Autologous Mesenchymal Stromal Cells Immobilized in Plasma-Based Hydrogel for the Repair of Articular Cartilage Defects in a Large Animal Model

. 2023 Aug 31 ; 72 (4) : 485-495.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37795891

The treatment of cartilage defects in trauma injuries and degenerative diseases represents a challenge for orthopedists. Advanced mesenchymal stromal cell (MSC)-based therapies are currently of interest for the repair of damaged cartilage. However, an approved system for MSC delivery and maintenance in the defect is still missing. This study aimed to evaluate the effect of autologous porcine bone marrow MSCs anchored in a commercially available polyglycolic acid-hyaluronan scaffold (Chondrotissue®) using autologous blood plasma-based hydrogel in the repair of osteochondral defects in a large animal model. The osteochondral defects were induced in twenty-four minipigs with terminated skeletal growth. Eight animals were left untreated, eight were treated with Chondrotissue® and eight received Chondrotissue® loaded with MSCs. The animals were terminated 90 days after surgery. Macroscopically, the untreated defects were filled with newly formed tissue to a greater extent than in the other groups. The histological evaluations showed that the defects treated with Chondrotissue® and Chondrotissue® loaded with pBMSCs contained a higher amount of hyaline cartilage and a lower amount of connective tissue, while untreated defects contained a higher amount of connective tissue and a lower amount of hyaline cartilage. In addition, undifferentiated connective tissue was observed at the edges of defects receiving Chondrotissue® loaded with MSCs, which may indicate the extracellular matrix production by transplanted MSCs. The immunological analysis of the blood samples revealed no immune response activation by MSCs application. This study demonstrated the successful and safe immobilization of MSCs in commercially available scaffolds and defect sites for cartilage defect repair.

Zobrazit více v PubMed

Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. E Clin Med. 2020;29–30:100587. doi: 10.1016/j.eclinm.2020.100587. PubMed DOI PMC

Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, Sokolove J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12:580–592. doi: 10.1038/nrrheum.2016.136. PubMed DOI PMC

Simon TM, Jackson DW. Articular Cartilage: Injury Pathways and Treatment Options. Sports Med Arthrosc Rev. 2018;26:31–39. doi: 10.1097/JSA.0000000000000182. PubMed DOI

Lynch TS, Patel RM, Benedick A, Amin NH, Jones MH, Miniaci A. Systematic review of autogenous osteochondral transplant outcomes. Arthroscopy. 2015;31:746–754. doi: 10.1016/j.arthro.2014.11.018. PubMed DOI

Dewan AK, Gibson MA, Elisseeff JH, Trice ME. Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. Biomed Res Int. 2014;2014:272481. doi: 10.1155/2014/272481. PubMed DOI PMC

Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10:432–463. doi: 10.1053/joca.2002.0801. PubMed DOI

Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K, Kupcova Skalnikova H, Vodicka P, Kubinova S. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. SciRep. 2020;10:4290. doi: 10.1038/s41598-020-61167-z. PubMed DOI PMC

Necas A, Plánka L, Srnec R, Crha M, Hlučilová J, Klíma J, Starý D, Kren L, Amler E, Vojtová L, Jančář J, Gál P. Quality of newly formed cartilaginous tissue in defects of articular surface after transplantation of mesenchymal stem cells in a composite scaffold based on collagen I with chitosan micro- and nanofibres. Physiol Res. 2010;59:605–614. doi: 10.33549/physiolres.931725. PubMed DOI

Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. doi: 10.1038/s41536-019-0083-6. PubMed DOI PMC

Chang F, Ishii T, Yanai T, Mishima H, Akaogi H, Ogawa T, Ochiai N. Repair of large full-thickness articular cartilage defects by transplantation of autologous uncultured bone-marrow-derived mononuclear cells. J Orthop Res. 2008;26:18–26. doi: 10.1002/jor.20470. PubMed DOI

Sadlik B, Jaroslawski G, Puszkarz M, Blasiak A, Oldak T, Gladysz D, Whyte GP. Cartilage Repair in the Knee Using Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells Embedded Onto Collagen Scaffolding and Implanted Under Dry Arthroscopy. Arthrosc Tech. 2017;7:e57–e63. doi: 10.1016/j.eats.2017.08.055. PubMed DOI PMC

Havlas V, Kos P, Jendelová P, Lesný P, Trč T, Syková E. Comparison of chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells with cultured chondrocytes and bone marrow mesenchymal stem cells (in Czech) Acta Chir Orthop Traumatol Cech. 2011;78:138–144. doi: 10.55095/achot2011/022. PubMed DOI

Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Translat. 2017;9:76–88. doi: 10.1016/j.jot.2017.03.005. PubMed DOI PMC

Andor B, Patrascu JM, Florescu S, Cojocaru D, Sandesc M, Borcan F, Boruga O, Bolintineanu S. Comparison of different knee implants used on patiens with osteoarthritis control study. Mater Plast (Bucharest) 2016;53(1):119–125.

Glasbrenner J, Petersen W, Raschke MJ, Steiger M, Verdonk R, Castelli CC, Zappalà G, Fritschy D, Herbort M. Matrix-augmented bone marrow stimulation with a polyglycolic acid membrane with hyaluronan vs microfracture in local cartilage defects of the femoral condyles: a multicenter randomized controlled trial. Orthop J Sports Med. 2020;8:2325967120922938. doi: 10.1177/2325967120922938. PubMed DOI PMC

Erggelet C, Endres M, Neumann K, Morawietz L, Ringe J, Haberstroh K, Sittinger M, Kaps C. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res. 2009;27:1353–1360. doi: 10.1002/jor.20879. PubMed DOI

Patrascu JM, Krüger JP, Böss HG, Ketzmar AK, Freymann U, Sittinger M, Notter M, Endres M, Kaps C. Polyglycolic acid-hyaluronan scaffolds loaded with bone marrow-derived mesenchymal stem cells show chondrogenic differentiation in vitro and cartilage repair in the rabbit model. J Biomed Mater Res B Appl Biomater. 2013;101:1310–1320. doi: 10.1002/jbm.b.32944. PubMed DOI

Riedelová-Reicheltová Z, Brynda E, Riedel T. Fibrin nanostructures for biomedical applications. Physiol Res. 2016;65(Suppl 2):S263–S272. doi: 10.33549/physiolres.933428. PubMed DOI

Neckar P, Potockova H, Branis J, Havlas V, Novotny T, Lykova D, Gujski J, Drahoradova I, Ruzickova K, Kaclova J, Skala P, Bauer PO. Treatment of knee cartilage by cultured stem cells and free dimensional scaffold: a phase I/IIa clinical trial. Int Orthop. 2022 Jul 19; doi: 10.1007/s00264-022-05505-y. PubMed DOI

Vištejnová L, Liška V, Kumar A, Křečková J, Vyčítal O, Brůha J, Beneš J, Kolinko Y, Blassová T, Tonar Z, Brychtová M, Karlíková M, Racek J, Mírka H, Hošek P, Lysák D, Králíčková M. Mesenchymal stromal cell therapy in novel porcine model of diffuse liver damage induced by repeated biliary obstruction. Int J Mol Sci. 2021;22:4304. doi: 10.3390/ijms22094304. PubMed DOI PMC

Horak J, Nalos L, Martinkova V, Tegl V, Vistejnova L, Kuncova J, Kohoutova M, Jarkovska D, Dolejsova M, Benes J, Stengl M, Matejovic M. Evaluation of mesenchymal stem cell therapy for sepsis: a randomized controlled porcine study. Front Immunol. 2020;11:126. doi: 10.3389/fimmu.2020.00126. PubMed DOI PMC

Rogulska O, Tykhvynska O, Revenko O, Grischuk V, Mazur S, Volkova N, Vasyliev R, Petrenko A, Petrenko Y. Novel cryopreservation approach providing off-the-shelf availability of human multipotent mesenchymal stromal cells for clinical applications. Stem Cells Int. 2019;2019:4150690. doi: 10.1155/2019/4150690. PubMed DOI PMC

Vackova I, Vavrinova E, Musilkova J, Havlas V, Petrenko Y. Polymers (Basel) 2022;14(13):2553. doi: 10.3390/polym14132553. PubMed DOI PMC

Filová E, Tonar Z, Lukášová V, Buzgo M, Litvinec A, Rampichová M, Beznoska J, Plencner M, Staffa A, Daňková J, Soural M, Chvojka J, Malečková A, Králíčková M, Amler E. Hydrogel containing Anti-CD44-labeled microparticles, guide bone tissue formation in osteochondral defects in rabbits. Nanomaterials (Basel) 2020;10(8):1504. doi: 10.3390/nano10081504. PubMed DOI PMC

Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–1160. doi: 10.3758/BRM.41.4.1149. PubMed DOI

Welton KL, Logterman S, Bartley JH, Vidal AF, McCarty EC. Knee cartilage repair and restoration: common problems and solutions. Clin Sports Med. 2018;37:307–330. doi: 10.1016/j.csm.2017.12.008. PubMed DOI

Everhart JS, Campbell AB, Abouljoud MM, Kirven JC, Flanigan DC. Cost-efficacy of knee cartilage defect treatments in the united states. Am J Sports Med. 2020;48:242–251. doi: 10.1177/0363546519834557. PubMed DOI

Dhinsa BS, Adesida AB. Current clinical therapies for cartilage repair, their limitation and the role of stem cells. Curr Stem Cell Res Ther. 2012;7:143–148. doi: 10.2174/157488812799219009. PubMed DOI

Kristjánsson B, Honsawek S. Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells Int. 2014;2014:194318. doi: 10.1155/2014/194318. PubMed DOI PMC

Yoshiya S, Dhawan A. Cartilage repair techniques in the knee: stem cell therapies. Curr Rev Musculoskelet Med. 2015;8(4):457–466. doi: 10.1007/s12178-015-9302-y. PubMed DOI PMC

Yamasaki S, Mera H, Itokazu M, Hashimoto Y, Wakitani S. Cartilage Repair With Autologous Bone Marrow Mesenchymal Stem Cell Transplantation: Review of Preclinical and Clinical Studies. Cartilage. 2014;5(4):196–202. doi: 10.1177/1947603514534681. PubMed DOI PMC

Vodicka P, Smetana K, Jr, Dvorankova B, Emerick T, Xu YZ, Ourednik J, Ourednik V, Motlik J. The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci. 2005;1049:161–171. doi: 10.1196/annals.1334.015. PubMed DOI

Zantop T, Petersen W. Arthroscopic implantation of a matrix to cover large chondral defect during microfracture. Arthroscopy. 2009;25:1354–1360. doi: 10.1016/j.arthro.2009.04.077. PubMed DOI

Caminal M, Fonseca C, Peris D, Moll X, Rabanal RM, Barrachina J, Codina D, García F, Cairó JJ, Gòdia F, Pla A, Vives J. Use of a chronic model of articular cartilage and meniscal injury for the assessment of long-term effects after autologous mesenchymal stromal cell treatment in sheep. N Biotechnol. 2014;31:492–498. doi: 10.1016/j.nbt.2014.07.004. PubMed DOI

Gugjoo MB, Fazili MR, Gayas MA, Ahmad RA, Dhama K. Animal mesenchymal stem cell research in cartilage regenerative medicine - a review. Vet Q. 2019;39:95–120. doi: 10.1080/01652176.2019.1643051. PubMed DOI PMC

Ortiz AC, Fideles SOM, Pomini KT, Reis CHB, Bueno CRS, Pereira ESBM, Rossi JO, Novais PC, Pilon JPG, Rosa GM, Junior, Buchaim DV, Buchaim RL. Effects of therapy with fibrin glue combined with mesenchymal stem cells (mscs) on bone regeneration: a systematic review. Cells. 2021;10:2323. doi: 10.3390/cells10092323. PubMed DOI PMC

Le H, Xu W, Zhuang X, Chang F, Wang Y, Ding J. Mesenchymal stem cells for cartilage regeneration. J Tissue Eng. 2020;11:2041731420943839. doi: 10.1177/2041731420943839. PubMed DOI PMC

Ragelle H, Naba A, Larson BL, Zhou F, Prijić M, Whittaker CA, Del Rosario A, Langer R, Hynes RO, Anderson DG. Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials. 2017;128:147–159. doi: 10.1016/j.biomaterials.2017.03.008. PubMed DOI PMC

Burk J, Sassmann A, Kasper C, Nimptsch A, Schubert S. Extracellular matrix synthesis and remodeling by mesenchymal stromal cells is context-sensitive. Int J Mol Sci. 2022;23:1758. doi: 10.3390/ijms23031758. PubMed DOI PMC

Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration [published correction appears in PLoS One. 2015;10(3):e0119262] PLoS One. 2014;9:e107001. doi: 10.1371/journal.pone.0107001. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...