M., Tsuji K., Katagiri H., Miyatake K., Nakagawa Y., Sekiya I., Muneta T., Koga H. Synovial fluid-derived mesenchymal cells have non-inferior chondrogenic potential and can be utilized for regenerative therapy as substitute for synovium-derived cells. BioChem. Biophys. Res. Commun. 2020;523:465–472. doi: 10.1016/j.bbrc.2019.12.068. PubMed DOI

Asakura A., Komaki M., Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation. 2001;68:245–253. doi: 10.1046/j.1432-0436.2001.680412.x. PubMed DOI

Kang J.S., Krauss R.S. Muscle stem cells in developmental and regenerative myogenesis. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:243–248. doi: 10.1097/MCO.0b013e328336ea98. PubMed DOI PMC

Elashry M.I., Kinde M., Klymiuk M.C., Eldaey A., Wenisch S., Arnhold S. The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice. Stem Cell Res. Ther. 2022;13:56. doi: 10.1186/s13287-022-02730-5. PubMed DOI PMC

Funderburgh J.L., Funderburgh M.L., Du Y. Stem Cells in the Limbal Stroma. Ocul. Surf. 2016;14:113–120. doi: 10.1016/j.jtos.2015.12.006. PubMed DOI PMC

Eslani M., Putra I., Shen X., Hamouie J., Afsharkhamseh N., Besharat S., Rosenblatt M.I., Dana R., Hematti P., Djalilian A.R. Corneal Mesenchymal Stromal Cells Are Directly Antiangiogenic via PEDF and sFLT-1. Investig. Ophthalmol. Vis. Sci. 2017;58:5507–5517. doi: 10.1167/iovs.17-22680. PubMed DOI PMC

Messina E., De Angelis L., Frati G., Morrone S., Chimenti S., Fiordaliso F., Salio M., Battaglia M., Latronico M.V., Coletta M., et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 2004;95:911–921. doi: 10.1161/01.RES.0000147315.71699.51. PubMed DOI

Anzalone R., Corrao S., Lo Iacono M., Loria T., Corsello T., Cappello F., Di Stefano A., Giannuzzi P., Zummo G., Farina F., et al. Isolation and characterization of CD276+/HLA-E+ human subendocardial mesenchymal stem cells from chronic heart failure patients: Analysis of differentiative potential and immunomodulatory markers expression. Stem Cells Dev. 2013;22:1–17. doi: 10.1089/scd.2012.0402. PubMed DOI

Rolandsson Enes S., Andersson Sjöland A., Skog I., Hansson L., Larsson H., Le Blanc K., Eriksson L. MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Sci. Rep. 2016;6:29160. doi: 10.1038/srep29160. PubMed DOI PMC

Hass R., Kasper C., Bohm S., Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 2011;9:12. doi: 10.1186/1478-811X-9-12. PubMed DOI PMC

Soncini M., Vertua E., Gibelli L., Zorzi F., Denegri M., Albertini A., Wengler G.S., Parolini O. Isolation and characterization of mesenchymal cells from human fetal membranes. J. Tissue Eng. Regen. Med. 2007;1:296–305. doi: 10.1002/term.40. PubMed DOI

Pampalone M., Corrao S., Amico G., Vitale G., Alduino R., Conaldi P.G., Pietrosi G. Human Amnion-Derived Mesenchymal Stromal Cells in Cirrhotic Patients with Refractory Ascites: A Possible Anti-Inflammatory Therapy for Preventing Spontaneous Bacterial Peritonitis. Stem Cell Rev. Rep. 2021;17:981–998. doi: 10.1007/s12015-020-10104-8. PubMed DOI PMC

Miceli V., Chinnici C.M., Bulati M., Pampalone M., Amico G., Schmelzer E., Gerlach J.C., Conaldi P.G. Comparative study of the production of soluble factors in human placenta-derived mesenchymal stromal/stem cells grown in adherent conditions or as aggregates in a catheter-like device. BioChem. Biophys. Res. Commun. 2020;522:171–176. doi: 10.1016/j.bbrc.2019.11.069. PubMed DOI

De Coppi P., Bartsch G., Jr., Siddiqui M.M., Xu T., Santos C.C., Perin L., Mostoslavsky G., Serre A.C., Snyder E.Y., Yoo J.J., et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 2007;25:100–106. doi: 10.1038/nbt1274. PubMed DOI

Lee O.K., Kuo T.K., Chen W.M., Lee K.D., Hsieh S.L., Chen T.H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103:1669–1675. doi: 10.1182/blood-2003-05-1670. PubMed DOI

Corrao S., La Rocca G., Lo Iacono M., Corsello T., Farina F., Anzalone R. Umbilical cord revisited: From Wharton’s jelly myofibroblasts to mesenchymal stem cells. Histol. Histopathol. 2013;28:1235–1244. doi: 10.14670/HH-28.1235. PubMed DOI

Avanzini M.A., Mura M., Percivalle E., Bastaroli F., Croce S., Valsecchi C., Lenta E., Nykjaer G., Cassaniti I., Bagnarino J., et al. Human mesenchymal stromal cells do not express ACE2 and TMPRSS2 and are not permissive to SARS-CoV-2 infection. Stem Cells Transl. Med. 2021;10:636–642. doi: 10.1002/sctm.20-0385. PubMed DOI PMC

De Ugarte D.A., Morizono K., Elbarbary A., Alfonso Z., Zuk P.A., Zhu M., Dragoo J.L., Ashjian P., Thomas B., Benhaim P., et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–109. doi: 10.1159/000071150. PubMed DOI

Ullah I., Subbarao R.B., Rho G.J. Human mesenchymal stem cells—Current trends and future prospective. BioSci. Rep. 2015;35:e00191. doi: 10.1042/BSR20150025. PubMed DOI PMC

Zeddou M., Briquet A., Relic B., Josse C., Malaise M.G., Gothot A., Lechanteur C., Beguin Y. The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell Biol. Int. 2010;34:693–701. doi: 10.1042/CBI20090414. PubMed DOI

Vangsness C.T., Jr., Sternberg H., Harris L. Umbilical Cord Tissue Offers the Greatest Number of Harvestable Mesenchymal Stem Cells for Research and Clinical Application: A Literature Review of Different Harvest Sites. Arthroscopy. 2015;31:1836–1843. doi: 10.1016/j.arthro.2015.03.014. PubMed DOI

Arutyunyan I., Elchaninov A., Makarov A., Fatkhudinov T. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int. 2016;2016:6901286. doi: 10.1155/2016/6901286. PubMed DOI PMC

Facchin F., Bianconi E., Romano M., Impellizzeri A., Alviano F., Maioli M., Canaider S., Ventura C. Comparison of Oxidative Stress Effects on Senescence Patterning of Human Adult and Perinatal Tissue-Derived Stem Cells in Short and Long-term Cultures. Int. J. Med. Sci. 2018;15:1486–1501. doi: 10.7150/ijms.27181. PubMed DOI PMC

Watson N., Divers R., Kedar R., Mehindru A., Mehindru A., Borlongan M.C., Borlongan C.V. Discarded Wharton jelly of the human umbilical cord: A viable source for mesenchymal stromal cells. Cytotherapy. 2015;17:18–24. doi: 10.1016/j.jcyt.2014.08.009. PubMed DOI PMC

Davies J.E., Walker J.T., Keating A. Concise Review: Wharton’s Jelly: The Rich, but Enigmatic, Source of Mesenchymal Stromal Cells. Stem Cells Transl. Med. 2017;6:1620–1630. doi: 10.1002/sctm.16-0492. PubMed DOI PMC

La Rocca G., Anzalone R., Corrao S., Magno F., Loria T., Lo Iacono M., Di Stefano A., Giannuzzi P., Marasà L., Cappello F., et al. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: Differentiation potential and detection of new markers. Histochem. Cell Biol. 2009;131:267–282. doi: 10.1007/s00418-008-0519-3. PubMed DOI

Lo Iacono M., Russo E., Anzalone R., Baiamonte E., Alberti G., Gerbino A., Maggio A. Wharton’s Jelly Mesenchymal Stromal Cells Support the Expansion of Cord Blood–derived CD34+ Cells Mimicking a Hematopoietic Niche in a Direct Cell–cell Contact Culture System. Cell Transpl. 2018;27:117–129. doi: 10.1177/0963689717737089. PubMed DOI PMC

Silini A.R., Di Pietro R., Lang-Olip I., Alviano F., Banerjee A., Basile M., Borutinskaite V., Eissner G., Gellhaus A., Giebel B., et al. Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Front. Bioeng. Biotechnol. 2020;8:610544. doi: 10.3389/fbioe.2020.610544. PubMed DOI PMC

Magatti M., Abumaree M.H., Silini A.R., Anzalone R., Saieva S., Russo E., Trapani M.E., La Rocca G., Parolini O. Chapter 6. The Immunomodulatory Features of Mesenchymal Stromal Cells Derived from Wharton’s Jelly, Amniotic Membrane, and Chorionic Villi: In Vitro and In Vivo Data. In: Parolini O., editor. Placenta: The Tree of Life. CRC Press; Boca Raton, FL, USA: 2016. pp. 91–128.

Anzalone R., Lo Iacono M., Loria T., Di Stefano A., Giannuzzi P., Farina F., La Rocca G. Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: Extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev. 2011;7:342–363. doi: 10.1007/s12015-010-9196-4. PubMed DOI

Bharti D., Shivakumar S.B., Park J.K., Ullah I., Subbarao R.B., Park J.S., Lee S.L., Park B.W., Rho G.J. Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res. 2018;372:51–65. doi: 10.1007/s00441-017-2699-4. PubMed DOI PMC

La Rocca G., Lo Iacono M., Corsello T., Corrao S., Farina F., Anzalone R. Human Wharton’s jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: New perspectives for cellular therapy. Curr. Stem Cell Res. Ther. 2013;8:100–113. doi: 10.2174/1574888X11308010012. PubMed DOI

Corrao S., La Rocca G., Lo Iacono M., Zummo G., Gerbino A., Farina F., Anzalone R. New frontiers in regenerative medicine in cardiology: The potential of Wharton’s jelly mesenchymal stem cells. Curr. Stem Cell Res. Ther. 2013;8:39–45. doi: 10.2174/1574888X11308010006. PubMed DOI

Kwon A., Kim Y., Kim M., Kim J., Choi H., Jekarl D.W., Lee S., Kim J.M., Shin J.C., Park I.Y. Tissue-specific Differentiation Potency of Mesenchymal Stromal Cells from Perinatal Tissues. Sci. Rep. 2016;6:23544. doi: 10.1038/srep23544. PubMed DOI PMC

Baksh D., Yao R., Tuan R.S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25:1384–1392. doi: 10.1634/stemcells.2006-0709. PubMed DOI

Han Y., Chai J., Sun T., Li D., Tao R. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro. BioChem. Biophys. Res. Commun. 2011;413:561–565. doi: 10.1016/j.bbrc.2011.09.001. PubMed DOI

Conconi M.T., Burra P., Di Liddo R., Calore C., Turetta M., Bellini S., Bo P., Nussdorfer G.G., Parnigotto P.P. CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int. J. Mol. Med. 2006;18:1089–1096. doi: 10.3892/ijmm.18.6.1089. PubMed DOI

Wu K.H., Mo X.M., Zhou B., Lu S.H., Yang S.G., Liu Y.L., Han Z.C. Cardiac potential of stem cells from whole human umbilical cord tissue. J. Cell Biochem. 2009;107:926–932. doi: 10.1002/jcb.22193. PubMed DOI

Campard D., Lysy P.A., Najimi M., Sokal E.M. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology. 2008;134:833–848. doi: 10.1053/j.gastro.2007.12.024. PubMed DOI

Anzalone R., Iacono M.L., Corrao S., Magno F., Loria T., Cappello F., Zummo G., Farina F., La Rocca G. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: Immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev. 2010;19:423–438. doi: 10.1089/scd.2009.0299. PubMed DOI

Belame Shivakumar S., Bharti D., Baregundi Subbarao R., Park J.M., Son Y.B., Ullah I., Choe Y.H., Lee H.J., Park B.W., Lee S.L., et al. Pancreatic endocrine-like cells differentiated from human umbilical cords Wharton’s jelly mesenchymal stem cells using small molecules. J. Cell Physiol. 2019;234:3933–3947. doi: 10.1002/jcp.27184. PubMed DOI

Sarang S., Viswanathan C. Umbilical Cord Derived Mesenchymal Stem Cells Useful in Insulin Production—Another Opportunity in Cell Therapy. Int. J. Stem Cells. 2016;9:60–69. doi: 10.15283/ijsc.2016.9.1.60. PubMed DOI PMC

Mitchell K.E., Weiss M.L., Mitchell B.M., Martin P., Davis D., Morales L., Helwig B., Beerenstrauch M., Abou-Easa K., Hildreth T., et al. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells. 2003;21:50–60. doi: 10.1634/stemcells.21-1-50. PubMed DOI

Corsello T., Amico G., Corrao S., Anzalone R., Timoneri F., Lo Iacono M., Russo E. Wharton’s Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: A Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro. Stem Cell Rev. Rep. 2019;15:900–918. doi: 10.1007/s12015-019-09907-1. PubMed DOI

Tesarova L., Jaresova K., Simara P., Koutna I. Umbilical Cord-Derived Mesenchymal Stem Cells Are Able to Use bFGF Treatment and Represent a Superb Tool for Immunosuppressive Clinical Applications. Int. J. Mol. Sci. 2020;21:5366. doi: 10.3390/ijms21155366. PubMed DOI PMC

Weiss M.L., Anderson C., Medicetty S., Seshareddy K.B., Weiss R.J., VanderWerff I., Troyer D., McIntosh K.R. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells. 2008;26:2865–2874. doi: 10.1634/stemcells.2007-1028. PubMed DOI

Yang Y., Wang W., Weng J., Li H., Ma Y., Liu L., Ma W. Advances in the study of HLA class Ib in maternal-fetal immune tolerance. Front. Immunol. 2022;13:976289. doi: 10.3389/fimmu.2022.976289. PubMed DOI PMC

Zhao Y., Zheng Q., Jin L. The Role of B7 Family Molecules in Maternal-Fetal Immunity. Front. Immunol. 2020;11:458. doi: 10.3389/fimmu.2020.00458. PubMed DOI PMC

Sawai K., Matsuzaki N., Kameda T., Hashimoto K., Okada T., Shimoya K., Nobunaga T., Taga T., Kishimoto T., Saji F. Leukemia inhibitory factor produced at the fetomaternal interface stimulates chorionic gonadotropin production: Its possible implication during pregnancy, including implantation period. J. Clin. Endocrinol. Metab. 1995;80:1449–1456. doi: 10.1210/jcem.80.4.7714123. PubMed DOI

Hamelin-Morrissette J., Dallagi A., Girouard J., Ravelojaona M., Oufqir Y., Vaillancourt C., Van Themsche C., Carrier C., Reyes-Moreno C. Leukemia inhibitory factor regulates the activation of inflammatory signals in macrophages and trophoblast cells. Mol. Immunol. 2020;120:32–42. doi: 10.1016/j.molimm.2020.01.021. PubMed DOI

Kudo Y., Koh I., Sugimoto J. Localization of Indoleamine 2,3-Dioxygenase-1 and Indoleamine 2,3-Dioxygenase-2 at the Human Maternal-Fetal Interface. Int. J. Tryptophan. Res. 2020;13:1178646920984163. doi: 10.1177/1178646920984163. PubMed DOI PMC

Tirado-Gonzalez I., Freitag N., Barrientos G., Shaikly V., Nagaeva O., Strand M., Kjellberg L., Klapp B.F., Mincheva-Nilsson L., Cohen M., et al. Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy. Mol. Hum. Reprod. 2013;19:43–53. doi: 10.1093/molehr/gas043. PubMed DOI

Rouas-Freiss N., Goncalves R.M., Menier C., Dausset J., Carosella E.D. Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc. Natl. Acad. Sci. USA. 1997;94:11520–11525. doi: 10.1073/pnas.94.21.11520. PubMed DOI PMC

LeMaoult J., Zafaranloo K., Le Danff C., Carosella E.D. HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J. 2005;19:662–664. doi: 10.1096/fj.04-1617fje. PubMed DOI

Gieseke F., Bohringer J., Bussolari R., Dominici M., Handgretinger R., Muller I. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood. 2010;116:3770–3779. doi: 10.1182/blood-2010-02-270777. PubMed DOI

McGuirk J.P., Smith J.R., Divine C.L., Zuniga M., Weiss M.L. Wharton’s Jelly-Derived Mesenchymal Stromal Cells as a Promising Cellular Therapeutic Strategy for the Management of Graft-versus-Host Disease. Pharmaceuticals. 2015;8:196–220. doi: 10.3390/ph8020196. PubMed DOI PMC

Dunavin N., Dias A., Li M., McGuirk J. Mesenchymal Stromal Cells: What Is the Mechanism in Acute Graft-Versus-Host Disease? Biomedicines. 2017;5:39. doi: 10.3390/biomedicines5030039. PubMed DOI PMC

Cheng J.G., Chen J.R., Hernandez L., Alvord W.G., Stewart C.L. Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation. Proc. Natl. Acad. Sci. USA. 2001;98:8680–8685. doi: 10.1073/pnas.151180898. PubMed DOI PMC

Janssens K., Van den Haute C., Baekelandt V., Lucas S., van Horssen J., Somers V., Van Wijmeersch B. Leukemia inhibitory factor tips the immune balance towards regulatory T cells in multiple sclerosis. Brain. Behav. Immun. 2015;45:180–188. doi: 10.1016/j.bbi.2014.11.010. PubMed DOI

Elias J.A., Zheng T., Whiting N.L., Marcovici A., Trow T.K. Cytokine-cytokine synergy and protein kinase C in the regulation of lung fibroblast leukemia inhibitory factor. Am. J. Physiol. 1994;266:L426–L435. doi: 10.1152/ajplung.1994.266.4.L426. PubMed DOI

Corrao S., Campanella C., Anzalone R., Farina F., Zummo G., Conway de Macario E., Macario A.J., Cappello F., La Rocca G. Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: Current knowledge and perspectives. Life Sci. 2010;86:145–152. doi: 10.1016/j.lfs.2009.11.004. PubMed DOI

Corrao S., Anzalone R., Lo Iacono M., Corsello T., Di Stefano A., D’Anna S.E., Balbi B., Carone M., Sala A., Corona D., et al. Hsp10 nuclear localization and changes in lung cells response to cigarette smoke suggest novel roles for this chaperonin. Open Biol. 2014;4:140125. doi: 10.1098/rsob.140125. PubMed DOI PMC

Tsai P.J., Wang H.S., Lin G.J., Chou S.C., Chu T.H., Chuan W.T., Lu Y.J. Undifferentiated Wharton’s Jelly Mesenchymal Stem Cell Transplantation Induces Insulin-Producing Cell Differentiation and Suppression of T-Cell-Mediated Autoimmunity in Nonobese Diabetic Mice. Cell Transpl. 2015;24:1555–1570. doi: 10.3727/096368914X683016. PubMed DOI

Hsieh J.Y., Wang H.W., Chang S.J., Liao K.H., Lee I.H., Lin W.S., Wu C.H., Lin W.Y., Cheng S.M. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS ONE. 2013;8:e72604. doi: 10.1371/journal.pone.0072604. PubMed DOI PMC

Arutyunyan I., Fatkhudinov T., Kananykhina E., Usman N., Elchaninov A., Makarov A., Bolshakova G., Goldshtein D., Sukhikh G. Role of VEGF-A in angiogenesis promoted by umbilical cord-derived mesenchymal stromal/stem cells: In vitro study. Stem Cell Res. Ther. 2016;7:46. doi: 10.1186/s13287-016-0305-4. PubMed DOI PMC

Caley M.P., Martins V.L., O’Toole E.A. Metalloproteinases and Wound Healing. Adv. Wound. Care. 2015;4:225–234. doi: 10.1089/wound.2014.0581. PubMed DOI PMC

Edwards S.S., Zavala G., Prieto C.P., Elliott M., Martinez S., Egana J.T., Bono M.R., Palma V. Functional analysis reveals angiogenic potential of human mesenchymal stem cells from Wharton’s jelly in dermal regeneration. Angiogenesis. 2014;17:851–866. doi: 10.1007/s10456-014-9432-7. PubMed DOI

Lavrentieva A., Majore I., Kasper C., Hass R. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun. Signal. 2010;8:18. doi: 10.1186/1478-811X-8-18. PubMed DOI PMC

Russo E., Lee J.Y., Nguyen H., Corrao S., Anzalone R., La Rocca G., Borlongan C.V. Energy Metabolism Analysis of Three Different Mesenchymal Stem Cell Populations of Umbilical Cord Under Normal and Pathologic Conditions. Stem Cell Rev. Rep. 2020;16:585–595. doi: 10.1007/s12015-020-09967-8. PubMed DOI PMC

Russo E., Napoli E., Borlongan C.V. Healthy mitochondria for stroke cells. Brain Circ. 2018;4:95–98. PubMed PMC

Lin H.Y., Liou C.W., Chen S.D., Hsu T.Y., Chuang J.H., Wang P.W., Huang S.T. Mitochondrial transfer from Wharton’s jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion. 2015;22:31–44. doi: 10.1016/j.mito.2015.02.006. PubMed DOI

Alberti G., Russo E., Corrao S., Anzalone R., Kruzliak P., Miceli V., Conaldi P.G., Di Gaudio F., La Rocca G. Current Perspectives on Adult Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Biological Features and Clinical Indications. Biomedicines. 2022;10:2822. doi: 10.3390/biomedicines10112822. PubMed DOI PMC

Alberti G., Sánchez-López C.M., Andres A., Santonocito R., Campanella C., Cappello F., Marcilla A. Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small “Hit” in Cancer Diagnosis. Appl. Sci. 2021;11:10787. doi: 10.3390/app112210787. DOI

Stefano F., Mariantonia L., Giusi A., Claudia C. Exosomal Hsp60: A tumor biomarker? In: Asea A., Kaur P., editors. Heat Shock Protein 60 in Human Diseases and Disorders. Springer; Berlin/Heidelberg, Germany: 2020. pp. 107–116.

Miceli V., Bertani A., Chinnici C.M., Bulati M., Pampalone M., Amico G., Carcione C., Schmelzer E., Gerlach J.C., Conaldi P.G. Conditioned Medium from Human Amnion-Derived Mesenchymal Stromal/Stem Cells Attenuating the Effects of Cold Ischemia-Reperfusion Injury in an In Vitro Model Using Human Alveolar Epithelial Cells. Int. J. Mol. Sci. 2021;22:510. doi: 10.3390/ijms22020510. PubMed DOI PMC

Miceli V., Bertani A. Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells. 2022;11:826. doi: 10.3390/cells11050826. PubMed DOI PMC

Deuse T., Stubbendorff M., Tang-Quan K., Phillips N., Kay M.A., Eiermann T., Phan T.T., Volk H.D., Reichenspurner H., Robbins R.C., et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transpl. 2011;20:655–667. doi: 10.3727/096368910X536473. PubMed DOI

Donders R.M., Vanheusden R.M., Bogie J.F., Ravanidis S., Thewissen K., Stinissen P., Gyselaers W. Human Wharton’s jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis. Cell Transpl. 2015;24:2077–2098. doi: 10.3727/096368914X685104. PubMed DOI

Wang H., Qiu X., Ni P., Qiu X., Lin X., Wu W., Xie L. Immunological characteristics of human umbilical cord mesenchymal stem cells and the therapeutic effects of their transplantion on hyperglycemia in diabetic rats. Int. J. Mol. Med. 2014;33:263–270. doi: 10.3892/ijmm.2013.1572. PubMed DOI PMC

Santos Nascimento D., Mosqueira D., Sousa L.M., Teixeira M., Filipe M., Resende T.P., Araujo A.F., Valente M., Almeida J., Martins J.P., et al. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Res. Ther. 2014;5:5. doi: 10.1186/scrt394. PubMed DOI PMC

Horie S., Masterson C., Brady J., Loftus P., Horan E., O’Flynn L., Elliman S. Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: Impact of dose regimen, passage, cryopreservation, and antibiotic therapy. Stem Cell Res. Ther. 2020;11:116. doi: 10.1186/s13287-020-01624-8. PubMed DOI PMC

Moodley Y., Atienza D., Manuelpillai U., Samuel C.S., Tchongue J., Ilancheran S., Boyd R. Human Umbilical Cord Mesenchymal Stem Cells Reduce Fibrosis of Bleomycin-Induced Lung Injury. Am. J. Pathol. 2009;175:303–313. doi: 10.2353/ajpath.2009.080629. PubMed DOI PMC

Lelek J., Zuba-Surma E.K. Perspectives for Future Use of Extracellular Vesicles from Umbilical Cord- and Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells in Regenerative Therapies-Synthetic Review. Int. J. Mol Sci. 2020;21:799. doi: 10.3390/ijms21030799. PubMed DOI PMC

Willis G.R., Fernandez-Gonzalez A., Anastas J., Vitali S.H., Liu X., Ericsson M., Kwong A. Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation. Am. J. Respir. Crit. Care Med. 2018;197:104–116. doi: 10.1164/rccm.201705-0925OC. PubMed DOI PMC

Fischer U., Harting M., Jimenez F., Monzon-Posadas W., Xue H., Savitz S., Laine G., Cox C.J. Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Dev. 2009;18:683–692. doi: 10.1089/scd.2008.0253. PubMed DOI PMC

Yao W., Shi L., Zhang Y., Dong H., Zhang Y. Mesenchymal stem/stromal cell therapy for COVID-19 pneumonia: Potential mechanisms, current clinical evidence, and future perspectives. Stem Cell Res. Ther. 2022;13:124. doi: 10.1186/s13287-022-02810-6. PubMed DOI PMC

Davies L.C., Heldring N., Kadri N., Le Blanc K. Mesenchymal Stromal Cell Secretion of Programmed Death-1 Ligands Regulates T Cell Mediated Immunosuppression. Stem Cells. 2017;35:766–776. doi: 10.1002/stem.2509. PubMed DOI PMC

Grégoire C., Ritacco C., Hannon M., Seidel L., Delens L., Belle L., Dubois S., Vériter S., Lechanteur C., Briquet A., et al. Comparison of Mesenchymal Stromal Cells from Different Origins for the Treatment of Graft-vs.-Host-Disease in a Humanized Mouse Model. Front. Immunol. 2019;10:619. doi: 10.3389/fimmu.2019.00619. PubMed DOI PMC

Ji L., Zhan Y., Hua F., Li F., Zou S., Wang W., Song D., Min Z., Chen H., Cheng Y. The ratio of Treg/Th17 cells correlates with the disease activity of primary immune thrombocytopenia. PLoS ONE. 2012;7:e50909. doi: 10.1371/journal.pone.0050909. PubMed DOI PMC

Lapietra G., Ferretti A., Baldacci E., Chistolini A., Santoro C. Immune thrombocytopenia management during COVID-19 pandemic: An Italian monocentric experience. EJHaem. 2022;3:453–456. doi: 10.1002/jha2.406. PubMed DOI PMC

Zhang J.M., Zhu X.L., Xue J., Liu X., Long Zheng X., Chang Y.J., Liu K.Y., Huang X.J., Zhang X.H. Integrated mRNA and miRNA profiling revealed deregulation of cellular stress response in bone marrow mesenchymal stem cells derived from patients with immune thrombocytopenia. Funct. Integr. Genom. 2018;18:287–299. doi: 10.1007/s10142-018-0591-2. PubMed DOI

Shi M., Liu Z., Wang Y., Xu R., Sun Y., Zhang M., Yu X., Wang H., Meng L., Su H., et al. A Pilot Study of Mesenchymal Stem Cell Therapy for Acute Liver Allograft Rejection. Stem Cells Transl. Med. 2017;6:2053–2061. doi: 10.1002/sctm.17-0134. PubMed DOI PMC

Stolzing A., Jones E., McGonagle D., Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech. Ageing Dev. 2008;129:163–173. doi: 10.1016/j.mad.2007.12.002. PubMed DOI

Ganguly A., Swaminathan G., Garcia-Marques F., Regmi S., Yarani R., Primavera R., Chetty S., Bermudez A., Pitteri S.J., Thakor A.S. Integrated transcriptome-proteome analyses of human stem cells reveal source-dependent differences in their regenerative signature. Stem Cell Rep. 2023;18:190–204. doi: 10.1016/j.stemcr.2022.11.006. PubMed DOI PMC

Galleu A., Riffo-Vasquez Y., Trento C., Lomas C., Dolcetti L., Cheung T.S., von Bonin M., Barbieri L., Halai K., Ward S., et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci. Transl. Med. 2017;9:eaam7828. doi: 10.1126/scitranslmed.aam7828. PubMed DOI

Leng Z., Zhu R., Hou W., Feng Y., Yang Y., Han Q., Shan G., Meng F., Du D., Wang S., et al. Transplantation of ACE2(-) Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis. 2020;11:216–228. doi: 10.14336/AD.2020.0228. PubMed DOI PMC

Chu M., Wang H., Bian L., Huang J., Wu D., Zhang R., Fei F. Nebulization Therapy with Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes for COVID-19 Pneumonia. Stem Cell Rev. Rep. 2022;18:2152–2163. doi: 10.1007/s12015-022-10398-w. PubMed DOI PMC

Meng F., Xu R., Wang S., Xu Z., Zhang C., Li Y., Yang T. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: A phase 1 clinical trial. Signal Transduct. Target. Ther. 2020;5:172. doi: 10.1038/s41392-020-00286-5. PubMed DOI PMC

Dilogo I., Aditianingsih D., Sugiarto A., Burhan E., Damayanti T., Sitompul P., Mariana N. Umbilical cord mesenchymal stromal cells as critical COVID-19 adjuvant therapy: A randomized controlled trial. Stem Cells Transl. Med. 2021;10:1279–1287. doi: 10.1002/sctm.21-0046. PubMed DOI PMC

Shu L., Niu C., Li R., Huang T., Wang Y., Huang M., Ji N. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res. Ther. 2020;11:361. doi: 10.1186/s13287-020-01875-5. PubMed DOI PMC

Feng G., Shi L., Huang T., Ji N., Zheng Y., Lin H., Niu C. Human Umbilical Cord Mesenchymal Stromal Cell Treatment of Severe COVID-19 Patients: A 3-Month Follow-Up Study Following Hospital Discharge. Stem Cells Dev. 2021;30:773–781. doi: 10.1089/scd.2021.0015. PubMed DOI

Saleh M., Vaezi A., Aliannejad R., Sohrabpour A., Kiaei S., Shadnoush M., Siavashi V. Cell therapy in patients with COVID-19 using Wharton’s jelly mesenchymal stem cells: A phase 1 clinical trial. Stem Cell Res. Ther. 2021;12:410. doi: 10.1186/s13287-021-02483-7. PubMed DOI PMC

Kaffash Farkhad N., Sedaghat A., Reihani H., Adhami Moghadam A., Bagheri Moghadam A., Khadem Ghaebi N., Khodadoust M. Mesenchymal stromal cell therapy for COVID-19-induced ARDS patients: A successful phase 1, control-placebo group, clinical trial. Stem Cell Res. Ther. 2022;13:283. doi: 10.1186/s13287-022-02920-1. PubMed DOI PMC

Feng Y., Huang J., Wu J., Xu Y., Chen B., Jiang L., Xiang H. Safety and feasibility of umbilical cord mesenchymal stem cells in patients with COVID-19 pneumonia: A pilot study. Cell Prolif. 2020;53:e12947. doi: 10.1111/cpr.12947. PubMed DOI PMC

Zhu R., Yan T., Feng Y., Liu Y., Cao H., Peng G., Yang Y. Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Res. 2021;31:1244–1262. doi: 10.1038/s41422-021-00573-y. PubMed DOI PMC

Shi L., Huang H., Lu X., Yan X., Jiang X., Xu R., Wang S. Treatment with human umbilical cord-1 derived mesenchymal stem cells for COVID-19 patients with lung damage: A randomised, double-blind, placebo-controlled phase 2 trial. Signal Transduct. Target. Ther. 2021;6:58. doi: 10.1038/s41392-021-00488-5. PubMed DOI PMC

Shi L., Yuan X., Yao W., Wang S., Zhang C., Zhang B., Song J. Human mesenchymal stem cells treatment for severe COVID-19: 1-year follow-up results of a randomized, double-blind, placebo-controlled trial. EBioMedicine. 2022;75:103789. doi: 10.1016/j.ebiom.2021.103789. PubMed DOI PMC

Monsel A., Hauw-Berlemont C., Mebarki M., Heming N., Meaux J., Tchoumba N., Diehl J. Treatment of COVID-19-associated ARDS with mesenchymal stromal cells: A multicenter randomized double-blind trial. Crit. Care. 2022;26:48. doi: 10.1186/s13054-022-03930-4. PubMed DOI PMC

Lanzoni G., Linetsky E., Correa D., Messinger Cayetano S., Alvarez R., Kouroupis D., Alvarez Gil A. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl. Med. 2021. online ahead of print. PubMed PMC

Kouroupis D., Lanzoni G., Linetsky E., Messinger Cayetano S., Wishnek Metalonis S., Leñero C., Stone L. Umbilical Cord-derived Mesenchymal Stem Cells modulate TNF and soluble TNF Receptor 2 (sTNFR2) in COVID-19 ARDS patients. Eur. Rev. Med. Pharm. Sci. 2021;25:4435–4438. PubMed

O Ercelen N., Pekkoc-Uyanik K., Alpaydin N., Gulay G., Simsek M. Clinical experience on umbilical cord mesenchymal stem cell treatment in 210 severe and critical COVID-19 cases in Turkey. Stem Cell Rev. Rep. 2021;17:1917–1925. doi: 10.1007/s12015-021-10214-x. PubMed DOI PMC

Adas G., Cukurova Z., Yasar K., Yilmaz R., Isiksacan N., Kasapoglu P., Yesilbag Z. The Systematic Effect of Mesenchymal Stem Cell Therapy in Critical COVID-19 Patients: A Prospective Double Controlled Trial. Cell Transpl. 2021;30:9636897211024942. doi: 10.1177/09636897211024942. PubMed DOI PMC

Rebelatto C., Senegaglia A., Franck C., Daga D., Shigunov P., Stimamiglio M., Marsaro D. Safety and long-term improvement of mesenchymal stromal cell infusion in critically COVID-19 patients: A randomized clinical trial. Stem Cell Res. Ther. 2022;13:122. doi: 10.1186/s13287-022-02796-1. PubMed DOI PMC

Hashemian S., Aliannejad R., Zarrabi M., Soleimani M., Vosough M., Hosseini S., Hossieni H. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: A case series. Stem Cell Res. Ther. 2021;12:91. doi: 10.1186/s13287-021-02165-4. PubMed DOI PMC

da Silva K., Pinheiro P., Gobatto A., Passos R., Paredes B., França L., Nonaka C. Immunomodulatory and Anti-fibrotic Effects Following the Infusion of Umbilical Cord Mesenchymal Stromal Cells in a Critically Ill Patient With COVID-19 Presenting Lung Fibrosis: A Case Report. Front. Med. 2021;8:767291. doi: 10.3389/fmed.2021.767291. PubMed DOI PMC

Zhu Y., Zhu R., Liu K., Li X., Chen D., Bai D., Luo J. Human Umbilical Cord Mesenchymal Stem Cells for Adjuvant Treatment of a Critically Ill COVID-19 Patient: A Case Report. Infect. Drug. Resist. 2020;13:3295–3300. doi: 10.2147/IDR.S272645. PubMed DOI PMC

Zhang Y., Ding J., Ren S., Wang W., Yang Y., Li S., Meng M. Intravenous infusion of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells as a potential treatment for patients with COVID-19 pneumonia. Stem Cell Res. Ther. 2020;11:207. doi: 10.1186/s13287-020-01725-4. PubMed DOI PMC

Zhang Q., Huang K., Lv J., Fang X., He J., Lv A., Sun X. Case Report: Human Umbilical Cord Mesenchymal Stem Cells as a Therapeutic Intervention for a Critically Ill COVID-19 Patient. Front. Med. 2021;8:691329. doi: 10.3389/fmed.2021.691329. PubMed DOI PMC

Liang B., Chen J., Li T., Wu H., Yang W., Li Y., Li J. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: A case report. Medicine. 2020;99:e21429. doi: 10.1097/MD.0000000000021429. PubMed DOI PMC

Senegaglia A., Rebelatto C., Franck C., Lima J., Boldrini-Leite L., Daga D., Leitão C. Combined Use of Tocilizumab and Mesenchymal Stromal Cells in the Treatment of Severe Covid-19: Case Report. Cell Transpl. 2021;30:9636897211021008. doi: 10.1177/09636897211021008. PubMed DOI PMC

Yang Y., Hu S., Xu X., Li J., Liu A., Han J., Liu S., Liu L., Qiu H. The Vascular Endothelial Growth Factors-Expressing Character of Mesenchymal Stem Cells Plays a Positive Role in Treatment of Acute Lung Injury In Vivo. Mediat. Inflamm. 2016;2016:2347938. doi: 10.1155/2016/2347938. PubMed DOI PMC

Madureira G., Soares R. The misunderstood link between SARS-CoV-2 and angiogenesis. A narrative review. Pulmonology. 2021 doi: 10.1016/j.pulmoe.2021.08.004. in press . PubMed DOI PMC

Zhao F.Y., Cheng T.Y., Yang L., Huang Y.H., Li C., Han J.Z., Li X.H., Fang L.J., Feng D.D., Tang Y.T., et al. G-CSF Inhibits Pulmonary Fibrosis by Promoting BMSC Homing to the Lungs via SDF-1/CXCR4 Chemotaxis. Sci. Rep. 2020;10:10515. doi: 10.1038/s41598-020-65580-2. PubMed DOI PMC

Macri C., Pang E.S., Patton T., O’Keeffe M. Dendritic cell subsets. Semin. Cell Dev. Biol. 2018;84:11–21. doi: 10.1016/j.semcdb.2017.12.009. PubMed DOI

Zhang S., Gan J., Chen B.G., Zheng D., Zhang J.G., Lin R.H., Zhou Y.P. Dynamics of peripheral immune cells and their HLA-G and receptor expressions in a patient suffering from critical COVID-19 pneumonia to convalescence. Clin. Transl. Immunol. 2020;9:e1128. doi: 10.1002/cti2.1128. PubMed DOI PMC

Metcalfe S. COVID-19 lockdown: De-risking exit by protecting the lung with leukaemia inhibitory factor (LIF) Med. Drug. Discov. 2020;6:100043. doi: 10.1016/j.medidd.2020.100043. DOI

Mebarki M., Abadie C., Larghero J., Cras A. Human umbilical cord-derived mesenchymal stem/stromal cells: A promising candidate for the development of advanced therapy medicinal products. Stem Cell Res. Ther. 2021;12:152. doi: 10.1186/s13287-021-02222-y. PubMed DOI PMC

FDA Approved Cellular and Gene Therapy Products. [(accessed on 16 March 2023)]; Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products.

EMA First Stem-Cell Therapy Recommended for Approval in EU. [(accessed on 22 March 2023)]. Available online: https://www.ema.europa.eu/en/news/first-stem-cell-therapy-recommended-approval-eu.

EMA EU/3/17/1852: Orphan Designation for the Treatment in Haematopoietic Stem Cell Transplantation. [(accessed on 25 March 2023)]. Available online: https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu-3-17-1852.

Mebarki M., Iglicki N., Marigny C., Abadie C., Nicolet C., Churlaud G., Maheux C., Boucher H., Monsel A., Menasche P., et al. Development of a human umbilical cord-derived mesenchymal stromal cell-based advanced therapy medicinal product to treat immune and/or inflammatory diseases. Stem Cell Res. Ther. 2021;12:571. doi: 10.1186/s13287-021-02637-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...