Umbilical Cord-Derived Mesenchymal Stem Cells Are Able to Use bFGF Treatment and Represent a Superb Tool for Immunosuppressive Clinical Applications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_013/0001826
European Regional Development Fund - project CZECRIN_4 PACIENTY
LQ1605
MEYS CR, NPU II
PubMed
32731615
PubMed Central
PMC7432622
DOI
10.3390/ijms21155366
PII: ijms21155366
Knihovny.cz E-zdroje
- Klíčová slova
- advanced therapy medicinal product, immunosuppression, mesenchymal stem cells, umbilical cord,
- MeSH
- buněčná diferenciace účinky léků imunologie MeSH
- fibroblastový růstový faktor 2 imunologie farmakologie MeSH
- imunosupresivní léčba * MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie imunologie MeSH
- proliferace buněk účinky léků MeSH
- pupečník cytologie imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fibroblastový růstový faktor 2 MeSH
Mesenchymal stem cells (MSCs) have become a promising tool in cellular therapy for restoring immune system haemostasis; however, the success of clinical trials has been impaired by the lack of standardized manufacturing processes. This study aims to determine the suitability of source tissues and culture media for the production of MSC-based advanced therapy medicinal products (ATMPs) and to define parameters to extend the set of release criteria. MSCs were isolated from umbilical cord (UC), bone marrow and lipoaspirate and expanded in three different culture media. MSC phenotype, proliferation capacity and immunosuppressive parameters were evaluated in normal MSCs compared to primed MSCs treated with cytokines mimicking an inflammatory environment. Compared to bone marrow and lipoaspirate, UC-derived MSCs (UC-MSCs) showed the highest proliferative capacity, which was further enhanced by media supplemented with bFGF, while the cells maintained their immunosuppressive characteristics. Moreover, UC-MSCs expanded in the bFGF-enriched medium were the least sensitive to undesirable priming-induced changes in the MSC phenotype. Surface markers and secreted factors were identified to reflect the cell response to inflammatory priming and to be variable among MSCs from different source tissues. This study demonstrates that UC is a favorable cell source for manufacturing MSC-based ATMPs for immunosuppressive applications. UC-MSCs are able to use the bFGF-enriched medium for higher cell yields without the impairment of immunosuppressive parameters and undesirable phenotype changes after inflammatory preconditioning of MSCs before transplantation. Additionally, immunosuppressive parameters were identified to help finding predictors of clinically efficient MSCs in the following clinical trials.
Zobrazit více v PubMed
Horwitz E.M., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F.C., Deans R.J., Krause D.S., Keating A., Therapy I.S.f.C. Clarification of the nomenclature for msc: The international society for cellular therapy position statement. Cytotherapy. 2005;7:393–395. doi: 10.1080/14653240500319234. PubMed DOI
Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143. PubMed DOI
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Friedenstein A.J., Petrakova K.V., Kurolesova A.I., Frolova G.P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–247. doi: 10.1097/00007890-196803000-00009. PubMed DOI
Chu D.T., Nguyen Thi Phuong T., Tien N.L.B., Tran D.K., Minh L.B., Thanh V.V., Gia Anh P., Pham V.H., Thi Nga V. Adipose tissue stem cells for therapy: An update on the progress of isolation, culture, storage, and clinical application. J. Clin. Med. 2019;8:917. doi: 10.3390/jcm8070917. PubMed DOI PMC
Arutyunyan I., Elchaninov A., Makarov A., Fatkhudinov T. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int. 2016;2016:6901286. doi: 10.1155/2016/6901286. PubMed DOI PMC
Choi Y.S., Park Y.B., Ha C.W., Kim J.A., Heo J.C., Han W.J., Oh S.Y., Choi S.J. Different characteristics of mesenchymal stem cells isolated from different layers of full term placenta. PLoS ONE. 2017;12:e0172642. doi: 10.1371/journal.pone.0172642. PubMed DOI PMC
Ledesma-Martínez E., Mendoza-Núñez V.M., Santiago-Osorio E. Mesenchymal stem cells derived from dental pulp: A review. Stem Cells Int. 2016;2016:4709572. doi: 10.1155/2016/4709572. PubMed DOI PMC
Al-Nbaheen M., Vishnubalaji R., Ali D., Bouslimi A., Al-Jassir F., Megges M., Prigione A., Adjaye J., Kassem M., Aldahmash A. Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev. Rep. 2013;9:32–43. doi: 10.1007/s12015-012-9365-8. PubMed DOI PMC
Sangeetha K.N., Vennila R., Secunda R., Sakthivel S., Pathak S., Jeswanth S., Surendran R. Functional variations between mesenchymal stem cells of different tissue origins: A comparative gene expression profiling. Biotechnol. Lett. 2020;42:1287–1304. doi: 10.1007/s10529-020-02898-x. PubMed DOI
Chen J.Y., Mou X.Z., Du X.C., Xiang C. Comparative analysis of biological characteristics of adult mesenchymal stem cells with different tissue origins. Asian Pac. J. Trop. Med. 2015;8:739–746. doi: 10.1016/j.apjtm.2015.07.022. PubMed DOI
Kozlowska U., Krawczenko A., Futoma K., Jurek T., Rorat M., Patrzalek D., Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J. Stem Cells. 2019;11:347–374. doi: 10.4252/wjsc.v11.i6.347. PubMed DOI PMC
Stenderup K., Justesen J., Clausen C., Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33:919–926. doi: 10.1016/j.bone.2003.07.005. PubMed DOI
Mueller S.M., Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J. Cell Biochem. 2001;82:583–590. doi: 10.1002/jcb.1174. PubMed DOI
Nishida S., Endo N., Yamagiwa H., Tanizawa T., Takahashi H.E. Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J. Bone Miner. Metab. 1999;17:171–177. doi: 10.1007/s007740050081. PubMed DOI
Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–1301. doi: 10.1634/stemcells.2005-0342. PubMed DOI
Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002;13:4279–4295. doi: 10.1091/mbc.e02-02-0105. PubMed DOI PMC
Saccardi R., Mancardi G.L., Solari A., Bosi A., Bruzzi P., Di Bartolomeo P., Donelli A., Filippi M., Guerrasio A., Gualandi F., et al. Autologous hsct for severe progressive multiple sclerosis in a multicenter trial: Impact on disease activity and quality of life. Blood. 2005;105:2601–2607. doi: 10.1182/blood-2004-08-3205. PubMed DOI
Di Nicola M., Carlo-Stella C., Magni M., Milanesi M., Longoni P.D., Matteucci P., Grisanti S., Gianni A.M. Human bone marrow stromal cells suppress t-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–3843. doi: 10.1182/blood.V99.10.3838. PubMed DOI
Tse W.T., Pendleton J.D., Beyer W.M., Egalka M.C., Guinan E.C. Suppression of allogeneic t-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation. 2003;75:389–397. doi: 10.1097/01.TP.0000045055.63901.A9. PubMed DOI
Gao X., Song L., Shen K., Wang H., Qian M., Niu W., Qin X. Bone marrow mesenchymal stem cells promote the repair of islets from diabetic mice through paracrine actions. Mol. Cell Endocrinol. 2014;388:41–50. doi: 10.1016/j.mce.2014.03.004. PubMed DOI
Del Fattore A., Luciano R., Pascucci L., Goffredo B.M., Giorda E., Scapaticci M., Fierabracci A., Muraca M. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on t lymphocytes. Cell Transplant. 2015;24:2615–2627. doi: 10.3727/096368915X687543. PubMed DOI
Ren G., Zhang L., Zhao X., Xu G., Zhang Y., Roberts A.I., Zhao R.C., Shi Y. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2:141–150. doi: 10.1016/j.stem.2007.11.014. PubMed DOI
Ti D., Hao H., Fu X., Han W. Mesenchymal stem cells-derived exosomal micrornas contribute to wound inflammation. Sci. China Life Sci. 2016;59:1305–1312. doi: 10.1007/s11427-016-0240-4. PubMed DOI
Negi N., Griffin M.D. Effects of mesenchymal stromal cells on regulatory t cells: Current understanding and clinical relevance. Stem Cells. 2020;38:596–605. doi: 10.1002/stem.3151. PubMed DOI PMC
Krampera M., Galipeau J., Shi Y., Tarte K., Sensebe L., MSC Committee of the International Society for Cellular Therapy (ISCT) Immunological characterization of multipotent mesenchymal stromal cells--the international society for cellular therapy (isct) working proposal. Cytotherapy. 2013;15:1054–1061. doi: 10.1016/j.jcyt.2013.02.010. PubMed DOI
Chinnadurai R., Copland I.B., Patel S.R., Galipeau J. Ido-independent suppression of t cell effector function by ifn-γ-licensed human mesenchymal stromal cells. J. Immunol. 2014;192:1491–1501. doi: 10.4049/jimmunol.1301828. PubMed DOI
Chinnadurai R., Copland I.B., Garcia M.A., Petersen C.T., Lewis C.N., Waller E.K., Kirk A.D., Galipeau J. Cryopreserved mesenchymal stromal cells are susceptible to t-cell mediated apoptosis which is partly rescued by ifnγ licensing. Stem Cells. 2016;34:2429–2442. doi: 10.1002/stem.2415. PubMed DOI PMC
Chinnadurai R., Rajan D., Ng S., McCullough K., Arafat D., Waller E.K., Anderson L.J., Gibson G., Galipeau J. Immune dysfunctionality of replicative senescent mesenchymal stromal cells is corrected by ifnγ priming. Blood Adv. 2017;1:628–643. doi: 10.1182/bloodadvances.2017006205. PubMed DOI PMC
Rovira Gonzalez Y.I., Lynch P.J., Thompson E.E., Stultz B.G., Hursh D.A. In vitro cytokine licensing induces persistent permissive chromatin at the indoleamine 2,3-dioxygenase promoter. Cytotherapy. 2016;18:1114–1128. doi: 10.1016/j.jcyt.2016.05.017. PubMed DOI PMC
Pourgholaminejad A., Aghdami N., Baharvand H., Moazzeni S.M. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine. 2016;85:51–60. doi: 10.1016/j.cyto.2016.06.003. PubMed DOI
Gorin C., Rochefort G.Y., Bascetin R., Ying H., Lesieur J., Sadoine J., Beckouche N., Berndt S., Novais A., Lesage M., et al. Priming dental pulp stem cells with fibroblast growth factor-2 increases angiogenesis of implanted tissue-engineered constructs through hepatocyte growth factor and vascular endothelial growth factor secretion. Stem Cells Transl. Med. 2016;5:392–404. doi: 10.5966/sctm.2015-0166. PubMed DOI PMC
Sivanathan K.N., Rojas-Canales D.M., Hope C.M., Krishnan R., Carroll R.P., Gronthos S., Grey S.T., Coates P.T. Interleukin-17a-induced human mesenchymal stem cells are superior modulators of immunological function. Stem Cells. 2015;33:2850–2863. doi: 10.1002/stem.2075. PubMed DOI
Lim J., Lee S., Ju H., Kim Y., Heo J., Lee H.Y., Choi K.C., Son J., Oh Y.M., Kim I.G., et al. Valproic acid enforces the priming effect of sphingosine-1 phosphate on human mesenchymal stem cells. Int. J. Mol. Med. 2017;40:739–747. doi: 10.3892/ijmm.2017.3053. PubMed DOI PMC
Fujisawa K., Takami T., Okada S., Hara K., Matsumoto T., Yamamoto N., Yamasaki T., Sakaida I. Analysis of metabolomic changes in mesenchymal stem cells on treatment with desferrioxamine as a hypoxia mimetic compared with hypoxic conditions. Stem Cells. 2018;36:1226–1236. doi: 10.1002/stem.2826. PubMed DOI
Takeda K., Ning F., Domenico J., Okamoto M., Ashino S., Kim S.H., Jeong Y.Y., Shiraishi Y., Terada N., Sutherland E.R., et al. Activation of p70s6 kinase-1 in mesenchymal stem cells is essential to lung tissue repair. Stem Cells Transl. Med. 2018;7:551–558. doi: 10.1002/sctm.17-0200. PubMed DOI PMC
Popa M.A., Mihai M.C., Constantin A., Şuică V., Ţucureanu C., Costache R., Antohe F., Dubey R.K., Simionescu M. Dihydrotestosterone induces pro-angiogenic factors and assists homing of msc into the cardiac tissue. J. Mol. Endocrinol. 2018;60:1–15. doi: 10.1530/JME-17-0185. PubMed DOI
Lee J.H., Yoon Y.M., Lee S.H. Hypoxic preconditioning promotes the bioactivities of mesenchymal stem cells via the hif-1α-grp78-akt axis. Int. J. Mol. Sci. 2017;18:1320. doi: 10.3390/ijms18061320. PubMed DOI PMC
Lee S.G., Joe Y.A. Autophagy mediates enhancement of proangiogenic activity by hypoxia in mesenchymal stromal/stem cells. Biochem. Biophys. Res. Commun. 2018;501:941–947. doi: 10.1016/j.bbrc.2018.05.086. PubMed DOI
Li B., Li C., Zhu M., Zhang Y., Du J., Xu Y., Liu B., Gao F., Liu H., Cai J., et al. Hypoxia-induced mesenchymal stromal cells exhibit an enhanced therapeutic effect on radiation-induced lung injury in mice due to an increased proliferation potential and enhanced antioxidant ability. Cell Physiol. Biochem. 2017;44:1295–1310. doi: 10.1159/000485490. PubMed DOI
Sun X., Su W., Ma X., Zhang H., Sun Z., Li X. Comparison of the osteogenic capability of rat bone mesenchymal stem cells on collagen, collagen/hydroxyapatite, hydroxyapatite and biphasic calcium phosphate. Regen. Biomater. 2018;5:93–103. doi: 10.1093/rb/rbx018. PubMed DOI PMC
Chen S., Shi J., Zhang M., Chen Y., Wang X., Zhang L., Tian Z., Yan Y., Li Q., Zhong W., et al. Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Sci. Rep. 2015;5:18104. doi: 10.1038/srep18104. PubMed DOI PMC
Khan M., Ali F., Mohsin S., Akhtar S., Mehmood A., Choudhery M.S., Khan S.N., Riazuddin S. Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic heart. Stem Cell Res. Ther. 2013;4:58. doi: 10.1186/scrt207. PubMed DOI PMC
Jossen V., van den Bos C., Eibl R., Eibl D. Manufacturing human mesenchymal stem cells at clinical scale: Process and regulatory challenges. Appl. Microbiol. Biotechnol. 2018;102:3981–3994. doi: 10.1007/s00253-018-8912-x. PubMed DOI PMC
Tozetti P.A., Caruso S.R., Mizukami A., Fernandes T.R., da Silva F.B., Traina F., Covas D.T., Orellana M.D., Swiech K. Expansion strategies for human mesenchymal stromal cells culture under xeno-free conditions. Biotechnol. Prog. 2017;33:1358–1367. doi: 10.1002/btpr.2494. PubMed DOI
Mizukami A., Fernandes-Platzgummer A., Carmelo J.G., Swiech K., Covas D.T., Cabral J.M., da Silva C.L. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Biotechnol. J. 2016;11:1048–1059. doi: 10.1002/biot.201500532. PubMed DOI
Cunha B., Aguiar T., Carvalho S.B., Silva M.M., Gomes R.A., Carrondo M.J.T., Gomes-Alves P., Peixoto C., Serra M., Alves P.M. Bioprocess integration for human mesenchymal stem cells: From up to downstream processing scale-up to cell proteome characterization. J. Biotechnol. 2017;248:87–98. doi: 10.1016/j.jbiotec.2017.01.014. PubMed DOI
Timmins N.E., Kiel M., Günther M., Heazlewood C., Doran M.R., Brooke G., Atkinson K. Closed system isolation and scalable expansion of human placental mesenchymal stem cells. Biotechnol. Bioeng. 2012;109:1817–1826. doi: 10.1002/bit.24425. PubMed DOI
Mizukami A., Orellana M.D., Caruso S.R., de Lima Prata K., Covas D.T., Swiech K. Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system. Biotechnol. Prog. 2013;29:568–572. doi: 10.1002/btpr.1707. PubMed DOI
Haack-Sørensen M., Follin B., Juhl M., Brorsen S.K., Søndergaard R.H., Kastrup J., Ekblond A. Culture expansion of adipose derived stromal cells. A closed automated quantum cell expansion system compared with manual flask-based culture. J. Transl. Med. 2016;14:319. doi: 10.1186/s12967-016-1080-9. PubMed DOI PMC
Lambrechts T., Papantoniou I., Rice B., Schrooten J., Luyten F.P., Aerts J.M. Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor. Cytotherapy. 2016;18:1219–1233. doi: 10.1016/j.jcyt.2016.05.013. PubMed DOI
Nold P., Brendel C., Neubauer A., Bein G., Hackstein H. Good manufacturing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based bioreactor. Biochem. Biophys. Res. Commun. 2013;430:325–330. doi: 10.1016/j.bbrc.2012.11.001. PubMed DOI
Rojewski M.T., Fekete N., Baila S., Nguyen K., Fürst D., Antwiler D., Dausend J., Kreja L., Ignatius A., Sensebé L., et al. Gmp-compliant isolation and expansion of bone marrow-derived mscs in the closed, automated device quantum cell expansion system. Cell Transplant. 2013;22:1981–2000. doi: 10.3727/096368912X657990. PubMed DOI
Hanley P.J., Mei Z., Durett A.G., Cabreira-Hansen M.a.G., Cabreira-Harrison M.a.G., Klis M., Li W., Zhao Y., Yang B., Parsha K., et al. Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the quantum cell expansion system. Cytotherapy. 2014;16:1048–1058. doi: 10.1016/j.jcyt.2014.01.417. PubMed DOI PMC
Guess A.J., Daneault B., Wang R., Bradbury H., La Perle K.M.D., Fitch J., Hedrick S.L., Hamelberg E., Astbury C., White P., et al. Safety profile of good manufacturing practice manufactured interferon γ-primed mesenchymal stem/stromal cells for clinical trials. Stem Cells Transl. Med. 2017;6:1868–1879. doi: 10.1002/sctm.16-0485. PubMed DOI PMC
Li W.J., Tuli R., Okafor C., Derfoul A., Danielson K.G., Hall D.J., Tuan R.S. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26:599–609. doi: 10.1016/j.biomaterials.2004.03.005. PubMed DOI
Apel A., Groth A., Schlesinger S., Bruns H., Schemmer P., Büchler M.W., Herr I. Suitability of human mesenchymal stem cells for gene therapy depends on the expansion medium. Exp. Cell Res. 2009;315:498–507. doi: 10.1016/j.yexcr.2008.11.013. PubMed DOI
Sotiropoulou P.A., Perez S.A., Salagianni M., Baxevanis C.N., Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells. 2006;24:462–471. doi: 10.1634/stemcells.2004-0331. PubMed DOI
Bahsoun S., Coopman K., Akam E.C. The impact of cryopreservation on bone marrow-derived mesenchymal stem cells: A systematic review. J. Transl. Med. 2019;17:397. doi: 10.1186/s12967-019-02136-7. PubMed DOI PMC
Lin Y., Hogan W.J. Clinical application of mesenchymal stem cells in the treatment and prevention of graft-versus-host disease. Adv. Hematol. 2011;2011:427863. doi: 10.1155/2011/427863. PubMed DOI PMC
Subbanna P.K. Mesenchymal stem cells for treating gvhd: In-vivo fate and optimal dose. Med. Hypotheses. 2007;69:469–470. doi: 10.1016/j.mehy.2006.12.016. PubMed DOI
Guan Y.T., Xie Y., Li D.S., Zhu Y.Y., Zhang X.L., Feng Y.L., Chen Y.P., Xu L.J., Liao P.F., Wang G. Comparison of biological characteristics of mesenchymal stem cells derived from the human umbilical cord and decidua parietalis. Mol. Med. Rep. 2019;20:633–639. doi: 10.3892/mmr.2019.10286. PubMed DOI PMC
Beeravolu N., Khan I., McKee C., Dinda S., Thibodeau B., Wilson G., Perez-Cruet M., Bahado-Singh R., Chaudhry G.R. Isolation and comparative analysis of potential stem/progenitor cells from different regions of human umbilical cord. Stem Cell Res. 2016;16:696–711. doi: 10.1016/j.scr.2016.04.010. PubMed DOI
Ramasamy R., Tong C.K., Yip W.K., Vellasamy S., Tan B.C., Seow H.F. Basic fibroblast growth factor modulates cell cycle of human umbilical cord-derived mesenchymal stem cells. Cell Prolif. 2012;45:132–139. doi: 10.1111/j.1365-2184.2012.00808.x. PubMed DOI PMC
Nekanti U., Mohanty L., Venugopal P., Balasubramanian S., Totey S., Ta M. Optimization and scale-up of wharton’s jelly-derived mesenchymal stem cells for clinical applications. Stem Cell Res. 2010;5:244–254. doi: 10.1016/j.scr.2010.08.005. PubMed DOI
Jin H.J., Bae Y.K., Kim M., Kwon S.J., Jeon H.B., Choi S.J., Kim S.W., Yang Y.S., Oh W., Chang J.W. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int. J. Mol. Sci. 2013;14:17986–18001. doi: 10.3390/ijms140917986. PubMed DOI PMC
Heo J.S., Choi Y., Kim H.S., Kim H.O. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int. J. Mol. Med. 2016;37:115–125. doi: 10.3892/ijmm.2015.2413. PubMed DOI PMC
Lin C.S., Ning H., Lin G., Lue T.F. Is cd34 truly a negative marker for mesenchymal stromal cells? Cytotherapy. 2012;14:1159–1163. doi: 10.3109/14653249.2012.729817. PubMed DOI PMC
Sakaguchi Y., Sekiya I., Yagishita K., Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis Rheum. 2005;52:2521–2529. doi: 10.1002/art.21212. PubMed DOI
Rebelatto C.K., Aguiar A.M., Moretão M.P., Senegaglia A.C., Hansen P., Barchiki F., Oliveira J., Martins J., Kuligovski C., Mansur F., et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp. Biol. Med. 2008;233:901–913. doi: 10.3181/0712-RM-356. PubMed DOI
Saparov A., Ogay V., Nurgozhin T., Jumabay M., Chen W.C. Preconditioning of human mesenchymal stem cells to enhance their regulation of the immune response. Stem Cells Int. 2016;2016:3924858. doi: 10.1155/2016/3924858. PubMed DOI PMC
Lee M.W., Ryu S., Kim D.S., Sung K.W., Koo H.H., Yoo K.H. Strategies to improve the immunosuppressive properties of human mesenchymal stem cells. Stem Cell Res. Ther. 2015;6:179. doi: 10.1186/s13287-015-0178-y. PubMed DOI PMC
Amati E., Sella S., Perbellini O., Alghisi A., Bernardi M., Chieregato K., Lievore C., Peserico D., Rigno M., Zilio A., et al. Generation of mesenchymal stromal cells from cord blood: Evaluation of in vitro quality parameters prior to clinical use. Stem Cell Res. Ther. 2017;8:14. doi: 10.1186/s13287-016-0465-2. PubMed DOI PMC
Bassi G., Guilloton F., Menard C., Di Trapani M., Deschaseaux F., Sensebé L., Schrezenmeier H., Giordano R., Bourin P., Dominici M., et al. Effects of a ceramic biomaterial on immune modulatory properties and differentiation potential of human mesenchymal stromal cells of different origin. Tissue Eng. Part. A. 2015;21:767–781. doi: 10.1089/ten.tea.2014.0269. PubMed DOI PMC
Shi Y., Su J., Roberts A.I., Shou P., Rabson A.B., Ren G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012;33:136–143. doi: 10.1016/j.it.2011.11.004. PubMed DOI PMC
Espagnolle N., Balguerie A., Arnaud E., Sensebé L., Varin A. Cd54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem Cell Rep. 2017;8:961–976. doi: 10.1016/j.stemcr.2017.02.008. PubMed DOI PMC
Wang Y., Huang J., Gong L., Yu D., An C., Bunpetch V., Dai J., Huang H., Zou X., Ouyang H., et al. The plasticity of mesenchymal stem cells in regulating surface hla-i. iScience. 2019;15:66–78. doi: 10.1016/j.isci.2019.04.011. PubMed DOI PMC
Fu X., Chen Y., Xie F.N., Dong P., Liu W.B., Cao Y., Zhang W.J., Xiao R. Comparison of immunological characteristics of mesenchymal stem cells derived from human embryonic stem cells and bone marrow. Tissue Eng. Part. A. 2015;21:616–626. doi: 10.1089/ten.tea.2013.0651. PubMed DOI PMC
Yagi H., Soto-Gutierrez A., Parekkadan B., Kitagawa Y., Tompkins R.G., Kobayashi N., Yarmush M.L. Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant. 2010;19:667–679. doi: 10.3727/096368910X508762. PubMed DOI PMC
Li X., Xu Z., Bai J., Yang S., Zhao S., Zhang Y., Chen X., Wang Y. Umbilical cord tissue-derived mesenchymal stem cells induce t lymphocyte apoptosis and cell cycle arrest by expression of indoleamine 2, 3-dioxygenase. Stem Cells Int. 2016;2016:7495135. doi: 10.1155/2016/7495135. PubMed DOI PMC
Dabrowski F.A., Burdzinska A., Kulesza A., Sladowska A., Zolocinska A., Gala K., Paczek L., Wielgos M. Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue. J. Obstet. Gynaecol. Res. 2017;43:1758–1768. doi: 10.1111/jog.13432. PubMed DOI
Li C.Y., Wu X.Y., Tong J.B., Yang X.X., Zhao J.L., Zheng Q.F., Zhao G.B., Ma Z.J. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res. Ther. 2015;6:55. doi: 10.1186/s13287-015-0066-5. PubMed DOI PMC
Ozaki K., Sato K., Oh I., Meguro A., Tatara R., Muroi K., Ozawa K. Mechanisms of immunomodulation by mesenchymal stem cells. Int. J. Hematol. 2007;86:5–7. doi: 10.1532/IJH97.07003. PubMed DOI
Groh M.E., Maitra B., Szekely E., Koç O.N. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive t cells. Exp. Hematol. 2005;33:928–934. doi: 10.1016/j.exphem.2005.05.002. PubMed DOI
Nasef A., Chapel A., Mazurier C., Bouchet S., Lopez M., Mathieu N., Sensebé L., Zhang Y., Gorin N.C., Thierry D., et al. Identification of il-10 and tgf-beta transcripts involved in the inhibition of t-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Expr. 2007;13:217–226. doi: 10.3727/000000006780666957. PubMed DOI PMC
Tomic S., Djokic J., Vasilijic S., Vucevic D., Todorovic V., Supic G., Colic M. Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev. 2011;20:695–708. doi: 10.1089/scd.2010.0145. PubMed DOI
Ouchi T., Nakagawa T. Mesenchymal stem cell-based tissue regeneration therapies for periodontitis. Regen. Ther. 2020;14:72–78. doi: 10.1016/j.reth.2019.12.011. PubMed DOI PMC
Song H., Kwon K., Lim S., Kang S.M., Ko Y.G., Xu Z., Chung J.H., Kim B.S., Lee H., Joung B., et al. Transfection of mesenchymal stem cells with the fgf-2 gene improves their survival under hypoxic conditions. Mol. Cells. 2005;19:402–407. PubMed
Prasanna S.J., Gopalakrishnan D., Shankar S.R., Vasandan A.B. Pro-inflammatory cytokines, ifngamma and tnfalpha, influence immune properties of human bone marrow and wharton jelly mesenchymal stem cells differentially. PLoS ONE. 2010;5:e9016. doi: 10.1371/journal.pone.0009016. PubMed DOI PMC
Manochantr S., U-pratya Y., Kheolamai P., Rojphisan S., Chayosumrit M., Tantrawatpan C., Supokawej A., Issaragrisil S. Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, wharton’s jelly and umbilical cord. Intern. Med. J. 2013;43:430–439. doi: 10.1111/imj.12044. PubMed DOI