Novel Cryopreservation Approach Providing Off-the-Shelf Availability of Human Multipotent Mesenchymal Stromal Cells for Clinical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31885604
PubMed Central
PMC6907044
DOI
10.1155/2019/4150690
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Cryopreservation is the only established method to provide long-term storage and fast availability of cellular product for therapeutic applications. The overwhelming majority of cryopreservation media contain toxic concentrations of dimethyl sulfoxide (DMSO) limiting the possibility for the direct administration of cryopreserved cells to the patients. Here, we propose a novel approach for nontoxic xeno-free cryopreservation of human multipotent mesenchymal stromal cells (MSCs) aimed at ensuring high viability, ready-to-use availability, and localized delivery of the cell-based graft into damaged tissues. For MSC cryopreservation, we applied sucrose pretreatment procedure and xeno-free cryoprotective medium containing human platelet-poor blood plasma (PPP), sucrose, and nontoxic concentration of DMSO. Using the combination of PPP, 0.2 M sucrose, and 1% DMSO, the recovery rate of cryopreserved MSCs reached 73% of the values obtained for noncryopreserved cells. Moreover, the presence of PPP in the cryoprotective medium provided the possibility to create a ready-to-use 3D hydrogel for the localized delivery and additional support of MSCs in vivo. In a proof-of-concept study, we assessed the regenerative capacity of cryopreserved MSCs in a full-thickness wound model in mice. The positive impact of MSCs within 3D gel on wound healing rates was confirmed by morphometric and histological examinations. Our results demonstrate the possibility to apply cryopreserved cells immediately after thawing using a cryoprotective medium as the vehicle solution.
Zobrazit více v PubMed
Wu P., Zhang B., Shi H., Qian H., Xu W. MSC-exosome: a novel cell-free therapy for cutaneous regeneration. Cytotherapy. 2018;20(3):291–301. doi: 10.1016/j.jcyt.2017.11.002. PubMed DOI
Parekkadan B., Milwid J. M. Mesenchymal stem cells as therapeutics. Annual Review of Biomedical Engineering. 2010;12(1):87–117. doi: 10.1146/annurev-bioeng-070909-105309. PubMed DOI PMC
Lunyak V. V., Amaro-Ortiz A., Gaur M. Mesenchymal stem cells secretory responses: senescence messaging secretome and immunomodulation perspective. Frontiers in Genetics. 2017;8:p. 220. doi: 10.3389/fgene.2017.00220. PubMed DOI PMC
Petrenko Y., Sykova E., Kubinova S. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Research & Therapy. 2017;8(1):p. 94. doi: 10.1186/s13287-017-0558-6. PubMed DOI PMC
Marquez-Curtis L. A., Janowska-Wieczorek A., McGann L. E., Elliott J. A. W. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology. 2015;71(2):181–197. doi: 10.1016/j.cryobiol.2015.07.003. PubMed DOI
Ozturk S., Karagoz H. Experimental stem cell therapies on burn wound: do source, dose, timing and method matter? Burns. 2015;41(6):1133–1139. doi: 10.1016/j.burns.2015.01.005. PubMed DOI
Rodgers K., Jadhav S. S. The application of mesenchymal stem cells to treat thermal and radiation burns. Advanced Drug Delivery Reviews. 2018;123:75–81. doi: 10.1016/j.addr.2017.10.003. PubMed DOI
Jeevanantham V., Butler M., Saad A., Abdel-Latif A., Zuba-Surma E. K., Dawn B. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012;126(5):551–568. doi: 10.1161/CIRCULATIONAHA.111.086074. PubMed DOI PMC
Bang O. Y. Clinical trials of adult stem cell therapy in patients with ischemic stroke. Journal of Clinical Neurology. 2016;12(1):14–20. doi: 10.3988/jcn.2016.12.1.14. PubMed DOI PMC
Thirumala S., Goebel W. S., Woods E. J. Manufacturing and banking of mesenchymal stem cells. Expert Opinion on Biological Therapy. 2013;13(5):673–691. doi: 10.1517/14712598.2013.763925. PubMed DOI
Hunt C. J. Cryopreservation of human stem cells for clinical application: a review. Transfusion Medicine and Hemotherapy. 2011;38(2):107–123. doi: 10.1159/000326623. PubMed DOI PMC
Notman R., Noro M., O'Malley B., Anwar J. Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. Journal of the American Chemical Society. 2006;128(43):13982–13983. doi: 10.1021/ja063363t. PubMed DOI
Windrum P., Morris T. C. M., Drake M. B., Niederwieser D., Ruutu T., on behalf of the EBMT Chronic Leukaemia Working Party Complications Subcommittee Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres. Bone Marrow Transplantation. 2005;36(7):601–603. doi: 10.1038/sj.bmt.1705100. PubMed DOI
Cox M. A., Kastrup J., Hrubisko M. Historical perspectives and the future of adverse reactions associated with haemopoietic stem cells cryopreserved with dimethyl sulfoxide. Cell and Tissue Banking. 2012;13(2):203–215. doi: 10.1007/s10561-011-9248-2. PubMed DOI
Ray S. S., Pramanik K., Sarangi S. K., Jain N. Serum-free non-toxic freezing solution for cryopreservation of human adipose tissue-derived mesenchymal stem cells. Biotechnology Letters. 2016;38(8):1397–1404. doi: 10.1007/s10529-016-2111-6. PubMed DOI
Shivakumar S. B., Bharti D., Jang S. J., et al. Cryopreservation of human Wharton’s jelly-derived mesenchymal stem cells following controlled rate freezing protocol using different cryoprotectants; a comparative study. International Journal of Stem Cells. 2015;8(2):155–169. doi: 10.15283/ijsc.2015.8.2.155. PubMed DOI PMC
Miyagi-Shiohira C., Kobayashi N., Saitoh I., et al. Evaluation of serum-free, xeno-free cryopreservation solutions for human adipose-derived mesenchymal stem cells. Cell Medicine. 2017;9(1-2):15–20. doi: 10.3727/215517916X693122. PubMed DOI PMC
Al-Saqi S. H., Saliem M., Quezada H. C., et al. Defined serum- and xeno-free cryopreservation of mesenchymal stem cells. Cell and Tissue Banking. 2015;16(2):181–193. doi: 10.1007/s10561-014-9463-8. PubMed DOI
Matsumura K., Hayashi F., Nagashima T., Hyon S. H. Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. Journal of Biomaterials Science Polymer Edition. 2013;24(12):1484–1497. doi: 10.1080/09205063.2013.771318. PubMed DOI
Naaldijk Y., Staude M., Fedorova V., Stolzing A. Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnology. 2012;12(1):p. 49. doi: 10.1186/1472-6750-12-49. PubMed DOI PMC
Naaldijk Y., Johnson A. A., Friedrich-Stockigt A., Stolzing A. Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch-based cryoprotectants. BMC Biotechnology. 2016;16(1):p. 85. doi: 10.1186/s12896-016-0315-4. PubMed DOI PMC
Yudintseva N. M., Pleskach N. M., Smagina L. V., Blinova M. I., Samusenko I. A., Pinaev G. P. Reconstruction of connective tissue from fibrin-based dermal equivalent transplanted to animals with experimental wounds. Cell and Tissue Biology. 2010;4(5):476–480. doi: 10.1134/S1990519X10050111. PubMed DOI
Bensaid W., Triffitt J. T., Blanchat C., Oudina K., Sedel L., Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials. 2003;24(14):2497–2502. doi: 10.1016/S0142-9612(02)00618-X. PubMed DOI
Murphy M. B., Blashki D., Buchanan R. M., et al. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials. 2012;33(21):5308–5316. doi: 10.1016/j.biomaterials.2012.04.007. PubMed DOI
Smagur A., Mitrus I., Ciomber A., et al. Comparison of the cryoprotective solutions based on human albumin vs. autologous plasma: its effect on cell recovery, clonogenic potential of peripheral blood hematopoietic progenitor cells and engraftment after autologous transplantation. Vox Sanguinis. 2015;108(4):417–424. doi: 10.1111/vox.12238. PubMed DOI
Petrenko Y. A., Rogulska O. Y., Mutsenko V. V., Petrenko A. Y. A sugar pretreatment as a new approach to the Me2So- and xeno-free cryopreservation of human mesenchymal stromal cells. CryoLetters. 2014;35(3):239–246. PubMed
Rogulska O., Petrenko Y., Petrenko A. DMSO-free cryopreservation of adipose-derived mesenchymal stromal cells: expansion medium affects post-thaw survival. Cytotechnology. 2017;69(2):265–276. doi: 10.1007/s10616-016-0055-2. PubMed DOI PMC
Zuk P. A., Zhu M., Ashjian P., et al. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell. 2002;13(12):4279–4295. doi: 10.1091/mbc.e02-02-0105. PubMed DOI PMC
Obata S., Akeda K., Imanishi T., et al. Effect of autologous platelet-rich plasma-releasate on intervertebral disc degeneration in the rabbit anular puncture model: a preclinical study. Arthritis Research & Therapy. 2012;14(6):p. R241. doi: 10.1186/ar4084. PubMed DOI PMC
Dhurat R., Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author’s perspective. Journal of Cutaneous and Aesthetic Surgery. 2014;7(4):189–197. doi: 10.4103/0974-2077.150734. PubMed DOI PMC
Dankberg F., Persidsky M. D. A test of granulocyte membrane integrity and phagocytic function. Cryobiology. 1976;13(4):430–432. doi: 10.1016/0011-2240(76)90098-5. PubMed DOI
Dunn L., Prosser H. C. G., Tan J. T. M., Vanags L. Z., Ng M. K. C., Bursill C. A. Murine model of wound healing. Journal of Visualized Experiments. 2013;(75, article e50265) doi: 10.3791/50265. PubMed DOI PMC
Rodrigues J. P., Paraguassu-Braga F. H., Carvalho L., Abdelhay E., Bouzas L. F., Porto L. C. Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology. 2008;56(2):144–151. doi: 10.1016/j.cryobiol.2008.01.003. PubMed DOI
Petrenko Y. A., Jones D. R. E., Petrenko A. Y. Cryopreservation of human fetal liver hematopoietic stem/progenitor cells using sucrose as an additive to the cryoprotective medium. Cryobiology. 2008;57(3):195–200. doi: 10.1016/j.cryobiol.2008.08.003. PubMed DOI
Roy S., Arora S., Kumari P., Ta M. A simple and serum-free protocol for cryopreservation of human umbilical cord as source of Wharton’s jelly mesenchymal stem cells. Cryobiology. 2014;68(3):467–472. doi: 10.1016/j.cryobiol.2014.03.010. PubMed DOI
Gurruchaga H., Saenz Del Burgo L., Garate A., et al. Cryopreservation of human mesenchymal stem cells in an allogeneic bioscaffold based on platelet rich plasma and synovial fluid. Scientific Reports. 2017;7(1):p. 15733. doi: 10.1038/s41598-017-16134-6. PubMed DOI PMC
Houdek M. T., Wyles C. C., Stalboerger P. G., Terzic A., Behfar A., Moran S. L. Collagen and fractionated platelet-rich plasma scaffold for dermal regeneration. Plastic and Reconstructive Surgery. 2016;137(5):1498–1506. doi: 10.1097/PRS.0000000000002094. PubMed DOI
Borena B. M., Martens A., Broeckx S. Y., et al. Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cellular Physiology and Biochemistry. 2015;36(1):1–23. doi: 10.1159/000374049. PubMed DOI
Sanchez M., Anitua E., Orive G., Mujika I., Andia I. Platelet-rich therapies in the treatment of orthopaedic sport injuries. Sports Medicine. 2009;39(5):345–354. doi: 10.2165/00007256-200939050-00002. PubMed DOI
Blanton M. W., Hadad I., Johnstone B. H., et al. Adipose stromal cells and platelet-rich plasma therapies synergistically increase revascularization during wound healing. Plastic and Reconstructive Surgery. 2009;123:56S–64S. doi: 10.1097/PRS.0b013e318191be2d. PubMed DOI
Bao P., Kodra A., Tomic-Canic M., Golinko M. S., Ehrlich H. P., Brem H. The role of vascular endothelial growth factor in wound healing. The Journal of Surgical Research. 2009;153(2):347–358. doi: 10.1016/j.jss.2008.04.023. PubMed DOI PMC
Akita S., Akino K., Hirano A. Basic fibroblast growth factor in scarless wound healing. Advances in Wound Care. 2013;2(2):44–49. doi: 10.1089/wound.2011.0324. PubMed DOI PMC
Lin C. S., Lin G., Lue T. F. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells and Development. 2012;21(15):2770–2778. doi: 10.1089/scd.2012.0176. PubMed DOI PMC
Mesenchymal stem cells of Oravka chicken breed: promising path to biodiversity conservation