A Comparative Analysis on Prediction Performance of Regression Models during Machining of Composite Materials

. 2021 Nov 06 ; 14 (21) : . [epub] 20211106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34772215

Modeling the interrelationships between the input parameters and outputs (responses) in any machining processes is essential to understand the process behavior and material removal mechanism. The developed models can also act as effective prediction tools in envisaging the tentative values of the responses for given sets of input parameters. In this paper, the application potentialities of nine different regression models, such as linear regression (LR), polynomial regression (PR), support vector regression (SVR), principal component regression (PCR), quantile regression, median regression, ridge regression, lasso regression and elastic net regression are explored in accurately predicting response values during turning and drilling operations of composite materials. Their prediction performance is also contrasted using four statistical metrics, i.e., mean absolute percentage error, root mean squared percentage error, root mean squared logarithmic error and root relative squared error. Based on the lower values of those metrics and Friedman rank and aligned rank tests, SVR emerges out as the best performing model, whereas the prediction performance of median regression is worst. The results of the Wilcoxon test based on the drilling dataset identify the existence of statistically significant differences between the performances of LR and PCR, and PR and median regression models.

Zobrazit více v PubMed

Low I.-M., Dong Y. Composite Materials. Elsevier; Amsterdam, The Netherlands: 2021.

Abrate S., Walton D.A. Machining of composite materials. Part I: Traditional methods. Compos. Manuf. 1992;3:75–83. doi: 10.1016/0956-7143(92)90119-F. DOI

Caggiano A. Machining of fibre reinforced plastic composite materials. Materials. 2018;11:442. doi: 10.3390/ma11030442. PubMed DOI PMC

Chen J.-P., Gu L., He G.-J. A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites. Adv. Manuf. 2020;8:279–315. doi: 10.1007/s40436-020-00313-2. DOI

Mandge V., Ganesh N., Patil H. Multi criteria selection of optimal metal matrix composite machining process parameters. Rest J. Emerg. Trends Model. Manuf. 2018;4:76–82.

Lalmuan S.K., Das S., Chandrasekaran M., Tamang S.K. Machining investigation on hybrid metal matrix composites—A review. Mater. Today Proc. 2017;4:8167–8175. doi: 10.1016/j.matpr.2017.07.158. DOI

Gaitonde V.N., Karnik S.R., Davim J.P. Some studies in metal matrix composites machining using response surface methodology. J. Reinf. Plast. Compos. 2009;28:2445–2457. doi: 10.1177/0731684408092375. DOI

Rajmohan T., Palanikumar K., Kathirvel M. Optimization of machining parameters in drilling hybrid aluminium metal matrix composites. Trans. Nonferrous Met. Soc. China. 2012;22:1286–1297. doi: 10.1016/S1003-6326(11)61317-4. DOI

Rajmohan T., Palanikumar K. Application of the central composite design in optimization of machining parameters in drilling hybrid metal matrix composites. Measurement. 2013;46:1470–1481. doi: 10.1016/j.measurement.2012.11.034. DOI

Joardar H., Das N.S., Sutradhar G., Singh S. Application of response surface methodology for determining cutting force model in turning of LM6/SiCP metal matrix composite. Measurement. 2014;47:452–464. doi: 10.1016/j.measurement.2013.09.023. DOI

Nataraj M., Balasubramanian K. Parametric optimization of CNC turning process for hybrid metal matrix composite. Int. J. Adv. Manuf. Technol. 2017;93:215–224. doi: 10.1007/s00170-016-8780-4. DOI

Butola R., Kanwar S., Tyagi L., Singari R.M., Tyagi M. Optimizing the machining variables in CNC turning of aluminum based hybrid metal matrix composites. SN Appl. Sci. 2020;2:1356. doi: 10.1007/s42452-020-3155-8. DOI

Laghari R.A., Li J., Mia M. Effects of turning parameters and parametric optimization of the cutting forces in machining SiCp/Al 45 wt% composite. Metals. 2020;10:840. doi: 10.3390/met10060840. DOI

Raja K., Chandra Sekar V.S., Vignesh Kumar V., Ramkumar T., Ganeshan P. Microstructure characterization and performance evaluation on AA7075 metal matrix composites using RSM technique. Arab. J. Sci. Eng. 2020;45:9481–9495. doi: 10.1007/s13369-020-04752-8. DOI

Basheer A.C., Dabade U.A., Joshi S.S., Bhanuprasad V.V., Gadre V.M. Modeling of surface roughness in precision machining of metal matrix composites using ANN. J. Mater. Process. Technol. 2008;197:439–444. doi: 10.1016/j.jmatprotec.2007.04.121. DOI

Chandrasekaran M., Devarasiddappa D. Artificial neural network modeling for surface roughness prediction in cylindrical grinding of Al-SiCp metal matrix composites and ANOVA analysis. Adv. Prod. Eng. Manag. 2014;9:59–70. doi: 10.14743/apem2014.2.176. DOI

Das B., Roy S., Rai R.N., Saha S.C. Study on machinability of in situ Al-4.5%Cu-TiC metal matrix composite-surface finish, cutting force prediction using ANN. Cirp J. Manuf. Sci. Technol. 2016;12:67–78. doi: 10.1016/j.cirpj.2015.10.002. DOI

Sheelwant A., Jadhav P.M., Narala S.K.R. NN-GA based parametric optimization of Al-TiB2 metal matrix composite material processing technique. Mater. Today Commun. 2021;27:102444. doi: 10.1016/j.mtcomm.2021.102444. DOI

Abhishek K., Panda B.N., Datta S., Mahapatra S.S. Comparing predictability of genetic programming and ANFIS on drilling performance modeling for GFRP Composites. Procedia Mater. Sci. 2014;6:544–550. doi: 10.1016/j.mspro.2014.07.069. DOI

Laghari R.A., Gupta M.K., Li J. Evolutionary algorithm for the prediction and optimization of SiCp/Al metal matrix composite machining. J. Prod. Syst. Manuf. Sci. 2021;2:59–69.

Laghari R.A., Li J., Laghari A.A., Wang S.-Q. A review on application of soft computing techniques in machining of particle reinforcement metal matrix composites. Arch. Comput. Methods Eng. 2020;27:1363–1377. doi: 10.1007/s11831-019-09340-0. DOI

Mia M., Dhar N.R. Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition. Neural Comput. Appl. 2019;31:2349–2370. doi: 10.1007/s00521-017-3192-4. DOI

Agarwal S., Dandge S.S., Chakraborty S. A support vector machine-based prediction model for electrochemical machining process. Karbala Int. J. Mod. Sci. 2020;6:8. doi: 10.33640/2405-609X.1508. DOI

Reiss P.T., Ogden R.T. Functional principal component regression and functional partial least squares. J. Am. Stat. Assoc. 2007;102:984–996. doi: 10.1198/016214507000000527. DOI

Liu R.X., Kuang J., Gong Q., Hou X.L. Principal component regression analysis with SPSS. Comput. Methods Programs Biomed. 2003;71:141–147. doi: 10.1016/S0169-2607(02)00058-5. PubMed DOI

Agrawal A., Goel S., Rashid W.B., Price M. Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC) Appl. Soft Comput. 2015;30:279–286. doi: 10.1016/j.asoc.2015.01.059. DOI

McGreevy K.M., Lipsitz S.R., Linder J.A., Rimm E., Hoel D.G. Using median regression to obtain adjusted estimates of central tendency for skewed laboratory and epidemiologic data. Clin. Chem. 2009;55:165–169. doi: 10.1373/clinchem.2008.106260. PubMed DOI

Martínez-Martínez J.M., Escandell-Montero P., Soria-Olivas E., Martín-Guerrero J.D., Magdalena-Benedito R., GóMez-Sanchis J. Regularized extreme learning machine for regression problems. Neurocomputing. 2011;74:3716–3721. doi: 10.1016/j.neucom.2011.06.013. DOI

Ranstam J., Cook J.A. LASSO regression. J. Br. Surg. 2018;105:1348. doi: 10.1002/bjs.10895. DOI

Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B. 2005;67:301–320. doi: 10.1111/j.1467-9868.2005.00503.x. DOI

Bhattacharya S., Das P.P., Chatterjee P., Chakraborty S. Prediction of responses in a sustainable dry turning operation: A comparative analysis. Math. Probl. Eng. 2021;2021:9967970. doi: 10.1155/2021/9967970. DOI

Derrac J., Garćia S., Molina D., Herrera F. A practical tutorial on the use of nonparametric tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011;1:3–18. doi: 10.1016/j.swevo.2011.02.002. DOI

Chaudhary G., Kumar M., Verma S., Srivastav A. Optimization of drilling parameters of hybrid metal matrix composites using response surface methodology. Procedia Mater. Sci. 2014;6:229–237. doi: 10.1016/j.mspro.2014.07.028. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...