Development of optimized ensemble machine learning-based prediction models for wire electrical discharge machining processes
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2024/087
Ministry of Education Youth and Sport of Czech Republic and VSB-TUO
PubMed
39375462
PubMed Central
PMC11458828
DOI
10.1038/s41598-024-74291-x
PII: 10.1038/s41598-024-74291-x
Knihovny.cz E-zdroje
- Klíčová slova
- Multi-response S/N ratio, Optimized heterogeneous ensemble, Prediction performance, Response, Wire electrical discharge machining,
- Publikační typ
- časopisecké články MeSH
This paper proposes development of optimized heterogeneous ensemble models for prediction of responses based on given sets of input parameters for wire electrical discharge machining (WEDM) processes, which have found immense applications in many of the present-day manufacturing industries because of their ability to generate complicated 2D and 3D profiles on hard-to-machine engineering materials. These ensembles are developed combining predictions of the three base models, i.e. random forest, support vector machine and ridge regression. These three base models are first framed utilizing the training datasets, providing predictions for all the responses under consideration. Based on these predictions, two optimization problems are formulated for each of the responses, while minimizing root mean squared error and mean absolute error, for subsequent development of two optimized ensembles whose predictions are the weighted sum of the predictions of the base models. The prediction performance of all the five models is ascertained through nine statistical metrics, after which a cumulative quality loss-based multi-response signal-to-noise (MRSN) ratio for each model is computed, for each of the responses, where a higher MRSN ratio indicates greater accuracy in prediction. This study is conducted using two experimental datasets of WEDM process. Overall, the optimized ensemble models having higher MRSN ratios than the base models are indicated to deliver better prediction accuracy.
Department of Industrial and Systems Engineering Indian Institute of Technology Kharagpur India
Department of Production Engineering Jadavpur University Kolkata India
Jadara University Research Center Jadara University Irbid 21110 Jordan
Zobrazit více v PubMed
Mukherjee, R., Chakraborty, S. & Samanta, S. Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms. Appl. Soft Comput. 12, 2506–2516 (2012).
Ho, K. H., Newman, S. T., Rahimifard, S. & Allen, R. D. State of the art in wire electrical discharge machining (WEDM). Int. J. Mach. Tools Manuf. 44, 1247–1259 (2004).
Puri, A. B. & Bhattacharyya, B. An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM. Int. J. Mach. Tools Manuf. 43, 151–159 (2003).
Tsai, H. C., Yan, B. H. & Huang, F. Y. EDM performance of Cr/Cu-based composite electrodes. Int. J. Mach. Tools Manuf. 43, 245–252 (2003).
Sarker, B. & Chakraborty, S. Parametric modelling of a wire electrical discharge machining process using path analysis approach. Int. J. Model. Simul. 42, 902–919 (2022).
Zhang, F. et al. Data-driven and knowledge-guided prediction model of milling tool life grade. Int. J. Comput. Integr. Manuf. 37, 669–684 (2023).
Wu, Q., Zhou, X. & Pan, X. Cutting tool wear monitoring in milling processes by integrating deep residual convolution network and gated recurrent unit with an attention mechanism. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 237, 1171–1181 (2023).
Behera, B. C., Moharana, B. R., Rout, M. & Debnath, K. Application of machine learning in the machining processes, pp. 141–156 (Wiley, 2023).
Wuest, T., Weimer, D., Irgens, C. & Thoben, K. D. Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016).
Bhattacharya, S. & Chakraborty, S. Prediction of responses in a cnc milling operation using random forest regressor. Facta Univ. Ser. Mech. Eng. 21, 685 (2023).
Wang, Z., Yuan, Y., Zhang, S., Lin, Y. & Tan, J. A multi-state fusion informer integrating transfer learning for metal tube bending early wrinkling prediction. Appl. Soft Comput. 151, 110991 (2024).
Xiang, Y. et al. Cross-sectional performance prediction of metal tubes bending with tangential variable boosting based on parameters-weight-adaptive CNN. Expert Syst. Appl. 237, 121465 (2024).
Li, J. et al. Task incremental learning-driven Digital-Twin predictive modeling for customized metal forming product manufacturing process. Robot. Comput. Integr. Manuf. 85, 102647 (2024).
Opitz, D. & Maclin, R. Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169–198 (1999).
Nain, S. S., Garg, D. & Kumar, S. Performance evaluation of the WEDM process of aeronautics super alloy. Mater. Manuf. Process. 33, 1793–1808 (2018).
Ulas, M., Aydur, O., Gurgenc, T. & Ozel, C. Surface roughness prediction of machined aluminum alloy with wire electrical discharge machining by different machine learning algorithms. J. Mater. Res. Technol. 9, 12512–12524 (2020).
Lalwani, V., Sharma, P., Pruncu, C. I. & Unune, D. R. Response surface methodology and artificial neural network-based models for predicting performance of wire electrical discharge machining of Inconel 718 alloy. J. Manuf. Mater. Process. 4, 44 (2020).
Naresh, C., Bose, P. S. C. & Rao, C. S. P. Artificial neural networks and adaptive neuro-fuzzy models for predicting WEDM machining responses of Nitinol alloy: comparative study. SN Appl. Sci. 2, (2020).
Dandge, S. S. & Chakraborty, S. A data mining approach for analysis of a wire electrical discharge machining process, Manag. Prod. Eng. Rev. (2021).
Shanmugasundar, G. et al. A comparative study of linear, random forest and AdaBoost regressions for modeling non-traditional machining. Processes (Basel) 9, 2021 (2015).
Sharma, V., Misra, J. P. & Singhal, S. Surface roughness modeling using machine learning approaches for wire electro-spark machining of titanium alloy. Int. J. Struct. Integr. 13, 999–1012 (2022).
Gurgenc, T. & Altay, O. Surface roughness prediction of wire electric discharge machining (WEDM)-machined AZ91D magnesium alloy using multilayer perceptron, ensemble neural network, and evolving product-unit neural network. Mater. Test. 64, 350–362 (2022).
Saha, S., Gupta, K. K., Maity, S. R. & Dey, S. Data-driven probabilistic performance of Wire EDM: A machine learning based approach. Proc. Inst. Mech. Eng. Pt. B: J. Eng. Manuf. 236, 908–919 (2022).
Verma, A. S. & Singh, S. Experimental investigation and prediction modelling of slicing speed and surface roughness during wafer slicing using WEDM. Eng. Res. Express 4, 035028 (2022).
Ishfaq, K., Sana, M. & Ashraf, W. M. Artificial intelligence–built analysis framework for the manufacturing sector: performance optimization of wire electric discharge machining system. Int. J. Adv. Manuf. Technol. 128, 5025–5039 (2023).
Saha, S., Maity, S. R. & Dey, S. Prediction of WEDM performances using clustering techniques in ANFIS during machining of A286 superalloy. J. Inst. Eng. (India) Ser. C 104, 315–326 (2023).
Jithendra, T., Sharief Basha, S., Das, R. & Gajjela, R. Modeling and optimization of WEDM of monel 400 alloy using ANFIS and snake optimizer: A comparative study. Proc. Inst. Mech. Eng. Part C 238, 1573–1589 (2024).
Natarajan, M. et al. Optimization of wire spark erosion machining of Grade 9 titanium alloy (Grade 9) using a hybrid learning algorithm. AIP Adv. 14, 1 (2024).
Kalule, R., Abderrahmane, H. A., Alameri, W. & Sassi, M. Stacked ensemble machine learning for porosity and absolute permeability prediction of carbonate rock plugs. Sci. Rep. 13, 9855 (2023). PubMed PMC
Fang, Z., Wang, Y., Peng, L. & Hong, H. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Geogr. Inf. Syst. 35, 321–347 February (2021).
Tan, P. N., Steinbach, M. & Kumar, V. Introduction to Data Mining (Pearson Education, Inc., 2006).
Zhou, Z. H. Ensemble Methods (Chapman & Hall/CRC, 2011).
Altman, N. & Krzywinski, M. Ensemble methods: bagging and random forests. Nat. Methods 14, 933–934 (2017).
Montesinos Lopez, O. A., Montesinos Lopez, A. & Crossa, J. Multivariate Statistical Machine Learning Methods for Genomic Prediction 1 edn (Springer Nature, 2022). PubMed
Khanna, R., Awad, M. & Khanna, A. Efficient Learning Machines, Elk, Grove: Apress, (2015).
Bhattacharya, S., Kalita, K., Čep, R. & Chakraborty, S. A comparative analysis on prediction performance of regression models during machining of composite materials. Materials (Basel) 14, 6689 (2021). PubMed PMC
Saleh, A. K. M. E., Arashi, M. & Kibria, B. M. G. Theory of Ridge Regression Estimation with Applications (Wiley, 2019).
Montgomery, D. C., Peck, E. A. & Vining, G. G. Introduction to Linear Regression Analysis (Wiley, 2012).
Mitra, A. Fundamentals of Quality Control and Improvement 5 edn (Wiley, 2021).
Sapkota, G., Ghadai, R. K., Das, S., Das, P. P. & Chakraborty, S. A comparative study on multi-objective optimization of drilling of hybrid aluminium metal matrix composite. Int. J. Interact. Des. Manuf. (IJIDeM) 17, 3177–3187 (2023).
Tong, L. I., Su, C. T. & Wang, C. H. The optimization of multi-response problems in the Taguchi method. Int. J. Qual. Reliab. Manag. 14, 367–380 (1997).
Kumar, H., Manna, A. & Kumar, R. Modeling and desirability approach-based multi-response optimization of WEDM parameters in machining of aluminum metal matrix composite. J Braz Soc. Mech. Sci. Eng 40, 1 (2018).
Chai, T. & Draxler, R. R. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci. Model. Dev. 7, 1247–1250 (2014).
Kumar, A., Sharma, R., Gupta, A. K. & Gujral, R. Investigation of biocompatible implant material through WEDM process using RSM modeling hybrid with the machine learning algorithm. Sadhana 46 (2021).