Storage conditions affect the composition of the lyophilized secretome of multipotent mesenchymal stromal cells

. 2024 May 03 ; 14 (1) : 10243. [epub] 20240503

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38702388

Grantová podpora
RRFU-22-05 Akademie Věd České Republiky
22-31457S Grantová Agentura České Republiky
NU22-06-00016 Ministerstvo Zdravotnictví Ceské Republiky
NU22-08-00124 Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.01.01/00/22_008/0004562 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 38702388
PubMed Central PMC11068735
DOI 10.1038/s41598-024-60787-z
PII: 10.1038/s41598-024-60787-z
Knihovny.cz E-zdroje

The widespread use of multipotent mesenchymal stromal cell-derived secretome (MSC-sec) requires optimal preservation methods. Lyophilization offers benefits like concentrating the secretome, reducing the storage volume, and making storage conditions more flexible. This study evaluated the influence of storage duration and temperature on lyophilized MSC-sec. The conditioned medium from Wharton's jelly MSCs was stored at - 80 °C or lyophilized with or without trehalose. Lyophilized formulations were kept at - 80 °C, - 20 °C, 4 °C, or room temperature (RT) for 3 and 30 months. After storage and reconstitution, the levels of growth factors and cytokines were assessed using multiplex assay. The storage of lyophilized MSC-sec at - 80 °C ensured biomolecule preservation for 3 and 30 months. Following 3 month storage at 4 °C and RT, a notable decrease occurred in BDNF, bNGF, and sVCAM-1 levels. Prolonged 30 month storage at the same temperatures significantly reduced BDNF, bNGF, VEGF-A, IL-6, and sVCAM-1, while storage at - 20 °C decreased BDNF, bNGF, and VEGF- A levels. Trehalose supplementation of MSC-sec improved the outcome during storage at 4 °C and RT. Proper storage conditions were crucial for the preservation of lyophilized MSC-sec composition. Short-term storage at various temperatures maintained over 60% of the studied growth factors and cytokines; long-term preservation was only adequate at -80 °C.

Zobrazit více v PubMed

Miceli V, Bulati M, Iannolo G, Zito G, Gallo A, Conaldi PG. Therapeutic properties of mesenchymal stromal/stem cells: The need of cell priming for cell-free therapies in regenerative medicine. Int. J. Mol. Sci. 2021;22:763. doi: 10.3390/ijms22020763. PubMed DOI PMC

Zhuang W-Z, Lin Y-H, Su L-J, Wu M-S, Jeng H-Y, Chang H-C, Huang Y-H, Ling T-Y. Mesenchymal stem/stromal cell-based therapy: Mechanism, systemic safety and biodistribution for precision clinical applications. J. Biomed. Sci. 2021 doi: 10.1186/s12929-021-00725-7. PubMed DOI PMC

Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther. 2016;7:125. doi: 10.1186/s13287-016-0363-7. PubMed DOI PMC

Bogatcheva NV, Coleman ME. Conditioned medium of mesenchymal stromal cells: A new class of therapeutics. Biochemistry (Mosc) 2019;84:1375–1389. doi: 10.1134/S0006297919110129. PubMed DOI

Benavides-Castellanos MP, Garzón-Orjuela N, Linero I. Effectiveness of mesenchymal stem cell-conditioned medium in bone regeneration in animal and human models: A systematic review and meta-analysis. Cell Regen. 2020;9:5. doi: 10.1186/s13619-020-00047-3. PubMed DOI PMC

Chudickova M, Vackova I, Machova Urdzikova L, Jancova P, Kekulova K, Rehorova M, Turnovcova K, Jendelova P, Kubinova S. The effect of Wharton Jelly-derived mesenchymal stromal cells and their conditioned media in the treatment of a rat spinal cord injury. Int. J. Mol. Sci. 2019;20:4516. doi: 10.3390/ijms20184516. PubMed DOI PMC

Fukuoka H, Suga H. Hair regeneration treatment using adipose-derived stem cell conditioned medium: Follow-up with trichograms. Eplasty. 2015;15:e10. PubMed PMC

Shih DT, Burnouf T. Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. N. Biotechnol. 2015;32:199–211. doi: 10.1016/j.nbt.2014.06.001. PubMed DOI PMC

El-Domyati M, Moftah NH, Nasif GA, Ragaie MH, Ibrahim MR, Ameen SW. Amniotic fluid-derived mesenchymal stem cell products combined with microneedling for acne scars: A split-face clinical, histological, and histometric study. J. Cosmet. Dermatol. 2019;18:1300. doi: 10.1111/jocd.13039. PubMed DOI

Prakoeswa CRS, Natallya FR, Harnindya D, Thohiroh A, Oktaviyanti RN, Pratiwi KD, Rubianti MA, Yogatri B, Primasari PI, Herwanto N, et al. The efficacy of topical human amniotic membrane-mesenchymal stem cell-conditioned medium (hAMMSC-CM) and a mixture of topical hAMMSC-CM + vitamin C and hAMMSC-CM + vitamin E on chronic plantar ulcers in leprosy:A randomized control trial. J. Dermatol. Treat. 2018;29:835–840. doi: 10.1080/09546634.2018.1467541. PubMed DOI

Zhou BR, Xu Y, Guo SL, Xu Y, Wang Y, Zhu F, Permatasari F, Wu D, Yin ZQ, Luo D. The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. Biomed. Res. Int. 2013;2013:519126. doi: 10.1155/2013/519126. PubMed DOI PMC

Katagiri W, Osugi M, Kawai T, Hibi H. First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells. Head Face Med. 2016;12:5. doi: 10.1186/s13005-016-0101-5. PubMed DOI PMC

Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int. J. Mol. Sci. 2017;18:1852. doi: 10.3390/ijms18091852. PubMed DOI PMC

Gugliandolo A, Diomede F, Pizzicannella J, Chiricosta L, Trubiani O, Mazzon E. Potential anti-inflammatory effects of a new lyophilized formulation of the conditioned medium derived from periodontal ligament stem cells. Biomedicines. 2022;10:683. doi: 10.3390/biomedicines10030683. PubMed DOI PMC

Peng W, Chang M, Wu Y, Zhu W, Tong L, Zhang G, Wang Q, Liu J, Zhu X, Cheng T, et al. Lyophilized powder of mesenchymal stem cell supernatant attenuates acute lung injury through the IL-6-p-STAT3-p63-JAG2 pathway. Stem Cell Res. Ther. 2021;12:216. doi: 10.1186/s13287-021-02276-y. PubMed DOI PMC

Eiró N, Sendon-Lago J, Seoane S, Bermúdez MA, Lamelas ML, Garcia-Caballero T, Schneider J, Perez-Fernandez R, Vizoso FJ. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget. 2014;5:10692–10708. doi: 10.18632/oncotarget.2530. PubMed DOI PMC

Bari E, Perteghella S, Di Silvestre D, Sorlini M, Catenacci L, Sorrenti M, Marrubini G, Rossi R, Tripodo G, Mauri P, et al. Pilot production of mesenchymal stem/stromal freeze-dried secretome for cell-free regenerative nanomedicine: A validated gmp-compliant process. Cells. 2018;7:190. doi: 10.3390/cells7110190. PubMed DOI PMC

Joseph A, Baiju I, Bhat IA, Pandey S, Bharti M, Verma M, Pratap Singh A, Ansari MM, Chandra V, Saikumar G, et al. Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. J. Cell. Physiol. 2020;235:5555–5569. doi: 10.1002/jcp.29486. PubMed DOI

Lee YC, Sun LY, Zhang JR. Protective effects of low-molecular-weight components of adipose stem cell-derived conditioned medium on dry eye syndrome in mice. Sci. Rep. 2021;11:21874. doi: 10.1038/s41598-021-01503-z. PubMed DOI PMC

Jabbehdari S, Yazdanpanah G, Kanu LN, Chen E, Kang K, Anwar KN, Ghassemi M, Hematti P, Rosenblatt MI, Djalilian AR. Therapeutic effects of lyophilized conditioned-medium derived from corneal mesenchymal stromal cells on corneal epithelial wound healing. Curr. Eye Res. 2020;45:1490–1496. doi: 10.1080/02713683.2020.1762227. PubMed DOI PMC

Peng Y, Xuan M, Zou J, Liu H, Zhuo Z, Wan Y, Cheng B. Freeze-dried rat bone marrow mesenchymal stem cell paracrine factors: A simplified novel material for skin wound therapy. Tissue Eng. Part A. 2015;21:1036–1046. doi: 10.1089/ten.tea.2014.0102. PubMed DOI PMC

Laggner M, Gugerell A, Bachmann C, Hofbauer H, Vorstandlechner V, Seibold M, Gouya Lechner G, Peterbauer A, Madlener S, Demyanets S, et al. Reproducibility of GMP-compliant production of therapeutic stressed peripheral blood mononuclear cell-derived secretomes, a novel class of biological medicinal products. Stem Cell Res. Ther. 2020;11:9. doi: 10.1186/s13287-019-1524-2. PubMed DOI PMC

Padilla L, Barranco I, Parrilla I, Lucas X, Rodriguez-Martinez H, Roca J. Measurable cytokine concentrations in pig seminal plasma are modified by semen handling and storage. Biology (Basel) 2020;9:276. PubMed PMC

Pinto J, Domingues MR, Galhano E, Pita C, Almeida Mdo C, Carreira IM, Gil AM. Human plasma stability during handling and storage: Impact on NMR metabolomics. Analyst. 2014;139:1168–1177. doi: 10.1039/C3AN02188B. PubMed DOI

Connolly BD, Le L, Patapoff TW, Cromwell MEM, Moore JMR, Lam P. Protein aggregation in frozen trehalose formulations: Effects of composition, cooling rate, and storage temperature. J. Pharm. Sci. 2015;104:4170–4184. doi: 10.1002/jps.24646. PubMed DOI

Duralliu A, Matejtschuk P, Stickings P, Hassall L, Tierney R, Williams DR. The influence of moisture content and temperature on the long-term storage stability of freeze-dried high concentration immunoglobulin G (IgG) Pharmaceutics. 2020;12:303. doi: 10.3390/pharmaceutics12040303. PubMed DOI PMC

Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K, Kupcova Skalnikova H, Vodicka P, Kubinova S. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Sci. Rep. 2020;10:4290–4290. doi: 10.1038/s41598-020-61167-z. PubMed DOI PMC

Agbozo EY, Dumashie E, Boakye DA, de Souza DK. Effects of lyophilization and storage temperature on Wuchereria bancrofti antigen sensitivity and stability. BMC Res. Notes. 2018;11:454. doi: 10.1186/s13104-018-3586-0. PubMed DOI PMC

Enroth S, Hallmans G, Grankvist K, Gyllensten U. Effects of long-term storage time and original sampling month on biobank plasma protein concentrations. EBioMedicine. 2016;12:309–314. doi: 10.1016/j.ebiom.2016.08.038. PubMed DOI PMC

Arakawa T, Prestrelski SJ, Kenney WC, Carpenter JF. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Rev. 2001;46:307–326. doi: 10.1016/S0169-409X(00)00144-7. PubMed DOI

Brogna R, Oldenhof H, Sieme H, Figueiredo C, Kerrinnes T, Wolkers WF. Increasing storage stability of freeze-dried plasma using trehalose. PLoS One. 2020;15:e0234502. doi: 10.1371/journal.pone.0234502. PubMed DOI PMC

Ozbey G, Gorczynski R, Erin N. Stability of cytokines in supernatants of stimulated mouse immune cells. Eur. Cytokine Netw. 2014;25:30–34. doi: 10.1684/ecn.2014.0353. PubMed DOI

Leemasawatdigul K, Gappa-Fahlenkamp H. Effect of storage conditions on the stability of recombinant human MCP-1/CCL2. Biologicals. 2011;39:29–32. doi: 10.1016/j.biologicals.2010.09.003. PubMed DOI PMC

Merivaara A, Zini J, Koivunotko E, Valkonen S, Korhonen O, Fernandes FM, Yliperttula M. Preservation of biomaterials and cells by freeze-drying: Change of paradigm. J. Controll. Release. 2021;336:480–498. doi: 10.1016/j.jconrel.2021.06.042. PubMed DOI

Vackova I, Vavrinova E, Musilkova J, Havlas V, Petrenko Y. Hypothermic storage of 3d cultured multipotent mesenchymal stromal cells for regenerative medicine applications. Polymers (Basel) 2022;14:2553. doi: 10.3390/polym14132553. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...