Truncated vitronectin with E-cadherin enables the xeno-free derivation of human embryonic stem cells
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37700192
PubMed Central
PMC10497536
DOI
10.1038/s41598-023-42236-5
PII: 10.1038/s41598-023-42236-5
Knihovny.cz E-zdroje
- MeSH
- buněčná a tkáňová terapie MeSH
- kadheriny genetika MeSH
- lidé MeSH
- lidské embryonální kmenové buňky * MeSH
- obchod MeSH
- vitronektin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kadheriny MeSH
- vitronektin MeSH
Human embryonic stem cells (hESCs) have unique abilities that enable their use in cell therapy, disease modeling, and drug development. Their derivation is usually performed using a feeder layer, which is undefined and can potentially cause a contamination by xeno components, therefore there is a tendency to replace feeders with xeno-free defined substrates in recent years. Three hESC lines were successfully derived on the vitronectin with a truncated N-terminus (VTN-N) in combination with E-cadherin in xeno-free conditions for the first time, and their undifferentiated state, hESC morphology, and standard karyotypes together with their potential to differentiate into three germ layers were confirmed. These results support the conclusion that the VTN-N/E-cadherin is a suitable substrate for the xeno-free derivation of hESCs and can be used for the derivation of hESCs according to good manufacturing practices.
Zobrazit více v PubMed
Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. PubMed DOI
Eguizabal C, Aran B, Chuva de Sousa Lopes SM, Geens M, Heindryckx B, Panula S, et al. Two decades of embryonic stem cells: A historical overview. Hum. Reprod. Open. 2019;2019:24. doi: 10.1093/hropen/hoy024. PubMed DOI PMC
Lin X, Tang J, Lou Y-R. Human pluripotent stem-cell-derived models as a missing link in drug discovery and development. Pharmaceuticals. 2021;14:525. doi: 10.3390/ph14060525. PubMed DOI PMC
Yamanaka S. Pluripotent stem cell-based cell therapy—Promise and challenges. Cell Stem Cell. 2020;27:523–531. doi: 10.1016/j.stem.2020.09.014. PubMed DOI
Rodin S, Antonsson L, Niaudet C, Simonson OE, Salmela E, Hansson EM, et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat. Commun. 2014;5:3195. doi: 10.1038/ncomms4195. PubMed DOI
Marchini A, Gelain F. Synthetic scaffolds for 3D cell cultures and organoids: Applications in regenerative medicine. Crit. Rev. Biotechnol. 2022;42:468–486. doi: 10.1080/07388551.2021.1932716. PubMed DOI
Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 2020;5:539–551. doi: 10.1038/s41578-020-0199-8. PubMed DOI PMC
Albalushi H, Kurek M, Karlsson L, Landreh L, Kjartansdóttir KR, Söder O, et al. Laminin 521 stabilizes the pluripotency expression pattern of human embryonic stem cells initially derived on feeder cells. Stem Cells Int. 2018;2018:7127042. doi: 10.1155/2018/7127042. PubMed DOI PMC
Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αVβ5 integrin. Stem Cells. 2008;26:2257–2265. doi: 10.1634/stemcells.2008-0291. PubMed DOI
Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 2001;19:971–974. doi: 10.1038/nbt1001-971. PubMed DOI
Fan Y, Wu J, Ashok P, Hsiung M, Tzanakakis ES. Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: Progress and challenges. Stem Cell Rev. Rep. 2015;11:96–109. doi: 10.1007/s12015-014-9544-x. PubMed DOI PMC
Prowse ABJ, Doran MR, Cooper-White JJ, Chong F, Munro TP, Fitzpatrick J, et al. Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials. 2010;31:8281–8288. doi: 10.1016/j.biomaterials.2010.07.037. PubMed DOI
Takada K, Nakatani R, Moribe E, Yamazaki-Fujigaki S, Fujii M, Furuta M, et al. Efficient derivation and banking of clinical-grade human embryonic stem cell lines in accordance with Japanese regulations. Regener. Therapy. 2022;21:553–559. doi: 10.1016/j.reth.2022.10.006. PubMed DOI PMC
Li L, Bennett SAL, Wang L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adhes. Migr. 2012;6:59–73. doi: 10.4161/cam.19583. PubMed DOI PMC
Schvartz I, Seger D, Shaltiel S. Vitronectin. Int. J. Biochem. Cell Biol. 1999;31:539–544. doi: 10.1016/S1357-2725(99)00005-9. PubMed DOI
Hayashi Y, Furue MK. Biological effects of culture substrates on human pluripotent stem cells. Stem Cells Int. 2016;2016:5380560. doi: 10.1155/2016/5380560. PubMed DOI PMC
Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined conditions for human iPS cell derivation and culture. Nat. Methods. 2011;8:424–429. doi: 10.1038/nmeth.1593. PubMed DOI PMC
Gil J-E, Woo D-H, Shim J-H, Kim S-E, You H-J, Park S-H, et al. Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. FEBS Lett. 2009;583:561–567. doi: 10.1016/j.febslet.2008.12.061. PubMed DOI
Souralová T, Řeháková D, Ješeta M, Tesařová L, Beránek J, Ventruba P, et al. The manufacture of xeno- and feeder-free clinical-grade human embryonic stem cell lines: First step for cell therapy. Int. J. Mol. Sci. 2022;23:12500. doi: 10.3390/ijms232012500. PubMed DOI PMC
Tesarova L, Jaresova K, Simara P, Koutna I. Umbilical cord-derived mesenchymal stem cells are able to use bFGF treatment and represent a superb tool for immunosuppressive clinical applications. Int. J. Mol. Sci. 2020;21:5366. doi: 10.3390/ijms21155366. PubMed DOI PMC
Zhu X-Y, Chen Y-H, Zhang T, Liu S-J, Bai X-Y, Huang X-Y, et al. Improvement of human embryonic stem cell-derived retinal pigment epithelium cell adhesion, maturation, and function through coating with truncated recombinant human vitronectin. Int. J. Ophthalmol. 2021;14:1160–1167. doi: 10.18240/ijo.2021.08.04. PubMed DOI PMC
da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 2018;36:328–337. doi: 10.1038/nbt.4114. PubMed DOI
Orozco-Fuentes S, Neganova I, Wadkin LE, Baggaley AW, Barrio RA, Lako M, et al. Quantification of the morphological characteristics of hESC colonies. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-53719-9. PubMed DOI PMC
Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19:193–204. doi: 10.1634/stemcells.19-3-193. PubMed DOI
Moon S-H, Ju J, Park S-J, Bae D, Chung H-M, Lee S-H. Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies. Biomaterials. 2014;35:5987–5997. doi: 10.1016/j.biomaterials.2014.04.001. PubMed DOI