The Manufacture of Xeno- and Feeder-Free Clinical-Grade Human Embryonic Stem Cell Lines: First Step for Cell Therapy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU22-08-00629
Ministry of Health of the Czech Republic
MUNI/A/1398/2021
Masaryk University, Faculty of Medicine
FNBr, 65269705
MH CZ - DRO
CZ.02.1.01/0.0/0.0/15_003/0000492
European Regional Development Fund
PubMed
36293356
PubMed Central
PMC9604167
DOI
10.3390/ijms232012500
PII: ijms232012500
Knihovny.cz E-zdroje
- Klíčová slova
- cell therapy, clean rooms, clinical grade, hESC, pluripotent stem cells,
- MeSH
- buněčná a tkáňová terapie MeSH
- buněčná diferenciace MeSH
- buněčné kultury MeSH
- buněčné linie MeSH
- embryonální kmenové buňky MeSH
- lidé MeSH
- lidské embryonální kmenové buňky * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Human embryonic stem cells (hESCs) are increasingly used in clinical trials as they can change the outcome of treatment for many human diseases. They are used as a starting material for further differentiation into specific cell types and to achieve the desirable result of the cell therapy; thus, the quality of hESCs has to be taken into account. Therefore, current good manufacturing practice (cGMP) has to be implemented in the transport of embryos, derivation of inner cell mass to xeno-free, feeder-free and defined hESC culture, and cell freezing. The in-depth characterization of hESC lines focused on safety, pluripotency, differentiation potential and genetic background has to complement this process. In this paper, we show the derivation of three clinical-grade hESC lines, MUCG01, MUCG02, and MUCG03, following these criteria. We developed and validated the system for the manufacture of xeno-free and feeder-free clinical-grade hESC lines that present high-quality starting material suitable for cell therapy according to cGMP.
Zobrazit více v PubMed
Thomson J.A. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. PubMed DOI
Plaza Reyes A., Petrus-Reurer S., Antonsson L., Stenfelt S., Bartuma H., Panula S., Mader T., Douagi I., André H., Hovatta O., et al. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model. Stem. Cell Rep. 2016;6:9–17. doi: 10.1016/j.stemcr.2015.11.008. PubMed DOI PMC
Kirkeby A., Nolbrant S., Tiklova K., Heuer A., Kee N., Cardoso T., Ottosson D.R., Lelos M.J., Rifes P., Dunnett S.B., et al. Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of HESC-Based Therapy for Parkinson’s Disease. Cell Stem. Cell. 2017;20:135–148. doi: 10.1016/j.stem.2016.09.004. PubMed DOI PMC
Kanninen L.K., Harjumäki R., Peltoniemi P., Bogacheva M.S., Salmi T., Porola P., Niklander J., Smutný T., Urtti A., Yliperttula M.L., et al. Laminin-511 and Laminin-521-Based Matrices for Efficient Hepatic Specification of Human Pluripotent Stem Cells. Biomaterials. 2016;103:86–100. doi: 10.1016/j.biomaterials.2016.06.054. PubMed DOI
Lo B., Parham L. Ethical Issues in Stem Cell Research. Endocr. Rev. 2009;30:204–213. doi: 10.1210/er.2008-0031. PubMed DOI PMC
Verginer L., Riccaboni M. Stem Cell Legislation and Its Impact on the Geographic Preferences of Stem Cell Researchers. Eurasian Bus Rev. 2021;11:163–189. doi: 10.1007/s40821-021-00182-0. DOI
Schwartz S.D., Regillo C.D., Lam B.L., Eliott D., Rosenfeld P.J., Gregori N.Z., Hubschman J.-P., Davis J.L., Heilwell G., Spirn M., et al. Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium in Patients with Age-Related Macular Degeneration and Stargardt’s Macular Dystrophy: Follow-up of Two Open-Label Phase 1/2 Studies. Lancet. 2015;385:509–516. doi: 10.1016/S0140-6736(14)61376-3. PubMed DOI
Kashani A.H., Lebkowski J.S., Rahhal F.M., Avery R.L., Salehi-Had H., Dang W., Lin C.-M., Mitra D., Zhu D., Thomas B.B., et al. A Bioengineered Retinal Pigment Epithelial Monolayer for Advanced, Dry Age-Related Macular Degeneration. Sci. Transl. Med. 2018;10:eaao4097. doi: 10.1126/scitranslmed.aao4097. PubMed DOI
Mehat M.S., Sundaram V., Ripamonti C., Robson A.G., Smith A.J., Borooah S., Robinson M., Rosenthal A.N., Innes W., Weleber R.G., et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology. 2018;125:1765–1775. doi: 10.1016/j.ophtha.2018.04.037. PubMed DOI PMC
Menasché P., Vanneaux V., Hagège A., Bel A., Cholley B., Parouchev A., Cacciapuoti I., Al-Daccak R., Benhamouda N., Blons H., et al. Transplantation of Human Embryonic Stem Cell–Derived Cardiovascular Progenitors for Severe Ischemic Left Ventricular Dysfunction. J. Am. Coll. Cardiol. 2018;71:429–438. doi: 10.1016/j.jacc.2017.11.047. PubMed DOI
Kobold S., Guhr A., Mah N., Bultjer N., Seltmann S., Seiler Wulczyn A.E.M., Stacey G., Jie H., Liu W., Löser P., et al. A Manually Curated Database on Clinical Studies Involving Cell Products Derived from Human Pluripotent Stem Cells. Stem. Cell Rep. 2020;15:546–555. doi: 10.1016/j.stemcr.2020.06.014. PubMed DOI PMC
Ilic D., Ogilvie C. Pluripotent Stem Cells in Clinical Setting—New Developments and Overview of Current Status. Stem. Cells. 2022;40:sxac040. doi: 10.1093/stmcls/sxac040. PubMed DOI PMC
Ilic D., Devito L., Miere C., Codognotto S. Human Embryonic and Induced Pluripotent Stem Cells in Clinical Trials. Br. Med. Bull. 2015;116:19–27. doi: 10.1093/bmb/ldv045. PubMed DOI
Desgres M., Menasché P. Clinical Translation of Pluripotent Stem Cell Therapies: Challenges and Considerations. Cell Stem. Cell. 2019;25:594–606. doi: 10.1016/j.stem.2019.10.001. PubMed DOI
EudraLex—Volume 4. [(accessed on 22 August 2022)]. Available online: https://health.ec.europa.eu/medicinal-products/eudralex/eudralex-volume-4_en.
Carpenter M.K. Chapter 6—Regulatory Considerations for Pluripotent Stem Cell Therapies. In: Dunnett S.B., Björklund A., editors. Progress in Brain Research. Volume 230. Elsevier; Amsterdam, The Netherlands: 2017. pp. 151–163. Functional Neural Transplantation IV. PubMed
Tannenbaum S.E., Reubinoff B.E. Advances in HPSC Expansion towards Therapeutic Entities: A Review. Cell Prolif. 2022;55:e13247. doi: 10.1111/cpr.13247. PubMed DOI PMC
De Sousa P.A., Downie J.M., Tye B.J., Bruce K., Dand P., Dhanjal S., Serhal P., Harper J., Turner M., Bateman M. Development and Production of Good Manufacturing Practice Grade Human Embryonic Stem Cell Lines as Source Material for Clinical Application. Stem Cell Res. 2016;17:379–390. doi: 10.1016/j.scr.2016.08.011. PubMed DOI
Crook J.M., Stacey G.N. Setting Quality Standards for Stem Cell Banking, Research and Translation: The International Stem Cell Banking Initiative. In: Ilic D., editor. Stem Cell Banking. Springer; New York, NY, USA: 2014. pp. 3–9. Stem Cell Biology and Regenerative Medicine.
Abranches E., Spyrou S., Ludwig T. GMP Banking of Human Pluripotent Stem Cells: A US and UK Perspective. Stem. Cell Res. 2020;45:101805. doi: 10.1016/j.scr.2020.101805. PubMed DOI
Reubinoff B.E., Pera M.F., Fong C.Y., Trounson A., Bongso A. Embryonic Stem Cell Lines from Human Blastocysts: Somatic Differentiation in Vitro. Nat. Biotechnol. 2000;18:399–404. doi: 10.1038/74447. PubMed DOI
Pekkanen-Mattila M., Kerkelä E., Tanskanen J.M.A., Pietilä M., Pelto-Huikko M., Hyttinen J., Skottman H., Suuronen R., Aalto-Setälä K. Substantial Variation in the Cardiac Differentiation of Human Embryonic Stem Cell Lines Derived and Propagated under the Same Conditions—A Comparison of Multiple Cell Lines. Ann. Med. 2009;41:360–370. doi: 10.1080/07853890802609542. PubMed DOI
Skottman H., Mikkola M., Lundin K., Olsson C., Strömberg A., Tuuri T., Otonkoski T., Hovatta O., Lahesmaa R. Gene Expression Signatures of Seven Individual Human Embryonic Stem Cell Lines. Stem. Cells. 2005;23:1343–1356. doi: 10.1634/stemcells.2004-0341. PubMed DOI
Tannenbaum S.E., Turetsky T.T., Singer O., Aizenman E., Kirshberg S., Ilouz N., Gil Y., Berman-Zaken Y., Perlman T.S., Geva N., et al. Derivation of Xeno-Free and GMP-Grade Human Embryonic Stem Cells—Platforms for Future Clinical Applications. PLoS ONE. 2012;7:e35325. doi: 10.1371/journal.pone.0035325. PubMed DOI PMC
Ye J., Bates N., Soteriou D., Grady L., Edmond C., Ross A., Kerby A., Lewis P.A., Adeniyi T., Wright R., et al. High Quality Clinical Grade Human Embryonic Stem Cell Lines Derived from Fresh Discarded Embryos. Stem Cell Res. Ther. 2017;8:128. doi: 10.1186/s13287-017-0561-y. PubMed DOI PMC
Crook J.M., Peura T.T., Kravets L., Bosman A.G., Buzzard J.J., Horne R., Hentze H., Dunn N.R., Zweigerdt R., Chua F., et al. The Generation of Six Clinical-Grade Human Embryonic Stem Cell Lines. Cell Stem. Cell. 2007;1:490–494. doi: 10.1016/j.stem.2007.10.004. PubMed DOI
Albalushi H., Kurek M., Karlsson L., Landreh L., Kjartansdóttir K.R., Söder O., Hovatta O., Stukenborg J.-B. Laminin 521 Stabilizes the Pluripotency Expression Pattern of Human Embryonic Stem Cells Initially Derived on Feeder Cells. [(accessed on 10 January 2019)]. Available online: https://www.hindawi.com/journals/sci/2018/7127042/ PubMed PMC
Närvä E., Pursiheimo J.-P., Laiho A., Rahkonen N., Emani M.R., Viitala M., Laurila K., Sahla R., Lund R., Lähdesmäki H., et al. Continuous Hypoxic Culturing of Human Embryonic Stem Cells Enhances SSEA-3 and MYC Levels. PLoS ONE. 2013;8:e78847. doi: 10.1371/journal.pone.0078847. PubMed DOI PMC
Forristal C.E., Wright K.L., Hanley N.A., Oreffo R.O.C., Houghton F.D. Hypoxia Inducible Factors Regulate Pluripotency and Proliferation in Human Embryonic Stem Cells Cultured at Reduced Oxygen Tensions. Reproduction. 2010;139:85–97. doi: 10.1530/REP-09-0300. PubMed DOI PMC
European Commission. Commission Directive 2006/17/EC of 8 February 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells. Off. J. Eur. Union. 2006;38:40.
Soukupová J., Zemánková P., Kleiblová P., Janatová M., Kleibl Z. CZECANCA: CZEch CAncer paNel for Clinical Application—Design and Optimization of the Targeted Sequencing Panel for the Identification of Cancer Susceptibility in High-risk Individuals from the Czech Republic. Klin. Onkol. 2016;29:S46–S54. doi: 10.14735/amko2016S46. PubMed DOI
Main H., Hedenskog M., Acharya G., Hovatta O., Lanner F. Karolinska Institutet Human Embryonic Stem Cell Bank. Stem. Cell Res. 2020;45:101810. doi: 10.1016/j.scr.2020.101810. PubMed DOI
Kawase E., Takada K., Nakatani R., Yamazaki S., Suemori H. Generation of Clinical-Grade Human Embryonic Stem Cell Line KthES11 According to Japanese Regulations. Stem. Cell Res. 2021;54:102383. doi: 10.1016/j.scr.2021.102383. PubMed DOI
Rodin S., Antonsson L., Niaudet C., Simonson O.E., Salmela E., Hansson E.M., Domogatskaya A., Xiao Z., Damdimopoulou P., Sheikhi M., et al. Clonal Culturing of Human Embryonic Stem Cells on Laminin-521/E-Cadherin Matrix in Defined and Xeno-Free Environment. Nat. Commun. 2014;5:3195. doi: 10.1038/ncomms4195. PubMed DOI
ESHRE Guideline Group on Good Practice in IVF Labs. De los Santos M.J., Apter S., Coticchio G., Debrock S., Lundin K., Plancha C.E., Prados F., Rienzi L., Verheyen G., et al. Revised Guidelines for Good Practice in IVF Laboratories (2015)†. Hum. Reprod. 2016;31:685–686. doi: 10.1093/humrep/dew016. PubMed DOI
Kim S.J., Lee J.E., Park J.H., Lee J.B., Kim J.M., Yoon B.S., Song J.M., Roh S.I., Kim C.G., Yoon H.S. Efficient Derivation of New Human Embryonic Stem Cell Lines. Mol. Cells. 2005;19:46–53. PubMed
Strom S., Inzunza J., Grinnemo K.-H., Holmberg K., Matilainen E., Stromberg A.-M., Blennow E., Hovatta O. Mechanical Isolation of the Inner Cell Mass Is Effective in Derivation of New Human Embryonic Stem Cell Lines. Hum. Reprod. 2007;22:3051–3058. doi: 10.1093/humrep/dem335. PubMed DOI
Merkle F.T., Ghosh S., Genovese G., Handsaker R.E., Kashin S., Meyer D., Karczewski K.J., O’Dushlaine C., Pato C., Pato M., et al. Whole-Genome Analysis of Human Embryonic Stem Cells Enables Rational Line Selection Based on Genetic Variation. Cell Stem. Cell. 2022;29:472–486.e7. doi: 10.1016/j.stem.2022.01.011. PubMed DOI PMC
Buta C., David R., Dressel R., Emgård M., Fuchs C., Gross U., Healy L., Hescheler J., Kolar R., Martin U., et al. Reconsidering Pluripotency Tests: Do We Still Need Teratoma Assays? Stem. Cell Res. 2013;11:552–562. doi: 10.1016/j.scr.2013.03.001. PubMed DOI PMC
Karanu F., Ott L., Webster D.A., Stehno-Bittel L. Improved Harmonization of Critical Characterization Assays across Cell Therapies. Regen. Med. 2020;15:1661–1678. doi: 10.2217/rme-2020-0003. PubMed DOI
Souralova T., Holubcova Z., Kyjovska D., Hampl A., Koutna I. Xeno- and Feeder-Free Derivation of Two Sex-Discordant Sibling Lines of Human Embryonic Stem Cells. Stem Cell Res. 2021;57:102574. doi: 10.1016/j.scr.2021.102574. PubMed DOI