The Manufacture of Xeno- and Feeder-Free Clinical-Grade Human Embryonic Stem Cell Lines: First Step for Cell Therapy

. 2022 Oct 18 ; 23 (20) : . [epub] 20221018

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36293356

Grantová podpora
NU22-08-00629 Ministry of Health of the Czech Republic
MUNI/A/1398/2021 Masaryk University, Faculty of Medicine
FNBr, 65269705 MH CZ - DRO
CZ.02.1.01/0.0/0.0/15_003/0000492 European Regional Development Fund

Human embryonic stem cells (hESCs) are increasingly used in clinical trials as they can change the outcome of treatment for many human diseases. They are used as a starting material for further differentiation into specific cell types and to achieve the desirable result of the cell therapy; thus, the quality of hESCs has to be taken into account. Therefore, current good manufacturing practice (cGMP) has to be implemented in the transport of embryos, derivation of inner cell mass to xeno-free, feeder-free and defined hESC culture, and cell freezing. The in-depth characterization of hESC lines focused on safety, pluripotency, differentiation potential and genetic background has to complement this process. In this paper, we show the derivation of three clinical-grade hESC lines, MUCG01, MUCG02, and MUCG03, following these criteria. We developed and validated the system for the manufacture of xeno-free and feeder-free clinical-grade hESC lines that present high-quality starting material suitable for cell therapy according to cGMP.

Zobrazit více v PubMed

Thomson J.A. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. PubMed DOI

Plaza Reyes A., Petrus-Reurer S., Antonsson L., Stenfelt S., Bartuma H., Panula S., Mader T., Douagi I., André H., Hovatta O., et al. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model. Stem. Cell Rep. 2016;6:9–17. doi: 10.1016/j.stemcr.2015.11.008. PubMed DOI PMC

Kirkeby A., Nolbrant S., Tiklova K., Heuer A., Kee N., Cardoso T., Ottosson D.R., Lelos M.J., Rifes P., Dunnett S.B., et al. Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of HESC-Based Therapy for Parkinson’s Disease. Cell Stem. Cell. 2017;20:135–148. doi: 10.1016/j.stem.2016.09.004. PubMed DOI PMC

Kanninen L.K., Harjumäki R., Peltoniemi P., Bogacheva M.S., Salmi T., Porola P., Niklander J., Smutný T., Urtti A., Yliperttula M.L., et al. Laminin-511 and Laminin-521-Based Matrices for Efficient Hepatic Specification of Human Pluripotent Stem Cells. Biomaterials. 2016;103:86–100. doi: 10.1016/j.biomaterials.2016.06.054. PubMed DOI

Lo B., Parham L. Ethical Issues in Stem Cell Research. Endocr. Rev. 2009;30:204–213. doi: 10.1210/er.2008-0031. PubMed DOI PMC

Verginer L., Riccaboni M. Stem Cell Legislation and Its Impact on the Geographic Preferences of Stem Cell Researchers. Eurasian Bus Rev. 2021;11:163–189. doi: 10.1007/s40821-021-00182-0. DOI

Schwartz S.D., Regillo C.D., Lam B.L., Eliott D., Rosenfeld P.J., Gregori N.Z., Hubschman J.-P., Davis J.L., Heilwell G., Spirn M., et al. Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium in Patients with Age-Related Macular Degeneration and Stargardt’s Macular Dystrophy: Follow-up of Two Open-Label Phase 1/2 Studies. Lancet. 2015;385:509–516. doi: 10.1016/S0140-6736(14)61376-3. PubMed DOI

Kashani A.H., Lebkowski J.S., Rahhal F.M., Avery R.L., Salehi-Had H., Dang W., Lin C.-M., Mitra D., Zhu D., Thomas B.B., et al. A Bioengineered Retinal Pigment Epithelial Monolayer for Advanced, Dry Age-Related Macular Degeneration. Sci. Transl. Med. 2018;10:eaao4097. doi: 10.1126/scitranslmed.aao4097. PubMed DOI

Mehat M.S., Sundaram V., Ripamonti C., Robson A.G., Smith A.J., Borooah S., Robinson M., Rosenthal A.N., Innes W., Weleber R.G., et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology. 2018;125:1765–1775. doi: 10.1016/j.ophtha.2018.04.037. PubMed DOI PMC

Menasché P., Vanneaux V., Hagège A., Bel A., Cholley B., Parouchev A., Cacciapuoti I., Al-Daccak R., Benhamouda N., Blons H., et al. Transplantation of Human Embryonic Stem Cell–Derived Cardiovascular Progenitors for Severe Ischemic Left Ventricular Dysfunction. J. Am. Coll. Cardiol. 2018;71:429–438. doi: 10.1016/j.jacc.2017.11.047. PubMed DOI

Kobold S., Guhr A., Mah N., Bultjer N., Seltmann S., Seiler Wulczyn A.E.M., Stacey G., Jie H., Liu W., Löser P., et al. A Manually Curated Database on Clinical Studies Involving Cell Products Derived from Human Pluripotent Stem Cells. Stem. Cell Rep. 2020;15:546–555. doi: 10.1016/j.stemcr.2020.06.014. PubMed DOI PMC

Ilic D., Ogilvie C. Pluripotent Stem Cells in Clinical Setting—New Developments and Overview of Current Status. Stem. Cells. 2022;40:sxac040. doi: 10.1093/stmcls/sxac040. PubMed DOI PMC

Ilic D., Devito L., Miere C., Codognotto S. Human Embryonic and Induced Pluripotent Stem Cells in Clinical Trials. Br. Med. Bull. 2015;116:19–27. doi: 10.1093/bmb/ldv045. PubMed DOI

Desgres M., Menasché P. Clinical Translation of Pluripotent Stem Cell Therapies: Challenges and Considerations. Cell Stem. Cell. 2019;25:594–606. doi: 10.1016/j.stem.2019.10.001. PubMed DOI

EudraLex—Volume 4. [(accessed on 22 August 2022)]. Available online: https://health.ec.europa.eu/medicinal-products/eudralex/eudralex-volume-4_en.

Carpenter M.K. Chapter 6—Regulatory Considerations for Pluripotent Stem Cell Therapies. In: Dunnett S.B., Björklund A., editors. Progress in Brain Research. Volume 230. Elsevier; Amsterdam, The Netherlands: 2017. pp. 151–163. Functional Neural Transplantation IV. PubMed

Tannenbaum S.E., Reubinoff B.E. Advances in HPSC Expansion towards Therapeutic Entities: A Review. Cell Prolif. 2022;55:e13247. doi: 10.1111/cpr.13247. PubMed DOI PMC

De Sousa P.A., Downie J.M., Tye B.J., Bruce K., Dand P., Dhanjal S., Serhal P., Harper J., Turner M., Bateman M. Development and Production of Good Manufacturing Practice Grade Human Embryonic Stem Cell Lines as Source Material for Clinical Application. Stem Cell Res. 2016;17:379–390. doi: 10.1016/j.scr.2016.08.011. PubMed DOI

Crook J.M., Stacey G.N. Setting Quality Standards for Stem Cell Banking, Research and Translation: The International Stem Cell Banking Initiative. In: Ilic D., editor. Stem Cell Banking. Springer; New York, NY, USA: 2014. pp. 3–9. Stem Cell Biology and Regenerative Medicine.

Abranches E., Spyrou S., Ludwig T. GMP Banking of Human Pluripotent Stem Cells: A US and UK Perspective. Stem. Cell Res. 2020;45:101805. doi: 10.1016/j.scr.2020.101805. PubMed DOI

Reubinoff B.E., Pera M.F., Fong C.Y., Trounson A., Bongso A. Embryonic Stem Cell Lines from Human Blastocysts: Somatic Differentiation in Vitro. Nat. Biotechnol. 2000;18:399–404. doi: 10.1038/74447. PubMed DOI

Pekkanen-Mattila M., Kerkelä E., Tanskanen J.M.A., Pietilä M., Pelto-Huikko M., Hyttinen J., Skottman H., Suuronen R., Aalto-Setälä K. Substantial Variation in the Cardiac Differentiation of Human Embryonic Stem Cell Lines Derived and Propagated under the Same Conditions—A Comparison of Multiple Cell Lines. Ann. Med. 2009;41:360–370. doi: 10.1080/07853890802609542. PubMed DOI

Skottman H., Mikkola M., Lundin K., Olsson C., Strömberg A., Tuuri T., Otonkoski T., Hovatta O., Lahesmaa R. Gene Expression Signatures of Seven Individual Human Embryonic Stem Cell Lines. Stem. Cells. 2005;23:1343–1356. doi: 10.1634/stemcells.2004-0341. PubMed DOI

Tannenbaum S.E., Turetsky T.T., Singer O., Aizenman E., Kirshberg S., Ilouz N., Gil Y., Berman-Zaken Y., Perlman T.S., Geva N., et al. Derivation of Xeno-Free and GMP-Grade Human Embryonic Stem Cells—Platforms for Future Clinical Applications. PLoS ONE. 2012;7:e35325. doi: 10.1371/journal.pone.0035325. PubMed DOI PMC

Ye J., Bates N., Soteriou D., Grady L., Edmond C., Ross A., Kerby A., Lewis P.A., Adeniyi T., Wright R., et al. High Quality Clinical Grade Human Embryonic Stem Cell Lines Derived from Fresh Discarded Embryos. Stem Cell Res. Ther. 2017;8:128. doi: 10.1186/s13287-017-0561-y. PubMed DOI PMC

Crook J.M., Peura T.T., Kravets L., Bosman A.G., Buzzard J.J., Horne R., Hentze H., Dunn N.R., Zweigerdt R., Chua F., et al. The Generation of Six Clinical-Grade Human Embryonic Stem Cell Lines. Cell Stem. Cell. 2007;1:490–494. doi: 10.1016/j.stem.2007.10.004. PubMed DOI

Albalushi H., Kurek M., Karlsson L., Landreh L., Kjartansdóttir K.R., Söder O., Hovatta O., Stukenborg J.-B. Laminin 521 Stabilizes the Pluripotency Expression Pattern of Human Embryonic Stem Cells Initially Derived on Feeder Cells. [(accessed on 10 January 2019)]. Available online: https://www.hindawi.com/journals/sci/2018/7127042/ PubMed PMC

Närvä E., Pursiheimo J.-P., Laiho A., Rahkonen N., Emani M.R., Viitala M., Laurila K., Sahla R., Lund R., Lähdesmäki H., et al. Continuous Hypoxic Culturing of Human Embryonic Stem Cells Enhances SSEA-3 and MYC Levels. PLoS ONE. 2013;8:e78847. doi: 10.1371/journal.pone.0078847. PubMed DOI PMC

Forristal C.E., Wright K.L., Hanley N.A., Oreffo R.O.C., Houghton F.D. Hypoxia Inducible Factors Regulate Pluripotency and Proliferation in Human Embryonic Stem Cells Cultured at Reduced Oxygen Tensions. Reproduction. 2010;139:85–97. doi: 10.1530/REP-09-0300. PubMed DOI PMC

European Commission. Commission Directive 2006/17/EC of 8 February 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells. Off. J. Eur. Union. 2006;38:40.

Soukupová J., Zemánková P., Kleiblová P., Janatová M., Kleibl Z. CZECANCA: CZEch CAncer paNel for Clinical Application—Design and Optimization of the Targeted Sequencing Panel for the Identification of Cancer Susceptibility in High-risk Individuals from the Czech Republic. Klin. Onkol. 2016;29:S46–S54. doi: 10.14735/amko2016S46. PubMed DOI

Main H., Hedenskog M., Acharya G., Hovatta O., Lanner F. Karolinska Institutet Human Embryonic Stem Cell Bank. Stem. Cell Res. 2020;45:101810. doi: 10.1016/j.scr.2020.101810. PubMed DOI

Kawase E., Takada K., Nakatani R., Yamazaki S., Suemori H. Generation of Clinical-Grade Human Embryonic Stem Cell Line KthES11 According to Japanese Regulations. Stem. Cell Res. 2021;54:102383. doi: 10.1016/j.scr.2021.102383. PubMed DOI

Rodin S., Antonsson L., Niaudet C., Simonson O.E., Salmela E., Hansson E.M., Domogatskaya A., Xiao Z., Damdimopoulou P., Sheikhi M., et al. Clonal Culturing of Human Embryonic Stem Cells on Laminin-521/E-Cadherin Matrix in Defined and Xeno-Free Environment. Nat. Commun. 2014;5:3195. doi: 10.1038/ncomms4195. PubMed DOI

ESHRE Guideline Group on Good Practice in IVF Labs. De los Santos M.J., Apter S., Coticchio G., Debrock S., Lundin K., Plancha C.E., Prados F., Rienzi L., Verheyen G., et al. Revised Guidelines for Good Practice in IVF Laboratories (2015)†. Hum. Reprod. 2016;31:685–686. doi: 10.1093/humrep/dew016. PubMed DOI

Kim S.J., Lee J.E., Park J.H., Lee J.B., Kim J.M., Yoon B.S., Song J.M., Roh S.I., Kim C.G., Yoon H.S. Efficient Derivation of New Human Embryonic Stem Cell Lines. Mol. Cells. 2005;19:46–53. PubMed

Strom S., Inzunza J., Grinnemo K.-H., Holmberg K., Matilainen E., Stromberg A.-M., Blennow E., Hovatta O. Mechanical Isolation of the Inner Cell Mass Is Effective in Derivation of New Human Embryonic Stem Cell Lines. Hum. Reprod. 2007;22:3051–3058. doi: 10.1093/humrep/dem335. PubMed DOI

Merkle F.T., Ghosh S., Genovese G., Handsaker R.E., Kashin S., Meyer D., Karczewski K.J., O’Dushlaine C., Pato C., Pato M., et al. Whole-Genome Analysis of Human Embryonic Stem Cells Enables Rational Line Selection Based on Genetic Variation. Cell Stem. Cell. 2022;29:472–486.e7. doi: 10.1016/j.stem.2022.01.011. PubMed DOI PMC

Buta C., David R., Dressel R., Emgård M., Fuchs C., Gross U., Healy L., Hescheler J., Kolar R., Martin U., et al. Reconsidering Pluripotency Tests: Do We Still Need Teratoma Assays? Stem. Cell Res. 2013;11:552–562. doi: 10.1016/j.scr.2013.03.001. PubMed DOI PMC

Karanu F., Ott L., Webster D.A., Stehno-Bittel L. Improved Harmonization of Critical Characterization Assays across Cell Therapies. Regen. Med. 2020;15:1661–1678. doi: 10.2217/rme-2020-0003. PubMed DOI

Souralova T., Holubcova Z., Kyjovska D., Hampl A., Koutna I. Xeno- and Feeder-Free Derivation of Two Sex-Discordant Sibling Lines of Human Embryonic Stem Cells. Stem Cell Res. 2021;57:102574. doi: 10.1016/j.scr.2021.102574. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Truncated vitronectin with E-cadherin enables the xeno-free derivation of human embryonic stem cells

. 2023 Sep 12 ; 13 (1) : 15062. [epub] 20230912

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...