Storage conditions affect the composition of the lyophilized secretome of multipotent mesenchymal stromal cells
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
RRFU-22-05
Akademie Věd České Republiky
22-31457S
Grantová Agentura České Republiky
NU22-06-00016
Ministerstvo Zdravotnictví Ceské Republiky
NU22-08-00124
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
38702388
PubMed Central
PMC11068735
DOI
10.1038/s41598-024-60787-z
PII: 10.1038/s41598-024-60787-z
Knihovny.cz E-zdroje
- MeSH
- cytokiny metabolismus MeSH
- kryoprezervace metody MeSH
- kultivační média speciální chemie MeSH
- kultivované buňky MeSH
- lidé MeSH
- lyofilizace * MeSH
- mezenchymální kmenové buňky * metabolismus cytologie MeSH
- sekretom metabolismus MeSH
- teplota MeSH
- trehalosa metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- kultivační média speciální MeSH
- trehalosa MeSH
The widespread use of multipotent mesenchymal stromal cell-derived secretome (MSC-sec) requires optimal preservation methods. Lyophilization offers benefits like concentrating the secretome, reducing the storage volume, and making storage conditions more flexible. This study evaluated the influence of storage duration and temperature on lyophilized MSC-sec. The conditioned medium from Wharton's jelly MSCs was stored at - 80 °C or lyophilized with or without trehalose. Lyophilized formulations were kept at - 80 °C, - 20 °C, 4 °C, or room temperature (RT) for 3 and 30 months. After storage and reconstitution, the levels of growth factors and cytokines were assessed using multiplex assay. The storage of lyophilized MSC-sec at - 80 °C ensured biomolecule preservation for 3 and 30 months. Following 3 month storage at 4 °C and RT, a notable decrease occurred in BDNF, bNGF, and sVCAM-1 levels. Prolonged 30 month storage at the same temperatures significantly reduced BDNF, bNGF, VEGF-A, IL-6, and sVCAM-1, while storage at - 20 °C decreased BDNF, bNGF, and VEGF- A levels. Trehalose supplementation of MSC-sec improved the outcome during storage at 4 °C and RT. Proper storage conditions were crucial for the preservation of lyophilized MSC-sec composition. Short-term storage at various temperatures maintained over 60% of the studied growth factors and cytokines; long-term preservation was only adequate at -80 °C.
Zobrazit více v PubMed
Miceli V, Bulati M, Iannolo G, Zito G, Gallo A, Conaldi PG. Therapeutic properties of mesenchymal stromal/stem cells: The need of cell priming for cell-free therapies in regenerative medicine. Int. J. Mol. Sci. 2021;22:763. doi: 10.3390/ijms22020763. PubMed DOI PMC
Zhuang W-Z, Lin Y-H, Su L-J, Wu M-S, Jeng H-Y, Chang H-C, Huang Y-H, Ling T-Y. Mesenchymal stem/stromal cell-based therapy: Mechanism, systemic safety and biodistribution for precision clinical applications. J. Biomed. Sci. 2021 doi: 10.1186/s12929-021-00725-7. PubMed DOI PMC
Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther. 2016;7:125. doi: 10.1186/s13287-016-0363-7. PubMed DOI PMC
Bogatcheva NV, Coleman ME. Conditioned medium of mesenchymal stromal cells: A new class of therapeutics. Biochemistry (Mosc) 2019;84:1375–1389. doi: 10.1134/S0006297919110129. PubMed DOI
Benavides-Castellanos MP, Garzón-Orjuela N, Linero I. Effectiveness of mesenchymal stem cell-conditioned medium in bone regeneration in animal and human models: A systematic review and meta-analysis. Cell Regen. 2020;9:5. doi: 10.1186/s13619-020-00047-3. PubMed DOI PMC
Chudickova M, Vackova I, Machova Urdzikova L, Jancova P, Kekulova K, Rehorova M, Turnovcova K, Jendelova P, Kubinova S. The effect of Wharton Jelly-derived mesenchymal stromal cells and their conditioned media in the treatment of a rat spinal cord injury. Int. J. Mol. Sci. 2019;20:4516. doi: 10.3390/ijms20184516. PubMed DOI PMC
Fukuoka H, Suga H. Hair regeneration treatment using adipose-derived stem cell conditioned medium: Follow-up with trichograms. Eplasty. 2015;15:e10. PubMed PMC
Shih DT, Burnouf T. Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. N. Biotechnol. 2015;32:199–211. doi: 10.1016/j.nbt.2014.06.001. PubMed DOI PMC
El-Domyati M, Moftah NH, Nasif GA, Ragaie MH, Ibrahim MR, Ameen SW. Amniotic fluid-derived mesenchymal stem cell products combined with microneedling for acne scars: A split-face clinical, histological, and histometric study. J. Cosmet. Dermatol. 2019;18:1300. doi: 10.1111/jocd.13039. PubMed DOI
Prakoeswa CRS, Natallya FR, Harnindya D, Thohiroh A, Oktaviyanti RN, Pratiwi KD, Rubianti MA, Yogatri B, Primasari PI, Herwanto N, et al. The efficacy of topical human amniotic membrane-mesenchymal stem cell-conditioned medium (hAMMSC-CM) and a mixture of topical hAMMSC-CM + vitamin C and hAMMSC-CM + vitamin E on chronic plantar ulcers in leprosy:A randomized control trial. J. Dermatol. Treat. 2018;29:835–840. doi: 10.1080/09546634.2018.1467541. PubMed DOI
Zhou BR, Xu Y, Guo SL, Xu Y, Wang Y, Zhu F, Permatasari F, Wu D, Yin ZQ, Luo D. The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. Biomed. Res. Int. 2013;2013:519126. doi: 10.1155/2013/519126. PubMed DOI PMC
Katagiri W, Osugi M, Kawai T, Hibi H. First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells. Head Face Med. 2016;12:5. doi: 10.1186/s13005-016-0101-5. PubMed DOI PMC
Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int. J. Mol. Sci. 2017;18:1852. doi: 10.3390/ijms18091852. PubMed DOI PMC
Gugliandolo A, Diomede F, Pizzicannella J, Chiricosta L, Trubiani O, Mazzon E. Potential anti-inflammatory effects of a new lyophilized formulation of the conditioned medium derived from periodontal ligament stem cells. Biomedicines. 2022;10:683. doi: 10.3390/biomedicines10030683. PubMed DOI PMC
Peng W, Chang M, Wu Y, Zhu W, Tong L, Zhang G, Wang Q, Liu J, Zhu X, Cheng T, et al. Lyophilized powder of mesenchymal stem cell supernatant attenuates acute lung injury through the IL-6-p-STAT3-p63-JAG2 pathway. Stem Cell Res. Ther. 2021;12:216. doi: 10.1186/s13287-021-02276-y. PubMed DOI PMC
Eiró N, Sendon-Lago J, Seoane S, Bermúdez MA, Lamelas ML, Garcia-Caballero T, Schneider J, Perez-Fernandez R, Vizoso FJ. Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget. 2014;5:10692–10708. doi: 10.18632/oncotarget.2530. PubMed DOI PMC
Bari E, Perteghella S, Di Silvestre D, Sorlini M, Catenacci L, Sorrenti M, Marrubini G, Rossi R, Tripodo G, Mauri P, et al. Pilot production of mesenchymal stem/stromal freeze-dried secretome for cell-free regenerative nanomedicine: A validated gmp-compliant process. Cells. 2018;7:190. doi: 10.3390/cells7110190. PubMed DOI PMC
Joseph A, Baiju I, Bhat IA, Pandey S, Bharti M, Verma M, Pratap Singh A, Ansari MM, Chandra V, Saikumar G, et al. Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. J. Cell. Physiol. 2020;235:5555–5569. doi: 10.1002/jcp.29486. PubMed DOI
Lee YC, Sun LY, Zhang JR. Protective effects of low-molecular-weight components of adipose stem cell-derived conditioned medium on dry eye syndrome in mice. Sci. Rep. 2021;11:21874. doi: 10.1038/s41598-021-01503-z. PubMed DOI PMC
Jabbehdari S, Yazdanpanah G, Kanu LN, Chen E, Kang K, Anwar KN, Ghassemi M, Hematti P, Rosenblatt MI, Djalilian AR. Therapeutic effects of lyophilized conditioned-medium derived from corneal mesenchymal stromal cells on corneal epithelial wound healing. Curr. Eye Res. 2020;45:1490–1496. doi: 10.1080/02713683.2020.1762227. PubMed DOI PMC
Peng Y, Xuan M, Zou J, Liu H, Zhuo Z, Wan Y, Cheng B. Freeze-dried rat bone marrow mesenchymal stem cell paracrine factors: A simplified novel material for skin wound therapy. Tissue Eng. Part A. 2015;21:1036–1046. doi: 10.1089/ten.tea.2014.0102. PubMed DOI PMC
Laggner M, Gugerell A, Bachmann C, Hofbauer H, Vorstandlechner V, Seibold M, Gouya Lechner G, Peterbauer A, Madlener S, Demyanets S, et al. Reproducibility of GMP-compliant production of therapeutic stressed peripheral blood mononuclear cell-derived secretomes, a novel class of biological medicinal products. Stem Cell Res. Ther. 2020;11:9. doi: 10.1186/s13287-019-1524-2. PubMed DOI PMC
Padilla L, Barranco I, Parrilla I, Lucas X, Rodriguez-Martinez H, Roca J. Measurable cytokine concentrations in pig seminal plasma are modified by semen handling and storage. Biology (Basel) 2020;9:276. PubMed PMC
Pinto J, Domingues MR, Galhano E, Pita C, Almeida Mdo C, Carreira IM, Gil AM. Human plasma stability during handling and storage: Impact on NMR metabolomics. Analyst. 2014;139:1168–1177. doi: 10.1039/C3AN02188B. PubMed DOI
Connolly BD, Le L, Patapoff TW, Cromwell MEM, Moore JMR, Lam P. Protein aggregation in frozen trehalose formulations: Effects of composition, cooling rate, and storage temperature. J. Pharm. Sci. 2015;104:4170–4184. doi: 10.1002/jps.24646. PubMed DOI
Duralliu A, Matejtschuk P, Stickings P, Hassall L, Tierney R, Williams DR. The influence of moisture content and temperature on the long-term storage stability of freeze-dried high concentration immunoglobulin G (IgG) Pharmaceutics. 2020;12:303. doi: 10.3390/pharmaceutics12040303. PubMed DOI PMC
Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K, Kupcova Skalnikova H, Vodicka P, Kubinova S. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Sci. Rep. 2020;10:4290–4290. doi: 10.1038/s41598-020-61167-z. PubMed DOI PMC
Agbozo EY, Dumashie E, Boakye DA, de Souza DK. Effects of lyophilization and storage temperature on Wuchereria bancrofti antigen sensitivity and stability. BMC Res. Notes. 2018;11:454. doi: 10.1186/s13104-018-3586-0. PubMed DOI PMC
Enroth S, Hallmans G, Grankvist K, Gyllensten U. Effects of long-term storage time and original sampling month on biobank plasma protein concentrations. EBioMedicine. 2016;12:309–314. doi: 10.1016/j.ebiom.2016.08.038. PubMed DOI PMC
Arakawa T, Prestrelski SJ, Kenney WC, Carpenter JF. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Rev. 2001;46:307–326. doi: 10.1016/S0169-409X(00)00144-7. PubMed DOI
Brogna R, Oldenhof H, Sieme H, Figueiredo C, Kerrinnes T, Wolkers WF. Increasing storage stability of freeze-dried plasma using trehalose. PLoS One. 2020;15:e0234502. doi: 10.1371/journal.pone.0234502. PubMed DOI PMC
Ozbey G, Gorczynski R, Erin N. Stability of cytokines in supernatants of stimulated mouse immune cells. Eur. Cytokine Netw. 2014;25:30–34. doi: 10.1684/ecn.2014.0353. PubMed DOI
Leemasawatdigul K, Gappa-Fahlenkamp H. Effect of storage conditions on the stability of recombinant human MCP-1/CCL2. Biologicals. 2011;39:29–32. doi: 10.1016/j.biologicals.2010.09.003. PubMed DOI PMC
Merivaara A, Zini J, Koivunotko E, Valkonen S, Korhonen O, Fernandes FM, Yliperttula M. Preservation of biomaterials and cells by freeze-drying: Change of paradigm. J. Controll. Release. 2021;336:480–498. doi: 10.1016/j.jconrel.2021.06.042. PubMed DOI
Vackova I, Vavrinova E, Musilkova J, Havlas V, Petrenko Y. Hypothermic storage of 3d cultured multipotent mesenchymal stromal cells for regenerative medicine applications. Polymers (Basel) 2022;14:2553. doi: 10.3390/polym14132553. PubMed DOI PMC