Hypothermic Storage of 3D Cultured Multipotent Mesenchymal Stromal Cells for Regenerative Medicine Applications

. 2022 Jun 23 ; 14 (13) : . [epub] 20220623

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35808601

Grantová podpora
NV-19-06-00355 Czech Health Research Council

The regulatory requirements in cell processing, in the choice of a biomaterial scaffold and in quality control analysis, have to be followed in the clinical application of tissue-engineered grafts. Confirmation of sterility during quality control studies requires prolonged storage of the cell-based construct. After storage, preservation of the functional properties of the cells is an important prerequisite if the cells are to be used for cell-based tissue therapies. The study presented here shows the generation of 3D constructs based on Wharton's jelly multipotent mesenchymal stromal cells (WJ-MSCs) and the clinically-acceptable HyaloFast® scaffold, and the effect of two- and six-day hypothermic storage of 3D cell-based constructs on the functional properties of populated cells. To study the viability, growth, gene expression, and paracrine secretion of WJ-MSCs within the scaffolds before and after storage, xeno-free culture conditions, metabolic, qPCR, and multiplex assays were applied. The WJ-MSCs adhered and proliferated within the 3D HyaloFast®. Our results show different viability of the cells after the 3D constructs have been stored under mild (25 °C) or strong (4 °C) hypothermia. At 4 °C, the significant decrease of metabolic activity of WJ-MSCs was detected after 2 days of storage, with almost complete cell loss after 6 days. In mild hypothermia (25 °C) the decrease in metabolic activity was less remarkable, confirming the suitability of these conditions for cell preservation in 3D environment. The significant changes were detected in gene expression and in the paracrine secretion profile after 2 and 6 days of storage at 25 °C. The results presented in this study are important for the rapid transfer of tissue engineering approaches into clinical applications.

Zobrazit více v PubMed

Andrzejewska A., Lukomska B., Janowski M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells. 2019;37:855–864. doi: 10.1002/stem.3016. PubMed DOI PMC

Phinney D.G., Pittenger M.F. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells. 2017;35:851–858. doi: 10.1002/stem.2575. PubMed DOI

Zhou Y., Yamamoto Y., Xiao Z., Ochiya T. The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity. J. Clin. Med. 2019;8:1025. doi: 10.3390/jcm8071025. PubMed DOI PMC

Petrenko Y., Vackova I., Kekulova K., Chudickova M., Koci Z., Turnovcova K., Skalnikova H.K., Vodicka P., Kubinova S. A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Sci. Rep. 2020;10:4290. doi: 10.1038/s41598-020-61167-z. PubMed DOI PMC

Kalaszczynska I., Ferdyn K. Wharton’s Jelly Derived Mesenchymal Stem Cells: Future of Regenerative Medicine? Recent Findings and Clinical Significance. BioMed Res. Int. 2015;2015:1–11. doi: 10.1155/2015/430847. PubMed DOI PMC

Wong S.W., Lenzini S., Giovanni R., Knowles K., Shin J.-W. Matrix biophysical cues direct mesenchymal stromal cell functions in immunity. Acta Biomater. 2021;133:126–138. doi: 10.1016/j.actbio.2021.07.075. PubMed DOI PMC

Follin B., Juhl M., Cohen S., Perdersen A.E., Kastrup J., Ekblond A. Increased Paracrine Immunomodulatory Potential of Mesenchymal Stromal Cells in Three-Dimensional Culture. Tissue Eng. Part B Rev. 2016;22:1–26. doi: 10.1089/ten.teb.2015.0532. PubMed DOI PMC

Petrenko Y., Syková E., Kubinová Š. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Res. Ther. 2017;8:94. doi: 10.1186/s13287-017-0558-6. PubMed DOI PMC

De Cássia Noronha N., Mizukami A., Caliári-Oliveira C., Cominal J.G., Rocha J.L.M., Covas D.T., Swiech K., Malmegrim K.C.R. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res. Ther. 2019;10:131. doi: 10.1186/s13287-019-1224-y. PubMed DOI PMC

Park I.S., Rhie J.-W., Kim S.-H. A novel three-dimensional adipose-derived stem cell cluster for vascular regeneration in ischemic tissue. Cytotherapy. 2014;16:508–522. doi: 10.1016/j.jcyt.2013.08.011. PubMed DOI

Bhang S.H., Lee S., Shin J.-Y., Lee T.-J., Kim B.-S. Transplantation of Cord Blood Mesenchymal Stem Cells as Spheroids Enhances Vascularization. Tissue Eng. Part A. 2012;18:2138–2147. doi: 10.1089/ten.tea.2011.0640. PubMed DOI PMC

Drzeniek N.M., Mazzocchi A., Schlickeiser S., Forsythe S.D., Moll G., Geissler S., Reinke P., Gossen M., Gorantla V.S., Volk H.-D., et al. Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells. Biofabrication. 2021;13:045002. doi: 10.1088/1758-5090/ac0a32. PubMed DOI PMC

Qazi T.H., Mooney D., Duda G.N., Geissler S. Niche-mimicking interactions in peptide-functionalized 3D hydrogels amplify mesenchymal stromal cell paracrine effects. Biomaterials. 2020;230:119639. doi: 10.1016/j.biomaterials.2019.119639. PubMed DOI

Costa M.H.G., McDevitt T.C., Cabral J.M., da Silva C.L., Ferreira F.C. Tridimensional configurations of human mesenchymal stem/stromal cells to enhance cell paracrine potential towards wound healing processes. J. Biotechnol. 2017;262:28–39. doi: 10.1016/j.jbiotec.2017.09.020. PubMed DOI

Vindigni V., Cortivo R., Iacobellis L., Abatangelo G., Zavan B. Hyaluronan Benzyl Ester as a Scaffold for Tissue Engineering. Int. J. Mol. Sci. 2009;10:2972–2985. doi: 10.3390/ijms10072972. PubMed DOI PMC

Tsanaktsidou E., Kammona O., Kiparissides C. Recent Developments in Hyaluronic Acid-Based Hydrogels for Cartilage Tissue Engineering Applications. Polymers. 2022;14:839. doi: 10.3390/polym14040839. PubMed DOI PMC

Abbas M., Alkaff M., Jilani A., Alsehli H., Damiati L., Kotb M., Abdelwahed M., Alghamdi F., Kalamegam G. Combination of Mesenchymal Stem Cells, Cartilage Pellet and Bioscaffold Supported Cartilage Regeneration of a Full Thickness Articular Surface Defect in Rabbits. Tissue Eng. Regen. Med. 2018;15:661–671. doi: 10.1007/s13770-018-0131-0. PubMed DOI PMC

Gobbi A., Scotti C., Karnatzikos G., Mudhigere A., Castro M., Peretti G. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surgery, Sports Traumatol. Arthrosc. 2017;25:2494–2501. doi: 10.1007/s00167-016-3984-6. PubMed DOI PMC

Gálvez P., Clares B., Bermejo M., Hmadcha A., Soria B. Standard Requirement of a Microbiological Quality Control Program for the Manufacture of Human Mesenchymal Stem Cells for Clinical Use. Stem Cells Dev. 2014;23:1074–1083. doi: 10.1089/scd.2013.0625. PubMed DOI PMC

Coopman K., Medcalf N. StemBook. Harvard Stem Cell Institute Copyright: 2014 Karen Coopman and Nick Medcalf; Cambridge, MA, USA: 2008. [(accessed on 25 May 2022)]. From production to patient: Challenges and approaches for delivering cell therapies. Available online: https://www.ncbi.nlm.nih.gov/books/NBK208660/ PubMed

Günther S.-K., Geiss C., Kaiser S.J., Mutters N.T., Günther F. Microbiological Control of Cellular Products: The Relevance of the Cellular Matrix, Incubation Temperature, and Atmosphere for the Detection Performance of Automated Culture Systems. Transfus. Med. Hemotherapy. 2020;47:254–263. doi: 10.1159/000503397. PubMed DOI PMC

Mutsenko V.V., Rogulska O.Y., Petrenko Y.A., Ehrlich H., Mazur S.P., Volkova N.A., Petrenko A.Y. Cryosensitivity of Mesenchymal Stromal Cells Cryopreserved Within Marine Sponge Ianthella basta Skeleton-Based Carriers. Probl. Cryobiol. Cryomedicine. 2016;26:13–23. doi: 10.15407/cryo26.01.013. DOI

Katsen-Globa A., Meiser I., Petrenko Y.A., Ivanov R.V., Lozinsky V.I., Zimmermann H., Petrenko A. Towards ready-to-use 3-D scaffolds for regenerative medicine: Adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within alginate-gelatin cryogel scaffolds. J. Mater. Sci. Mater. Med. 2014;25:857–871. doi: 10.1007/s10856-013-5108-x. PubMed DOI PMC

Petrenko Y., Petrenko A., Martin I., Wendt D. Perfusion bioreactor-based cryopreservation of 3D human mesenchymal stromal cell tissue grafts. Cryobiology. 2017;76:150–153. doi: 10.1016/j.cryobiol.2017.04.001. PubMed DOI

Arutyunyan I., Elchaninov A., Sukhikh G., Fatkhudinov T. Cryopreservation of Tissue-Engineered Scaffold-Based Constructs: From Concept to Reality. Stem Cell Rev. Rep. 2022;18:1234–1252. doi: 10.1007/s12015-021-10299-4. PubMed DOI

Koci Z., Výborný K., Dubišová J., Vacková I., Jäger A., Lunov O., Jiráková K., Kubinova S. Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues. Tissue Eng. Part C Methods. 2017;23:333–345. doi: 10.1089/ten.tec.2017.0089. PubMed DOI

Rampersad S.N. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays. Sensors. 2012;12:12347–12360. doi: 10.3390/s120912347. PubMed DOI PMC

Bajuri M.Y., Sabri S., Mazli N., Sarifulnizam F.A., Apandi H.M. Osteochondral Injury of the Talus Treated with Cell-Free Hyaluronic Acid-Based Scaffold (Hyalofast®)—A Reliable Solution. Cureus. 2021;13:e17928. doi: 10.7759/cureus.17928. PubMed DOI PMC

Farr S., Pallamar M., Eder T., Ganger R. Treatment of advanced stage osteochondrosis dissecans in the adolescent elbow using a hyaloronic acid-based scaffold: A case series of 5 patients. Arch. Orthop. Trauma. Surg. 2021;141:1541–1549. doi: 10.1007/s00402-021-03773-8. PubMed DOI PMC

Deszcz I., Lis-Nawara A., Grelewski P., Dragan S., Bar J. Utility of direct 3D co-culture model for chondrogenic differentiation of mesenchymal stem cells on hyaluronan scaffold (Hyaff-11) Regen. Biomater. 2020;7:543–552. doi: 10.1093/rb/rbaa026. PubMed DOI PMC

Cristino S., Grassi F., Toneguzzi S., Piacentini A., Grigolo B., Santi S., Riccio M., Tognana E., Facchini A., Lisignoli G. Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11®-based prototype ligament scaffold. J. Biomed. Mater. Res. Part A. 2005;73:275–283. doi: 10.1002/jbm.a.30261. PubMed DOI

Pasquinelli G., Orrico C., Foroni L., Bonafè F., Carboni M., Guarnieri C., Raimondo S., Penna C., Geuna S., Pagliaro P., et al. Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair. J. Anat. 2008;213:520–530. doi: 10.1111/j.1469-7580.2008.00974.x. PubMed DOI PMC

Gao J., Dennis J.E., Solchaga L.A., Awadallah A.S., Goldberg V.M., Caplan A.I. Tissue-Engineered Fabrication of an Osteochondral Composite Graft Using Rat Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Eng. 2001;7:363–371. doi: 10.1089/10763270152436427. PubMed DOI

Cavallo C., Desando G., Columbaro M., Ferrari A., Zini N., Facchini A., Grigolo B. Chondrogenic differentiation of bone marrow concentrate grown onto a hylauronan scaffold: Rationale for its use in the treatment of cartilage lesions. J. Biomed. Mater. Res. Part A. 2013;101:1559–1570. doi: 10.1002/jbm.a.34460. PubMed DOI

Cavallo C., Desando G., Ferrari A., Zini N., Mariani E., Grigolo B. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells. J. Biol. Regul. Homeost. Agents. 2016;30:409–420. PubMed

Cao C., Tarlé S., Kaigler D. Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells. Stem Cell Res. Ther. 2020;11:102. doi: 10.1186/s13287-020-01605-x. PubMed DOI PMC

Ortiz A.D.C., Fideles S.O.M., Pomini K.T., Bellini M.Z., Pereira E.D.S.B.M., Reis C.H.B., Pilon J.P.G., de Marchi M., Trazzi B.F.d.M., da Silva W.S., et al. Potential of Fibrin Glue and Mesenchymal Stem Cells (MSCs) to Regenerate Nerve Injuries: A Systematic Review. Cells. 2022;11:221. doi: 10.3390/cells11020221. PubMed DOI PMC

Ortiz A.D.C., Fideles S.O.M., Pomini K.T., Reis C.H.B., Bueno C.R.D.S., Pereira E.D.S.B.M., Rossi J.D.O., Novais P.C., Pilon J.P.G., Junior G.M.R., et al. Effects of Therapy with Fibrin Glue combined with Mesenchymal Stem Cells (MSCs) on Bone Regeneration: A Systematic Review. Cells. 2021;10:2323. doi: 10.3390/cells10092323. PubMed DOI PMC

Rogulska O., Tykhvynska O., Revenko O., Grischuk V., Mazur S., Volkova N., Vasyliev R., Petrenko A., Petrenko Y., Yuriy P. Novel Cryopreservation Approach Providing Off-the-Shelf Availability of Human Multipotent Mesenchymal Stromal Cells for Clinical Applications. Stem Cells Int. 2019;2019:11. doi: 10.1155/2019/4150690. PubMed DOI PMC

Fuller B.J., Petrenko A., Rodriguez J.V., Somov A.Y., Balaban C.L., Guibert E.E. Biopreservation of hepatocytes: Current concepts on hypothermic preservation, cryopreservation, and vitrification. Cryo Lett. 2013;34:432–452. PubMed

Guibert E.E., Petrenko A.Y., Balaban C.L., Somov A.Y., Rodriguez J.V., Fuller B.J. Organ Preservation: Current Concepts and New Strategies for the Next Decade. Transfus. Med. Hemotherapy. 2011;38:125–142. doi: 10.1159/000327033. PubMed DOI PMC

Petrenko Y., Chudickova M., Vackova I., Groh T., Kosnarova E., Cejkova J., Turnovcova K., Petrenko A., Sykova E., Kubinova S. Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells. Stem Cells Int. 2019;2019:5909524. doi: 10.1155/2019/5909524. PubMed DOI PMC

Tarusin D.N., Petrenko Y.A., Semenchenko O.A., Mutsenko V.V., Zaikov V.S., Petrenko A.Y. Efficiency of the sucrose-based solution and UW solution for hypothermic storage of human mesenchymal stromal cells in suspension or within alginate microspheres. Probl. Cryobiol. Cryomedicine. 2015;25:329–339. doi: 10.15407/cryo25.04.329. DOI

Tam E., McGrath M., Sladkova M., AlManaie A., Alostaad A., De Peppo G.M. Hypothermic and cryogenic preservation of tissue-engineered human bone. Ann. N. Y. Acad. Sci. 2020;1460:77–87. doi: 10.1111/nyas.14264. PubMed DOI PMC

Wang H., Liu G., Zhou G., Cen L., Cui L., Cao Y. Comparative investigation of viability, metabolism and osteogenic capability of tissue-engineered bone preserved in sealed osteogenic media at 37 °C and 4 °C. Biomed. Mater. 2010;5:35010. doi: 10.1088/1748-6041/5/3/035010. PubMed DOI

Zhang X., Zhao G. Hypothermic Storage of Human Umbilical Cord Mesenchymal Stem Cells and Their Hydrogel Constructs. Cryo Lett. 2020;41:100–105. PubMed

Kubrova E., Qu W., Galvan M.L., Paradise C.R., Yang J., Dietz A.B., Dudakovic A., Smith J., van Wijnen A.J. Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene. 2019;722:144058. doi: 10.1016/j.gene.2019.144058. PubMed DOI PMC

Johnson M.R., Valentine C., Basilico C., Mansukhani A. FGF signaling activates STAT1 and p21 and inhibits the estrogen response and proliferation of MCF-7 cells. Oncogene. 1998;16:2647–2656. doi: 10.1038/sj.onc.1201789. PubMed DOI

Karimian A., Ahmadi Y., Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair. 2016;42:63–71. doi: 10.1016/j.dnarep.2016.04.008. PubMed DOI

Aizman I., Vinodkumar D., McGrogan M., Bates D. Cell Injury-Induced Release of Fibroblast Growth Factor 2: Relevance to Intracerebral Mesenchymal Stromal Cell Transplantations. Stem Cells Dev. 2015;24:1623–1634. doi: 10.1089/scd.2015.0083. PubMed DOI PMC

Bock F.J., Sedov E., Koren E., Koessinger A.L., Cloix C., Zerbst D., Athineos D., Anand J., Campbell K.J., Blyth K., et al. Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death. Nat. Commun. 2021;12:6572. doi: 10.1038/s41467-021-26613-0. PubMed DOI PMC

Pang S.H.M., D’Rozario J., Mendonca S., Bhuvan T., Payne N.L., Zheng D., Hisana A., Wallis G., Barugahare A., Powell D., et al. Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nat. Commun. 2021;12:6495. doi: 10.1038/s41467-021-26834-3. PubMed DOI PMC

Weiss D.J., English K., Krasnodembskaya A., Isaza-Correa J.M., Hawthorne I.J., Mahon B.P. The Necrobiology of Mesenchymal Stromal Cells Affects Therapeutic Efficacy. Front. Immunol. 2019;10:1228. doi: 10.3389/fimmu.2019.01228. PubMed DOI PMC

Zimna A., Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BioMed Res. Int. 2015;2015:549412. doi: 10.1155/2015/549412. PubMed DOI PMC

Ding X.-C., Wang L.-L., Zhang X.-D., Xu J.-L., Li P.-F., Liang H., Zhang X.-B., Xie L., Zhou Z.-H., Yang J., et al. The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia. J. Hematol. Oncol. 2021;14:92. doi: 10.1186/s13045-021-01102-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...