Truncated vitronectin with E-cadherin enables the xeno-free derivation of human embryonic stem cells

. 2023 Sep 12 ; 13 (1) : 15062. [epub] 20230912

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37700192
Odkazy

PubMed 37700192
PubMed Central PMC10497536
DOI 10.1038/s41598-023-42236-5
PII: 10.1038/s41598-023-42236-5
Knihovny.cz E-zdroje

Human embryonic stem cells (hESCs) have unique abilities that enable their use in cell therapy, disease modeling, and drug development. Their derivation is usually performed using a feeder layer, which is undefined and can potentially cause a contamination by xeno components, therefore there is a tendency to replace feeders with xeno-free defined substrates in recent years. Three hESC lines were successfully derived on the vitronectin with a truncated N-terminus (VTN-N) in combination with E-cadherin in xeno-free conditions for the first time, and their undifferentiated state, hESC morphology, and standard karyotypes together with their potential to differentiate into three germ layers were confirmed. These results support the conclusion that the VTN-N/E-cadherin is a suitable substrate for the xeno-free derivation of hESCs and can be used for the derivation of hESCs according to good manufacturing practices.

Zobrazit více v PubMed

Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. PubMed DOI

Eguizabal C, Aran B, Chuva de Sousa Lopes SM, Geens M, Heindryckx B, Panula S, et al. Two decades of embryonic stem cells: A historical overview. Hum. Reprod. Open. 2019;2019:24. doi: 10.1093/hropen/hoy024. PubMed DOI PMC

Lin X, Tang J, Lou Y-R. Human pluripotent stem-cell-derived models as a missing link in drug discovery and development. Pharmaceuticals. 2021;14:525. doi: 10.3390/ph14060525. PubMed DOI PMC

Yamanaka S. Pluripotent stem cell-based cell therapy—Promise and challenges. Cell Stem Cell. 2020;27:523–531. doi: 10.1016/j.stem.2020.09.014. PubMed DOI

Rodin S, Antonsson L, Niaudet C, Simonson OE, Salmela E, Hansson EM, et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat. Commun. 2014;5:3195. doi: 10.1038/ncomms4195. PubMed DOI

Marchini A, Gelain F. Synthetic scaffolds for 3D cell cultures and organoids: Applications in regenerative medicine. Crit. Rev. Biotechnol. 2022;42:468–486. doi: 10.1080/07388551.2021.1932716. PubMed DOI

Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 2020;5:539–551. doi: 10.1038/s41578-020-0199-8. PubMed DOI PMC

Albalushi H, Kurek M, Karlsson L, Landreh L, Kjartansdóttir KR, Söder O, et al. Laminin 521 stabilizes the pluripotency expression pattern of human embryonic stem cells initially derived on feeder cells. Stem Cells Int. 2018;2018:7127042. doi: 10.1155/2018/7127042. PubMed DOI PMC

Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αVβ5 integrin. Stem Cells. 2008;26:2257–2265. doi: 10.1634/stemcells.2008-0291. PubMed DOI

Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 2001;19:971–974. doi: 10.1038/nbt1001-971. PubMed DOI

Fan Y, Wu J, Ashok P, Hsiung M, Tzanakakis ES. Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: Progress and challenges. Stem Cell Rev. Rep. 2015;11:96–109. doi: 10.1007/s12015-014-9544-x. PubMed DOI PMC

Prowse ABJ, Doran MR, Cooper-White JJ, Chong F, Munro TP, Fitzpatrick J, et al. Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials. 2010;31:8281–8288. doi: 10.1016/j.biomaterials.2010.07.037. PubMed DOI

Takada K, Nakatani R, Moribe E, Yamazaki-Fujigaki S, Fujii M, Furuta M, et al. Efficient derivation and banking of clinical-grade human embryonic stem cell lines in accordance with Japanese regulations. Regener. Therapy. 2022;21:553–559. doi: 10.1016/j.reth.2022.10.006. PubMed DOI PMC

Li L, Bennett SAL, Wang L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adhes. Migr. 2012;6:59–73. doi: 10.4161/cam.19583. PubMed DOI PMC

Schvartz I, Seger D, Shaltiel S. Vitronectin. Int. J. Biochem. Cell Biol. 1999;31:539–544. doi: 10.1016/S1357-2725(99)00005-9. PubMed DOI

Hayashi Y, Furue MK. Biological effects of culture substrates on human pluripotent stem cells. Stem Cells Int. 2016;2016:5380560. doi: 10.1155/2016/5380560. PubMed DOI PMC

Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined conditions for human iPS cell derivation and culture. Nat. Methods. 2011;8:424–429. doi: 10.1038/nmeth.1593. PubMed DOI PMC

Gil J-E, Woo D-H, Shim J-H, Kim S-E, You H-J, Park S-H, et al. Vitronectin promotes oligodendrocyte differentiation during neurogenesis of human embryonic stem cells. FEBS Lett. 2009;583:561–567. doi: 10.1016/j.febslet.2008.12.061. PubMed DOI

Souralová T, Řeháková D, Ješeta M, Tesařová L, Beránek J, Ventruba P, et al. The manufacture of xeno- and feeder-free clinical-grade human embryonic stem cell lines: First step for cell therapy. Int. J. Mol. Sci. 2022;23:12500. doi: 10.3390/ijms232012500. PubMed DOI PMC

Tesarova L, Jaresova K, Simara P, Koutna I. Umbilical cord-derived mesenchymal stem cells are able to use bFGF treatment and represent a superb tool for immunosuppressive clinical applications. Int. J. Mol. Sci. 2020;21:5366. doi: 10.3390/ijms21155366. PubMed DOI PMC

Zhu X-Y, Chen Y-H, Zhang T, Liu S-J, Bai X-Y, Huang X-Y, et al. Improvement of human embryonic stem cell-derived retinal pigment epithelium cell adhesion, maturation, and function through coating with truncated recombinant human vitronectin. Int. J. Ophthalmol. 2021;14:1160–1167. doi: 10.18240/ijo.2021.08.04. PubMed DOI PMC

da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 2018;36:328–337. doi: 10.1038/nbt.4114. PubMed DOI

Orozco-Fuentes S, Neganova I, Wadkin LE, Baggaley AW, Barrio RA, Lako M, et al. Quantification of the morphological characteristics of hESC colonies. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-53719-9. PubMed DOI PMC

Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19:193–204. doi: 10.1634/stemcells.19-3-193. PubMed DOI

Moon S-H, Ju J, Park S-J, Bae D, Chung H-M, Lee S-H. Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies. Biomaterials. 2014;35:5987–5997. doi: 10.1016/j.biomaterials.2014.04.001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace