Hypothermic Storage of 3D Cultured Multipotent Mesenchymal Stromal Cells for Regenerative Medicine Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV-19-06-00355
Czech Health Research Council
PubMed
35808601
PubMed Central
PMC9269598
DOI
10.3390/polym14132553
PII: polym14132553
Knihovny.cz E-zdroje
- Klíčová slova
- Hyalofast®, Wharton’s jelly, hypothermic storage, multipotent mesenchymal stromal cells, paracrine activity,
- Publikační typ
- časopisecké články MeSH
The regulatory requirements in cell processing, in the choice of a biomaterial scaffold and in quality control analysis, have to be followed in the clinical application of tissue-engineered grafts. Confirmation of sterility during quality control studies requires prolonged storage of the cell-based construct. After storage, preservation of the functional properties of the cells is an important prerequisite if the cells are to be used for cell-based tissue therapies. The study presented here shows the generation of 3D constructs based on Wharton's jelly multipotent mesenchymal stromal cells (WJ-MSCs) and the clinically-acceptable HyaloFast® scaffold, and the effect of two- and six-day hypothermic storage of 3D cell-based constructs on the functional properties of populated cells. To study the viability, growth, gene expression, and paracrine secretion of WJ-MSCs within the scaffolds before and after storage, xeno-free culture conditions, metabolic, qPCR, and multiplex assays were applied. The WJ-MSCs adhered and proliferated within the 3D HyaloFast®. Our results show different viability of the cells after the 3D constructs have been stored under mild (25 °C) or strong (4 °C) hypothermia. At 4 °C, the significant decrease of metabolic activity of WJ-MSCs was detected after 2 days of storage, with almost complete cell loss after 6 days. In mild hypothermia (25 °C) the decrease in metabolic activity was less remarkable, confirming the suitability of these conditions for cell preservation in 3D environment. The significant changes were detected in gene expression and in the paracrine secretion profile after 2 and 6 days of storage at 25 °C. The results presented in this study are important for the rapid transfer of tissue engineering approaches into clinical applications.
Zobrazit více v PubMed
Andrzejewska A., Lukomska B., Janowski M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells. 2019;37:855–864. doi: 10.1002/stem.3016. PubMed DOI PMC
Phinney D.G., Pittenger M.F. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells. 2017;35:851–858. doi: 10.1002/stem.2575. PubMed DOI
Zhou Y., Yamamoto Y., Xiao Z., Ochiya T. The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity. J. Clin. Med. 2019;8:1025. doi: 10.3390/jcm8071025. PubMed DOI PMC
Petrenko Y., Vackova I., Kekulova K., Chudickova M., Koci Z., Turnovcova K., Skalnikova H.K., Vodicka P., Kubinova S. A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Sci. Rep. 2020;10:4290. doi: 10.1038/s41598-020-61167-z. PubMed DOI PMC
Kalaszczynska I., Ferdyn K. Wharton’s Jelly Derived Mesenchymal Stem Cells: Future of Regenerative Medicine? Recent Findings and Clinical Significance. BioMed Res. Int. 2015;2015:1–11. doi: 10.1155/2015/430847. PubMed DOI PMC
Wong S.W., Lenzini S., Giovanni R., Knowles K., Shin J.-W. Matrix biophysical cues direct mesenchymal stromal cell functions in immunity. Acta Biomater. 2021;133:126–138. doi: 10.1016/j.actbio.2021.07.075. PubMed DOI PMC
Follin B., Juhl M., Cohen S., Perdersen A.E., Kastrup J., Ekblond A. Increased Paracrine Immunomodulatory Potential of Mesenchymal Stromal Cells in Three-Dimensional Culture. Tissue Eng. Part B Rev. 2016;22:1–26. doi: 10.1089/ten.teb.2015.0532. PubMed DOI PMC
Petrenko Y., Syková E., Kubinová Š. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Res. Ther. 2017;8:94. doi: 10.1186/s13287-017-0558-6. PubMed DOI PMC
De Cássia Noronha N., Mizukami A., Caliári-Oliveira C., Cominal J.G., Rocha J.L.M., Covas D.T., Swiech K., Malmegrim K.C.R. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res. Ther. 2019;10:131. doi: 10.1186/s13287-019-1224-y. PubMed DOI PMC
Park I.S., Rhie J.-W., Kim S.-H. A novel three-dimensional adipose-derived stem cell cluster for vascular regeneration in ischemic tissue. Cytotherapy. 2014;16:508–522. doi: 10.1016/j.jcyt.2013.08.011. PubMed DOI
Bhang S.H., Lee S., Shin J.-Y., Lee T.-J., Kim B.-S. Transplantation of Cord Blood Mesenchymal Stem Cells as Spheroids Enhances Vascularization. Tissue Eng. Part A. 2012;18:2138–2147. doi: 10.1089/ten.tea.2011.0640. PubMed DOI PMC
Drzeniek N.M., Mazzocchi A., Schlickeiser S., Forsythe S.D., Moll G., Geissler S., Reinke P., Gossen M., Gorantla V.S., Volk H.-D., et al. Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells. Biofabrication. 2021;13:045002. doi: 10.1088/1758-5090/ac0a32. PubMed DOI PMC
Qazi T.H., Mooney D., Duda G.N., Geissler S. Niche-mimicking interactions in peptide-functionalized 3D hydrogels amplify mesenchymal stromal cell paracrine effects. Biomaterials. 2020;230:119639. doi: 10.1016/j.biomaterials.2019.119639. PubMed DOI
Costa M.H.G., McDevitt T.C., Cabral J.M., da Silva C.L., Ferreira F.C. Tridimensional configurations of human mesenchymal stem/stromal cells to enhance cell paracrine potential towards wound healing processes. J. Biotechnol. 2017;262:28–39. doi: 10.1016/j.jbiotec.2017.09.020. PubMed DOI
Vindigni V., Cortivo R., Iacobellis L., Abatangelo G., Zavan B. Hyaluronan Benzyl Ester as a Scaffold for Tissue Engineering. Int. J. Mol. Sci. 2009;10:2972–2985. doi: 10.3390/ijms10072972. PubMed DOI PMC
Tsanaktsidou E., Kammona O., Kiparissides C. Recent Developments in Hyaluronic Acid-Based Hydrogels for Cartilage Tissue Engineering Applications. Polymers. 2022;14:839. doi: 10.3390/polym14040839. PubMed DOI PMC
Abbas M., Alkaff M., Jilani A., Alsehli H., Damiati L., Kotb M., Abdelwahed M., Alghamdi F., Kalamegam G. Combination of Mesenchymal Stem Cells, Cartilage Pellet and Bioscaffold Supported Cartilage Regeneration of a Full Thickness Articular Surface Defect in Rabbits. Tissue Eng. Regen. Med. 2018;15:661–671. doi: 10.1007/s13770-018-0131-0. PubMed DOI PMC
Gobbi A., Scotti C., Karnatzikos G., Mudhigere A., Castro M., Peretti G. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surgery, Sports Traumatol. Arthrosc. 2017;25:2494–2501. doi: 10.1007/s00167-016-3984-6. PubMed DOI PMC
Gálvez P., Clares B., Bermejo M., Hmadcha A., Soria B. Standard Requirement of a Microbiological Quality Control Program for the Manufacture of Human Mesenchymal Stem Cells for Clinical Use. Stem Cells Dev. 2014;23:1074–1083. doi: 10.1089/scd.2013.0625. PubMed DOI PMC
Coopman K., Medcalf N. StemBook. Harvard Stem Cell Institute Copyright: 2014 Karen Coopman and Nick Medcalf; Cambridge, MA, USA: 2008. [(accessed on 25 May 2022)]. From production to patient: Challenges and approaches for delivering cell therapies. Available online: https://www.ncbi.nlm.nih.gov/books/NBK208660/ PubMed
Günther S.-K., Geiss C., Kaiser S.J., Mutters N.T., Günther F. Microbiological Control of Cellular Products: The Relevance of the Cellular Matrix, Incubation Temperature, and Atmosphere for the Detection Performance of Automated Culture Systems. Transfus. Med. Hemotherapy. 2020;47:254–263. doi: 10.1159/000503397. PubMed DOI PMC
Mutsenko V.V., Rogulska O.Y., Petrenko Y.A., Ehrlich H., Mazur S.P., Volkova N.A., Petrenko A.Y. Cryosensitivity of Mesenchymal Stromal Cells Cryopreserved Within Marine Sponge Ianthella basta Skeleton-Based Carriers. Probl. Cryobiol. Cryomedicine. 2016;26:13–23. doi: 10.15407/cryo26.01.013. DOI
Katsen-Globa A., Meiser I., Petrenko Y.A., Ivanov R.V., Lozinsky V.I., Zimmermann H., Petrenko A. Towards ready-to-use 3-D scaffolds for regenerative medicine: Adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within alginate-gelatin cryogel scaffolds. J. Mater. Sci. Mater. Med. 2014;25:857–871. doi: 10.1007/s10856-013-5108-x. PubMed DOI PMC
Petrenko Y., Petrenko A., Martin I., Wendt D. Perfusion bioreactor-based cryopreservation of 3D human mesenchymal stromal cell tissue grafts. Cryobiology. 2017;76:150–153. doi: 10.1016/j.cryobiol.2017.04.001. PubMed DOI
Arutyunyan I., Elchaninov A., Sukhikh G., Fatkhudinov T. Cryopreservation of Tissue-Engineered Scaffold-Based Constructs: From Concept to Reality. Stem Cell Rev. Rep. 2022;18:1234–1252. doi: 10.1007/s12015-021-10299-4. PubMed DOI
Koci Z., Výborný K., Dubišová J., Vacková I., Jäger A., Lunov O., Jiráková K., Kubinova S. Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues. Tissue Eng. Part C Methods. 2017;23:333–345. doi: 10.1089/ten.tec.2017.0089. PubMed DOI
Rampersad S.N. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays. Sensors. 2012;12:12347–12360. doi: 10.3390/s120912347. PubMed DOI PMC
Bajuri M.Y., Sabri S., Mazli N., Sarifulnizam F.A., Apandi H.M. Osteochondral Injury of the Talus Treated with Cell-Free Hyaluronic Acid-Based Scaffold (Hyalofast®)—A Reliable Solution. Cureus. 2021;13:e17928. doi: 10.7759/cureus.17928. PubMed DOI PMC
Farr S., Pallamar M., Eder T., Ganger R. Treatment of advanced stage osteochondrosis dissecans in the adolescent elbow using a hyaloronic acid-based scaffold: A case series of 5 patients. Arch. Orthop. Trauma. Surg. 2021;141:1541–1549. doi: 10.1007/s00402-021-03773-8. PubMed DOI PMC
Deszcz I., Lis-Nawara A., Grelewski P., Dragan S., Bar J. Utility of direct 3D co-culture model for chondrogenic differentiation of mesenchymal stem cells on hyaluronan scaffold (Hyaff-11) Regen. Biomater. 2020;7:543–552. doi: 10.1093/rb/rbaa026. PubMed DOI PMC
Cristino S., Grassi F., Toneguzzi S., Piacentini A., Grigolo B., Santi S., Riccio M., Tognana E., Facchini A., Lisignoli G. Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11®-based prototype ligament scaffold. J. Biomed. Mater. Res. Part A. 2005;73:275–283. doi: 10.1002/jbm.a.30261. PubMed DOI
Pasquinelli G., Orrico C., Foroni L., Bonafè F., Carboni M., Guarnieri C., Raimondo S., Penna C., Geuna S., Pagliaro P., et al. Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair. J. Anat. 2008;213:520–530. doi: 10.1111/j.1469-7580.2008.00974.x. PubMed DOI PMC
Gao J., Dennis J.E., Solchaga L.A., Awadallah A.S., Goldberg V.M., Caplan A.I. Tissue-Engineered Fabrication of an Osteochondral Composite Graft Using Rat Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Eng. 2001;7:363–371. doi: 10.1089/10763270152436427. PubMed DOI
Cavallo C., Desando G., Columbaro M., Ferrari A., Zini N., Facchini A., Grigolo B. Chondrogenic differentiation of bone marrow concentrate grown onto a hylauronan scaffold: Rationale for its use in the treatment of cartilage lesions. J. Biomed. Mater. Res. Part A. 2013;101:1559–1570. doi: 10.1002/jbm.a.34460. PubMed DOI
Cavallo C., Desando G., Ferrari A., Zini N., Mariani E., Grigolo B. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells. J. Biol. Regul. Homeost. Agents. 2016;30:409–420. PubMed
Cao C., Tarlé S., Kaigler D. Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells. Stem Cell Res. Ther. 2020;11:102. doi: 10.1186/s13287-020-01605-x. PubMed DOI PMC
Ortiz A.D.C., Fideles S.O.M., Pomini K.T., Bellini M.Z., Pereira E.D.S.B.M., Reis C.H.B., Pilon J.P.G., de Marchi M., Trazzi B.F.d.M., da Silva W.S., et al. Potential of Fibrin Glue and Mesenchymal Stem Cells (MSCs) to Regenerate Nerve Injuries: A Systematic Review. Cells. 2022;11:221. doi: 10.3390/cells11020221. PubMed DOI PMC
Ortiz A.D.C., Fideles S.O.M., Pomini K.T., Reis C.H.B., Bueno C.R.D.S., Pereira E.D.S.B.M., Rossi J.D.O., Novais P.C., Pilon J.P.G., Junior G.M.R., et al. Effects of Therapy with Fibrin Glue combined with Mesenchymal Stem Cells (MSCs) on Bone Regeneration: A Systematic Review. Cells. 2021;10:2323. doi: 10.3390/cells10092323. PubMed DOI PMC
Rogulska O., Tykhvynska O., Revenko O., Grischuk V., Mazur S., Volkova N., Vasyliev R., Petrenko A., Petrenko Y., Yuriy P. Novel Cryopreservation Approach Providing Off-the-Shelf Availability of Human Multipotent Mesenchymal Stromal Cells for Clinical Applications. Stem Cells Int. 2019;2019:11. doi: 10.1155/2019/4150690. PubMed DOI PMC
Fuller B.J., Petrenko A., Rodriguez J.V., Somov A.Y., Balaban C.L., Guibert E.E. Biopreservation of hepatocytes: Current concepts on hypothermic preservation, cryopreservation, and vitrification. Cryo Lett. 2013;34:432–452. PubMed
Guibert E.E., Petrenko A.Y., Balaban C.L., Somov A.Y., Rodriguez J.V., Fuller B.J. Organ Preservation: Current Concepts and New Strategies for the Next Decade. Transfus. Med. Hemotherapy. 2011;38:125–142. doi: 10.1159/000327033. PubMed DOI PMC
Petrenko Y., Chudickova M., Vackova I., Groh T., Kosnarova E., Cejkova J., Turnovcova K., Petrenko A., Sykova E., Kubinova S. Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells. Stem Cells Int. 2019;2019:5909524. doi: 10.1155/2019/5909524. PubMed DOI PMC
Tarusin D.N., Petrenko Y.A., Semenchenko O.A., Mutsenko V.V., Zaikov V.S., Petrenko A.Y. Efficiency of the sucrose-based solution and UW solution for hypothermic storage of human mesenchymal stromal cells in suspension or within alginate microspheres. Probl. Cryobiol. Cryomedicine. 2015;25:329–339. doi: 10.15407/cryo25.04.329. DOI
Tam E., McGrath M., Sladkova M., AlManaie A., Alostaad A., De Peppo G.M. Hypothermic and cryogenic preservation of tissue-engineered human bone. Ann. N. Y. Acad. Sci. 2020;1460:77–87. doi: 10.1111/nyas.14264. PubMed DOI PMC
Wang H., Liu G., Zhou G., Cen L., Cui L., Cao Y. Comparative investigation of viability, metabolism and osteogenic capability of tissue-engineered bone preserved in sealed osteogenic media at 37 °C and 4 °C. Biomed. Mater. 2010;5:35010. doi: 10.1088/1748-6041/5/3/035010. PubMed DOI
Zhang X., Zhao G. Hypothermic Storage of Human Umbilical Cord Mesenchymal Stem Cells and Their Hydrogel Constructs. Cryo Lett. 2020;41:100–105. PubMed
Kubrova E., Qu W., Galvan M.L., Paradise C.R., Yang J., Dietz A.B., Dudakovic A., Smith J., van Wijnen A.J. Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene. 2019;722:144058. doi: 10.1016/j.gene.2019.144058. PubMed DOI PMC
Johnson M.R., Valentine C., Basilico C., Mansukhani A. FGF signaling activates STAT1 and p21 and inhibits the estrogen response and proliferation of MCF-7 cells. Oncogene. 1998;16:2647–2656. doi: 10.1038/sj.onc.1201789. PubMed DOI
Karimian A., Ahmadi Y., Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair. 2016;42:63–71. doi: 10.1016/j.dnarep.2016.04.008. PubMed DOI
Aizman I., Vinodkumar D., McGrogan M., Bates D. Cell Injury-Induced Release of Fibroblast Growth Factor 2: Relevance to Intracerebral Mesenchymal Stromal Cell Transplantations. Stem Cells Dev. 2015;24:1623–1634. doi: 10.1089/scd.2015.0083. PubMed DOI PMC
Bock F.J., Sedov E., Koren E., Koessinger A.L., Cloix C., Zerbst D., Athineos D., Anand J., Campbell K.J., Blyth K., et al. Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death. Nat. Commun. 2021;12:6572. doi: 10.1038/s41467-021-26613-0. PubMed DOI PMC
Pang S.H.M., D’Rozario J., Mendonca S., Bhuvan T., Payne N.L., Zheng D., Hisana A., Wallis G., Barugahare A., Powell D., et al. Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nat. Commun. 2021;12:6495. doi: 10.1038/s41467-021-26834-3. PubMed DOI PMC
Weiss D.J., English K., Krasnodembskaya A., Isaza-Correa J.M., Hawthorne I.J., Mahon B.P. The Necrobiology of Mesenchymal Stromal Cells Affects Therapeutic Efficacy. Front. Immunol. 2019;10:1228. doi: 10.3389/fimmu.2019.01228. PubMed DOI PMC
Zimna A., Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BioMed Res. Int. 2015;2015:549412. doi: 10.1155/2015/549412. PubMed DOI PMC
Ding X.-C., Wang L.-L., Zhang X.-D., Xu J.-L., Li P.-F., Liang H., Zhang X.-B., Xie L., Zhou Z.-H., Yang J., et al. The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia. J. Hematol. Oncol. 2021;14:92. doi: 10.1186/s13045-021-01102-5. PubMed DOI PMC