Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30805009
PubMed Central
PMC6360551
DOI
10.1155/2019/5909524
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The wide use of human multipotent mesenchymal stromal cells (MSCs) in clinical trials requires a full-scale safety and identity evaluation of the cellular product and subsequent transportation between research/medical centres. This necessitates the prolonged hypothermic storage of cells prior to application. The development of new, nontoxic, and efficient media, providing high viability and well-preserved therapeutic properties of MSCs during hypothermic storage, is highly relevant for a successful clinical outcome. In this study, a simple and effective trehalose-based solution was developed for the hypothermic storage of human bone marrow MSC suspensions for further clinical applications. Human bone marrow MSCs were stored at 4°C for 24, 48, and 72 hrs in the developed buffered trehalose solution and compared to several research and clinical grade media: Plasma-Lyte® 148, HypoThermosol® FRS, and Ringer's solution. After the storage, the preservation of viability, identity, and therapeutically associated properties of MSCs were assessed. The hypothermic storage of MSCs in the new buffered trehalose solution provided significantly higher MSC recovery rates and ability of cells for attachment and further proliferation, compared to Plasma-Lyte® 148 and Ringer's solution, and was comparable to research-grade HypoThermosol® FRS. There were no differences in the immunophenotype, osteogenic, and adipogenic differentiation and the immunomodulatory properties of MSCs after 72 hrs of cold storage in these solutions. The obtained results together with the confirmed therapeutic properties of trehalose previously described provide sufficient evidence that the developed trehalose medium can be applied as a low-cost and efficient solution for the hypothermic storage of MSC suspensions, with a high potential for translation into clinical practice.
Bioinova Ltd Prague Czech Republic
Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czech Republic
Institute of Neuroimmunology Slovak Academy of Sciences Bratislava Slovakia
Zobrazit více v PubMed
Teixeira F. G., Carvalho M. M., Sousa N., Salgado A. J. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cellular and Molecular Life Sciences. 2013;70(20):3871–3882. doi: 10.1007/s00018-013-1290-8. PubMed DOI PMC
Marquez-Curtis L. A., Janowska-Wieczorek A., McGann L. E., Elliott J. A. W. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology. 2015;71(2):181–197. doi: 10.1016/j.cryobiol.2015.07.003. PubMed DOI
Oikonomopoulos A., Van Deen W. K., Manansala A.-R., et al. Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Scientific Reports. 2015;5(1, article 16570) doi: 10.1038/srep16570. PubMed DOI PMC
Wuchter P., Bieback K., Schrezenmeier H., et al. Standardization of Good Manufacturing Practice–compliant production of bone marrow–derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy. 2015;17(2):128–139. doi: 10.1016/j.jcyt.2014.04.002. PubMed DOI
Sensebé L., Bourin P., Tarte K. Good manufacturing practices production of mesenchymal stem/stromal cells. Human Gene Therapy. 2011;22(1):19–26. doi: 10.1089/hum.2010.197. PubMed DOI
Thirumala S., Goebel W. S., Woods E. J. Manufacturing and banking of mesenchymal stem cells. Expert Opinion on Biological Therapy. 2013;13(5):673–691. doi: 10.1517/14712598.2013.763925. PubMed DOI
Galvez P., Clares B., Bermejo M., Hmadcha A., Soria B. Standard requirement of a microbiological quality control program for the manufacture of human mesenchymal stem cells for clinical use. Stem Cells and Development. 2014;23(10):1074–1083. doi: 10.1089/scd.2013.0625. PubMed DOI PMC
Coopman K., Medcalf N. StemBook. Cambridge, MA, USA: Harvard Stem Cell Institute; 2014. From production to patient: challenges and approaches for delivering cell therapies; pp. 1–11. PubMed DOI
Questions and answers on allogenic stem cell-based products for veterinary use: specific questions on sterility. https://www.ema.europa.eu/documents/scientific-guideline/questions-answers-allogenic-stem-cell-based-products-veterinary-use-specific-questions-sterility_en.pdf.
Parveen S., Kaur S., David S. A., Kenney J. L., McCormick W. M., Gupta R. K. Evaluation of growth based rapid microbiological methods for sterility testing of vaccines and other biological products. Vaccine. 2011;29(45):8012–8023. doi: 10.1016/j.vaccine.2011.08.055. PubMed DOI
Fuller B. J., Petrenko A. Y., Rodriguez J. V., Somov A. Y., Balaban C. L., Guibert E. E. Biopreservation of hepatocytes: current concepts on hypothermic preservation, cryopreservation, and vitrification. CryoLetters. 2013;34(4):432–452. PubMed
Guibert E. E., Petrenko A. Y., Balaban C. L., Somov A. Y., Rodriguez J. V., Fuller B. J. Organ preservation: current concepts and new strategies for the next decade. Transfusion Medicine and Hemotherapy. 2011;38(2):125–142. doi: 10.1159/000327033. PubMed DOI PMC
Mathew A. J., Baust J. M., Van Buskirk R. G., Baust J. G. Cell preservation in reparative and regenerative medicine: evolution of individualized solution composition. Tissue Engineering. 2004;10(11-12):1662–1671. doi: 10.1089/ten.2004.10.1662. PubMed DOI
Post I. C. J. H., de Boon W. M. I., Heger M., et al. Endothelial cell preservation at hypothermic to normothermic conditions using clinical and experimental organ preservation solutions. Experimental Cell Research. 2013;319(17):2501–2513. doi: 10.1016/j.yexcr.2013.05.011. PubMed DOI
Fuller B. J., Shurey C., Lane N., Petrenko A., Green C. Hypothermic renal preservation with a sucrose/polyethylene glycol solution in a rabbit renal transplant model. CryoLetters. 2006;27(2):127–132. PubMed
Hawkins M., Sales K. M., Dijk S., Fuller B. Cold preservation of endothelial cells in sucrose-based solution (SbS) and University of Wisconsin (UW) solutions: comparison of normoxic or hypoxic storage. CryoLetters. 2005;26(6):379–386. PubMed
Tarusin D. N., Petrenko Y. A., Semenchenko O. A., Mutsenko V. V., Zaikov V. S., Petrenko A. Y. Efficiency of the sucrose-based solution and UW solution for hypothermic storage of human mesenchymal stromal cells in suspension or within alginate microspheres. Problems of Cryobiology and Cryomedicine. 2015;25(4):329–339. doi: 10.15407/cryo25.04.329. DOI
Corwin W. L., Baust J. M., Baust J. G., Van Buskirk R. G. Characterization and modulation of human mesenchymal stem cell stress pathway response following hypothermic storage. Cryobiology. 2014;68(2):215–226. doi: 10.1016/j.cryobiol.2014.01.014. PubMed DOI PMC
Ostrowska A., Gu K., Bode D. C., van Buskirk R. G. Hypothermic storage of isolated human hepatocytes: a comparison between University of Wisconsin solution and a hypothermosol platform. Archives of Toxicology. 2009;83(5):493–502. doi: 10.1007/s00204-009-0419-x. PubMed DOI
Ginis I., Grinblat B., Shirvan M. H. Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Tissue Engineering Part C: Methods. 2012;18(6):453–463. doi: 10.1089/ten.tec.2011.0395. PubMed DOI
Rossetti T., Nicholls F., Modo M. Intracerebral cell implantation: preparation and characterization of cell suspensions. Cell Transplantation. 2016;25(4):645–664. doi: 10.3727/096368915X690350. PubMed DOI
Williams L. B., Co C., Koenig J. B., Tse C., Lindsay E., Koch T. G. Response to intravenous allogeneic equine cord blood-derived mesenchymal stromal cells administered from chilled or frozen state in serum and protein-free media. Frontiers in Veterinary Science. 2016;3:p. 56. doi: 10.3389/fvets.2016.00056. PubMed DOI PMC
Parekkadan B., Sethu P., van Poll D., Yarmush M. L., Toner M. Osmotic selection of human mesenchymal stem/progenitor cells from umbilical cord blood. Tissue Engineering. 2007;13(10):2465–2473. doi: 10.1089/ten.2007.0054. PubMed DOI
Nicolay N. H., Lopez Perez R., Saffrich R., Huber P. E. Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget. 2015;6(23):19366–19380. doi: 10.18632/oncotarget.4358. PubMed DOI PMC
Xu X., Liu Y., Cui Z., Wei Y., Zhang L. Effects of osmotic and cold shock on adherent human mesenchymal stem cells during cryopreservation. Journal of Biotechnology. 2012;162(2-3):224–231. doi: 10.1016/j.jbiotec.2012.09.004. PubMed DOI
Buravkova L. B., Andreeva E. R., Gogvadze V., Zhivotovsky B. Mesenchymal stem cells and hypoxia: where are we? Mitochondrion. 2014;19:105–112. doi: 10.1016/j.mito.2014.07.005. PubMed DOI
Andreeva E. R., Lobanova M. V., Udartseva O. O., Buravkova L. B. Response of adipose tissue-derived stromal cells in tissue-related O2 microenvironment to short-term hypoxic stress. Cells Tissues Organs. 2015;200(5):307–315. doi: 10.1159/000438921. PubMed DOI
Koci Z., Vyborny K., Dubisova J., et al. Extracellular matrix hydrogel derived from human umbilical cord as a scaffold for neural tissue repair and Its comparison with extracellular matrix from porcine tissues. Tissue Engineering Part C: Methods. 2017;23(6):333–345. doi: 10.1089/ten.tec.2017.0089. PubMed DOI
Petrenko Y., Syková E., Čejková J., Vacková I., Groh T. A Device for Storage, Transport and Application of Stem Cells. Institute of Experimental Medicine AS CR; 2017.
Rampersad S. N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors. 2012;12(9):12347–12360. doi: 10.3390/s120912347. PubMed DOI PMC
Petrenko Y. A., Gorokhova N. A., Tkachova E. N., Petrenko A. Y. The reduction of Alamar Blue by peripheral blood lymphocytes and isolated mitochondria. Ukrainskii Biokhimicheskii Zhurnal. 2005;77(5):100–105. PubMed
Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905. PubMed DOI
Amati E., Sella S., Perbellini O., et al. Generation of mesenchymal stromal cells from cord blood: evaluation of in vitro quality parameters prior to clinical use. Stem Cell Research & Therapy. 2017;8(1):p. 14. doi: 10.1186/s13287-016-0465-2. PubMed DOI PMC
Ma S., Xie N., Li W., Yuan B., Shi Y., Wang Y. Immunobiology of mesenchymal stem cells. Cell Death & Differentiation. 2014;21(2):216–225. doi: 10.1038/cdd.2013.158. PubMed DOI PMC
Chen Y., Yu B., Xue G., et al. Effects of storage solutions on the viability of human umbilical cord mesenchymal stem cells for transplantation. Cell Transplantation. 2013;22(6):1075–1086. doi: 10.3727/096368912X657602. PubMed DOI
Pal R., Hanwate M., Totey S. M. Effect of holding time, temperature and different parenteral solutions on viability and functionality of adult bone marrow-derived mesenchymal stem cells before transplantation. Journal of Tissue Engineering and Regenerative Medicine. 2008;2(7):436–444. doi: 10.1002/term.109. PubMed DOI
Pogozhykh D., Prokopyuk V., Pogozhykh O., Mueller T., Prokopyuk O. Influence of factors of cryopreservation and hypothermic storage on survival and functional parameters of multipotent stromal cells of placental origin. PLoS One. 2015;10(10, article e0139834) doi: 10.1371/journal.pone.0139834. PubMed DOI PMC
Swioklo S., Constantinescu A., Connon C. J. Alginate-encapsulation for the improved hypothermic preservation of human adipose-derived stem cells. Stem Cells Translational Medicine. 2016;5(3):339–349. doi: 10.5966/sctm.2015-0131. PubMed DOI PMC
Shanina I. V., Kravchenko L. P., Fuller B. J., Grischenko V. I. A comparison of a sucrose-based solution with other preservation media for cold storage of isolated hepatocytes. Cryobiology. 2000;41(4):315–318. doi: 10.1006/cryo.2000.2286. PubMed DOI
Di G., Wang J., Liu M., Wu C. T., Han Y., Duan H. Development and evaluation of a trehalose-contained solution formula to preserve hUC-MSCs at 4°C. Journal of Cellular Physiology. 2012;227(3):879–884. doi: 10.1002/jcp.23066. PubMed DOI
Kravchenko L. P., Petrenko A. Y., Somov A. Y., Grischenko V. I., Fuller B. J. Respiratory activity of isolated rat hepatocytes following cold storage and subsequent rewarming: a comparison of sucrose-based and University of Wisconsin solutions. Cryobiology. 2001;42(3):218–221. doi: 10.1006/cryo.2001.2317. PubMed DOI
Mamprin M. E., Petrocelli S., Guibert E., Rodriguez J. A novel BES-gluconate-sucrose (BGS) solution for cold storage of isolated hepatocytes. CryoLetters. 2008;29(2):121–133. PubMed
Katayama M., Tsuchiaka S., Motegi T., et al. High-molecular-weight polyethylene glycol enhances hypothermic storage of feline kidney cells. The Journal of Veterinary Medical Science. 2014;76(6):923–926. doi: 10.1292/jvms.13-0565. PubMed DOI PMC
Baust J. M., Van Buskirk R., Baust J. G. Modulation of the cryopreservation cap: elevated survival with reduced dimethyl sulfoxide concentration. Cryobiology. 2002;45(2):97–108. doi: 10.1016/S0011-2240(02)00100-1. PubMed DOI
Luyckx J., Baudouin C. Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology. Clinical Ophthalmology. 2011;5:577–581. doi: 10.2147/OPTH.S18827. PubMed DOI PMC
Elbein A. D., Pan Y. T., Pastuszak I., Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13(4):17R–27R. doi: 10.1093/glycob/cwg047. PubMed DOI
Hovakimyan M., Ramoth T., Lobler M., et al. Evaluation of protective effects of trehalose on desiccation of epithelial cells in three dimensional reconstructed human corneal epithelium. Current Eye Research. 2012;37(11):982–989. doi: 10.3109/02713683.2012.700754. PubMed DOI
Hill-Bator A., Misiuk-Hojlo M., Marycz K., Grzesiak J. Trehalose-based eye drops preserve viability and functionality of cultured human corneal epithelial cells during desiccation. BioMed Research International. 2014;2014:8. doi: 10.1155/2014/292139.292139 PubMed DOI PMC
Cejkova J., Ardan T., Cejka C., Luyckx J. Favorable effects of trehalose on the development of UVB-mediated antioxidant/pro-oxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefe's Archive for Clinical and Experimental Ophthalmology. 2011;249(8):1185–1194. doi: 10.1007/s00417-011-1676-y. PubMed DOI
Petrenko Y. A., Rogulska O. Y., Mutsenko V. V., Petrenko A. Y. A sugar pretreatment as a new approach to the Me2SO- and xeno-free cryopreservation of human mesenchymal stromal cells. CryoLetters. 2014;35(3):239–246. PubMed
Huang H., Zhao G., Zhang Y., Xu J., Toth T. L., He X. Predehydration and ice seeding in the presence of trehalose enable cell cryopreservation. ACS Biomaterials Science & Engineering. 2017;3(8):1758–1768. doi: 10.1021/acsbiomaterials.7b00201. PubMed DOI PMC
Čejková J., Čejka Č., Ardan T., Širc J., Michálek J., Luyckx J. Reduced UVB-induced corneal damage caused by reactive oxygen and nitrogen species and decreased changes in corneal optics after trehalose treatment. Histology and Histopathology. 2010;25(11):1403–1416. doi: 10.14670/HH-25.1403. PubMed DOI
Mateo Orobia A. J., Pascual P. C., Cristóbal Bescós J. Á., et al. Effects of 3% trehalose as an adjuvant treatment after LASIK. Clinical Ophthalmology. 2017;11:347–353. doi: 10.2147/OPTH.S125203. PubMed DOI PMC
Čejková J., Čejka Č., Luyckx J. Trehalose treatment accelerates the healing of UVB-irradiated corneas. Comparative immunohistochemical studies on corneal cryostat sections and corneal impression cytology. Histology and Histopathology. 2012;27(8):1029–1040. doi: 10.14670/HH-27.1029. PubMed DOI
Emanuele E. Can trehalose prevent neurodegeneration? Insights from experimental studies. Current Drug Targets. 2014;15(5):551–557. doi: 10.2174/1389450115666140225104705. PubMed DOI
Casarejos M. J., Solano R. M., Gomez A., Perucho J., de Yebenes J. G., Mena M. A. The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells. Neurochemistry International. 2011;58(4):512–520. doi: 10.1016/j.neuint.2011.01.008. PubMed DOI
Public summary of opinion on orphan designation. Trehalose for the treatment of spinocerebellar ataxia. https://www.ema.europa.eu/docs/en_GB/document_library/Orphan_designation/2015/07/WC500190623.pdf.