Hydrogel Containing Anti-CD44-Labeled Microparticles, Guide Bone Tissue Formation in Osteochondral Defects in Rabbits
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-29680A and 17-32285A
the Ministry of Health of the Czech Republic
18-09306S and CTATL03000207
the Czech Science Foundation
project no. LO1304
the National Program of sustainability
projects No. LO1605, LO1309, LO1508
the Ministry of Education, Youth and Sports within National Sustainability Programme I
PubMed
32751860
PubMed Central
PMC7466545
DOI
10.3390/nano10081504
PII: nano10081504
Knihovny.cz E-zdroje
- Klíčová slova
- CD44 antibody, cartilage, collagen, fibrin, microparticles, poly-ε-caprolactone,
- Publikační typ
- časopisecké články MeSH
Hydrogels are suitable for osteochondral defect regeneration as they mimic the viscoelastic environment of cartilage. However, their biomechanical properties are not sufficient to withstand high mechanical forces. Therefore, we have prepared electrospun poly-ε-caprolactone-chitosan (PCL-chit) and poly(ethylene oxide)-chitosan (PEO-chit) nanofibers, and FTIR analysis confirmed successful blending of chitosan with other polymers. The biocompatibility of PCL-chit and PEO-chit scaffolds was tested; fibrochondrocytes and chondrocytes seeded on PCL-chit showed superior metabolic activity. The PCL-chit nanofibers were cryogenically grinded into microparticles (mean size of about 500 µm) and further modified by polyethylene glycol-biotin in order to bind the anti-CD44 antibody, a glycoprotein interacting with hyaluronic acid (PCL-chit-PEGb-antiCD44). The PCL-chit or PCL-chit-PEGb-antiCD44 microparticles were mixed with a composite gel (collagen/fibrin/platelet rich plasma) to improve its biomechanical properties. The storage modulus was higher in the composite gel with microparticles compared to fibrin. The Eloss of the composite gel and fibrin was higher than that of the composite gel with microparticles. The composite gel either with or without microparticles was further tested in vivo in a model of osteochondral defects in rabbits. PCL-chit-PEGb-antiCD44 significantly enhanced osteogenic regeneration, mainly by desmogenous ossification, but decreased chondrogenic differentiation in the defects. PCL-chit-PEGb showed a more homogeneous distribution of hyaline cartilage and enhanced hyaline cartilage differentiation.
Hospital of Rudolfa and Stefanie a s Máchova 400 256 30 Benešov Czech Republic
Student Science s r o Národních Hrdinů 279 Dolní Počernice 190 12 Prague Czech Republic
Zobrazit více v PubMed
Buckwalter J.A., Mankin H.J. Instructional Course Lectures, the American Academy of Orthopaedic Surgeons-Articular Cartilage. Part I: Tissue Design and Chondrocyte-Matrix Interactions*†. Jbjs. 1997;79:600–611. doi: 10.2106/00004623-199704000-00021. PubMed DOI
Mithoefer K., Mcadams T., Williams R.J., Kreuz P.C., Mandelbaum B.R. Clinical Efficacy of the Microfracture Technique for Articular Cartilage Repair in the Knee: An Evidence-Based Systematic Analysis. Am. J. Sports Med. 2009;37:2053–2063. doi: 10.1177/0363546508328414. PubMed DOI
Dewan A.K., Gibson M.A., Elisseeff J.H., Trice M.E. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques. Biomed. Res. Int. 2014;2014:272481. doi: 10.1155/2014/272481. PubMed DOI PMC
Gille J., Behrens P., Schulz A.P., Oheim R., Kienast B. Matrix-Associated Autologous Chondrocyte Implantation: A Clinical Follow-Up at 15 Years. Cartilage. 2016;7:309–315. doi: 10.1177/1947603516638901. PubMed DOI PMC
Filová E., Rampichová M., Handl M., Lytvynets A., Halouzka R., Usvald D., Hlucilová J., Procházka R., Dezortová M., Rolencová E., et al. Composite Hyaluronate-Type I Collagen-Fibrin Scaffold in the Therapy of Osteochondral Defects in Miniature Pigs. Physiol. Res. 2007;56:5–16. PubMed
Sherwood J.K., Riley S.L., Palazzolo R., Brown S.C., Monkhouse D.C., Coates M., Griffith L.G., Landeen L.K., Ratcliffe A. A Three-Dimensional Osteochondral Composite Scaffold for Articular Cartilage Repair. Biomaterials. 2002;23:4739–4751. doi: 10.1016/S0142-9612(02)00223-5. PubMed DOI
Kandel R.A., Grynpas M., Pilliar R., Lee J., Wang J., Waldman S., Zalzal P., Hurtig M. Repair of Osteochondral Defects With Biphasic Cartilage-Calcium Polyphosphate Constructs in a Sheep Model. Biomaterials. 2006;27:4120–4131. doi: 10.1016/j.biomaterials.2006.03.005. PubMed DOI
Brocher J., Janicki P., Voltz P., Seebach E., Neumann E., Mueller-Ladner U., Richter W. Inferior Ectopic Bone Formation of Mesenchymal Stromal Cells from Adipose Tissue Compared to Bone Marrow: Rescue By Chondrogenic Pre-Induction. Stem Cell Res. 2013;11:1393–1406. doi: 10.1016/j.scr.2013.07.008. PubMed DOI
De Girolamo L., Niada S., Arrigoni E., Di Giancamillo A., Domeneghini C., Dadsetan M., Yaszemski M.J., Gastaldi D., Vena P., Taffetani M., et al. Repair of Osteochondral Defects in the Minipig Model By Opf Hydrogel Loaded with Adipose-Derived Mesenchymal Stem Cells. Regen Med. 2015;10:135–151. doi: 10.2217/rme.14.77. PubMed DOI
Hopper N., Wardale J., Brooks R., Power J., Rushton N., Henson F. Peripheral Blood Mononuclear Cells Enhance Cartilage Repair in In Vivo Osteochondral Defect Model. PLoS ONE. 2015;10:e0133937. doi: 10.1371/journal.pone.0133937. PubMed DOI PMC
Jurgens W.J.F.M., Kroeze R.J., Zandieh-Doulabi B., Dijk A.V., Renders G.A.P., Smit T.H., Milligen F.J.V., Ritt M.J.P.F., Helder M.N. One-Step Surgical Procedure for the Treatment of Osteochondral Defects with Adipose-Derived Stem Cells in a Caprine Knee Defect: A Pilot Study. Biores. Open Access. 2013;2:315–325. doi: 10.1089/biores.2013.0024. PubMed DOI PMC
Kim Y.S., Choi Y.J., Suh D.S., Heo D.B., Kim Y.I., Ryu J.-S., Koh Y.G. Mesenchymal Stem Cell Implantation in Osteoarthritic Knees: Is Fibrin Glue Effective as a Scaffold? Am. J. Sports Med. 2015;43:176–185. doi: 10.1177/0363546514554190. PubMed DOI
Filová E., Jelínek F., Handl M., Lytvynets A., Rampichová M., Varga F., Cinátl J., Soukup T., Trc T., Amler E. Novel Composite Hyaluronan/Type I Collagen/Fibrin Scaffold Enhances Repair of Osteochondral Defect in Rabbit Knee. J. Biomed. Mater. Res. B Appl. Biomater. 2008;87:415–424. doi: 10.1002/jbm.b.31119. PubMed DOI
Kayakabe M., Tsutsumi S., Watanabe H., Kato Y., Takagishi K. Transplantation of Autologous Rabbit Bm-Derived Mesenchymal Stromal Cells Embedded in Hyaluronic Acid Gel Sponge into Osteochondral Defects of the Knee. Cytotherapy. 2006;8:343–353. doi: 10.1080/14653240600845070. PubMed DOI
Prosecká E., Rampichová M., Litvinec A., Tonar Z., Králíčková M., Vojtová L., Kochová P., Plencner M., Buzgo M., Míčková A., et al. Collagen/Hydroxyapatite Scaffold Enriched with Polycaprolactone Nanofibers, Thrombocyte-Rich Solution and Mesenchymal Stem Cells Promotes Regeneration in Large Bone Defect In Vivo. J. Biomed. Mater. Res. A. 2015;103:671–682. doi: 10.1002/jbm.a.35216. PubMed DOI
Wang W., Sun L., Zhang P., Song J., Liu W. An Anti-Inflammatory Cell-Free Collagen/Resveratrol Scaffold for Repairing Osteochondral Defects in Rabbits. Acta Biomater. 2014;10:4983–4995. doi: 10.1016/j.actbio.2014.08.022. PubMed DOI
Filová E., Rampichová M., Litvinec A., Držík M., Míčková A., Buzgo M., Košťáková E., Martinová L., Usvald D., Prosecká E., et al. A Cell-Free Nanofiber Composite Scaffold Regenerated Osteochondral Defects in Miniature Pigs. Int. J. Pharm. 2013;447:139–149. doi: 10.1016/j.ijpharm.2013.02.056. PubMed DOI
Levingstone T.J., Ramesh A., Brady R.T., Brama P.A.J., Kearney C., Gleeson J.P., O’brien F.J. Cell-Free Multi-Layered Collagen-Based Scaffolds Demonstrate Layer Specific Regeneration of Functional Osteochondral Tissue in Caprine Joints. Biomaterials. 2016;87:69–81. doi: 10.1016/j.biomaterials.2016.02.006. PubMed DOI
Cremer M.A., Rosloniec E.F., Kang A.H. The Cartilage Collagens: A Review of Their Structure, Organization, and Role in the Pathogenesis of Experimental Arthritis in Animals and in Human Rheumatic Disease. Int. J. Mol. Med. 1998;76:275–288. doi: 10.1007/s001090050217. PubMed DOI
Van Susante J.L.C., Buma P., Schuman L., Homminga G.N., Van Den Berg W.B., Veth R.P.H. Resurfacing Potential of Heterologous Chondrocytes Suspended in Fibrin Glue in Large Full-Thickness Defects of Femoral Articular Cartilage: An Experimental Study in the Goat. Biomaterials. 1999;20:1167–1175. doi: 10.1016/S0142-9612(97)00190-7. PubMed DOI
Breinan H.A., Minas T., Hsu H.-P., Nehrer S., Shortkroff S., Spector M. Autologous Chondrocyte Implantation in a Canine Model: Change in Composition of Reparative Tissue with Time. J. Orthop. Res. 2001;19:482–492. doi: 10.1016/S0736-0266(00)90015-9. PubMed DOI
Jakubova R., Mickova A., Buzgo M., Rampichova M., Prosecka E., Tvrdik D., Amler E. Immobilization of Thrombocytes on Pcl Nanofibres Enhances Chondrocyte Proliferation In Vitro. Cell Prolif. 2011;44:183–191. doi: 10.1111/j.1365-2184.2011.00737.x. PubMed DOI PMC
Baenziger N.L., Brodie G.N., Majerus P.W. A Thrombin-Sensitive Protein of Human Platelet Membranes. Proc. Natl. Acad. Sci. USA. 1971;68:240–243. doi: 10.1073/pnas.68.1.240. PubMed DOI PMC
Filová E., Jakubcová B., Danilová I., Kuželová Košťáková E., Jarošíková T., Chernyavskiy O., Hejda J., Handl M., Beznoska J., Nečas A., et al. Polycaprolactone Foam Functionalized with Chitosan Microparticles—A Suitable Scaffold for Cartilage Regeneration. Physiol. Res. 2016;65:121–131. doi: 10.33549/physiolres.932998. PubMed DOI
Kuchařová M., Ďoubal S., Klemera P., Rejchrt P., Navrátil M. Viscoelasticity of Biological Materials—Measurement and Practical Impact on Biomedicine. Physiol. Res. 2007;56:S33–S37. PubMed
Kocová J. Overall Staining of Connective Tissue and the Muscular Layer of Vessels. Folia Morphol. (Praha) 1970;18:293–295. PubMed
Rieppo L., Janssen L., Rahunen K., Lehenkari P., Finnilä M.A.J., Saarakkala S. Histochemical Quantification of Collagen Content in Articular Cartilage. PLoS ONE. 2019;14:e0224839. doi: 10.1371/journal.pone.0224839. PubMed DOI PMC
Vermeulen A.H., Vermeer C., Bosman F.T. Histochemical Detection of Osteocalcin in Normal and Pathological Human Bone. J. Histochem. Cytochem. 1989;37:1503–1508. doi: 10.1177/37.10.2789247. PubMed DOI
Conklin J.L. Staining Properties of Hyaline Cartilage. Am. J. Anat. 1963;112:259–267. doi: 10.1002/aja.1001120209. PubMed DOI
Kiernan J.A. Histological and Histochemical Methods. Theory and Practice. 4th ed. Scion Publishing Ltd.; Banbury, UK: 2008. pp. 304–306.
Mouton P.R. Principles and Practices of Unbiased Stereology: An Introduction for Bioscientists. 1st ed. Johns Hopkins University Press; Baltimore, MD, USA: 2002.
Buzgo M., Greplová J., Soural M., Bezděková D., Míčková A., Kofroňová O., Benada O., Hlaváč J., Amler E. Pva Immunonanofibers with Controlled Decay. Polymer. 2015;77:387–398. doi: 10.1016/j.polymer.2015.09.018. DOI
Knotek P., Pouzar M., Buzgo M., Krizkova B., Vlcek M., Mickova A., Plencner M., Navesnik J., Amler E., Belina P. Cryogenic Grinding of Electrospun Poly-Ε-Caprolactone Mesh Submerged in Liquid Media. Mater. Sci. Eng. C. 2012;32:1366–1374. doi: 10.1016/j.msec.2012.04.012. PubMed DOI
Goldenberg D.M., Chang C.-H., Sharkey R.M., Rossi E.A., Karacay H., Mcbride W., Hansen H.J., Chatal J.-F., Barbet J. Radioimmunotherapy: Is Avidin-Biotin Pretargeting the Preferred Choice Among Pretargeting Methods? Eur. J. Nucl. Med. Mol. Imaging. 2003;30:777–780. doi: 10.1007/s00259-002-1089-6. PubMed DOI
Yang I.H., Kim S.H., Kim Y.H., Sun H.J., Kim S.J., Lee J.W. Comparison of Phenotypic Characterization Between “Alginate Bead” and “Pellet” Culture Systems as Chondrogenic Differentiation Models for Human Mesenchymal Stem Cells. Yonsei Med. J. 2004;45:891–900. doi: 10.3349/ymj.2004.45.5.891. PubMed DOI
Uchio Y., Ochi M., Matsusaki M., Kurioka H., Katsube K. Human Chondrocyte Proliferation and Matrix Synthesis Cultured in Atelocollagen® Gel. J. Biomed. Mater. Res. 2000;50:138–143. doi: 10.1002/(SICI)1097-4636(200005)50:2<138::AID-JBM7>3.0.CO;2-K. PubMed DOI
Bosnakovski D., Mizuno M., Kim G., Takagi S., Okumura M., Fujinaga T. Chondrogenic Differentiation of Bovine Bone Marrow Mesenchymal Stem Cells (Mscs) in Different Hydrogels: Influence of Collagen Type Ii Extracellular Matrix on Msc Chondrogenesis. Biotechnol. Bioeng. 2006;93:1152–1163. doi: 10.1002/bit.20828. PubMed DOI
Kim J., Cho H., Young K., Park J., Lee J., Suh D. In Vivo Animal Study and Clinical Outcomes of Autologous Atelocollagen-Induced Chondrogenesis for Osteochondral Lesion Treatment. J. Orthop. Surg. Res. 2015;10:82. doi: 10.1186/s13018-015-0212-x. PubMed DOI PMC
Ponticiello M.S., Schinagl R.M., Kadiyala S., Barry F.P. Gelatin-Based Resorbable Sponge as a Carrier Matrix for Human Mesenchymal Stem Cells in Cartilage Regeneration Therapy. J. Biomed. Mater. Res. 2000;52:246–255. doi: 10.1002/1097-4636(200011)52:2<246::AID-JBM2>3.0.CO;2-W. PubMed DOI
Ishida K., Kuroda R., Miwa M., Tabata Y., Hokugo A., Kawamoto T., Sasaki K., Doita M., Kurosaka M. The Regenerative Effects of Platelet-Rich Plasma on Meniscal Cells In Vitro and Its In Vivo Application with Biodegradable Gelatin Hydrogel. Tissue Eng. 2007;13:1103–1112. doi: 10.1089/ten.2006.0193. PubMed DOI
Fragonas E., Valente M., Pozzi-Mucelli M., Toffanin R., Rizzo R., Silvestri F., Vittur F. Articular Cartilage Repair in Rabbits by Using Suspensions of Allogenic Chondrocytes in Alginate. Biomaterials. 2000;21:795–801. doi: 10.1016/S0142-9612(99)00241-0. PubMed DOI
Hao T., Wen N., Cao J.K., Wang H.B., Lü S.H., Liu T., Lin Q.X., Duan C.M., Wang C.Y. The Support of Matrix Accumulation and the Promotion of Sheep Articular Cartilage Defects Repair In Vivo by Chitosan Hydrogels. Osteoarthr. Cartil. 2010;18:257–265. doi: 10.1016/j.joca.2009.08.007. PubMed DOI
Tan H., Chu C.R., Payne K.A., Marra K.G. Injectable In Situ Forming Biodegradable Chitosan–Hyaluronic Acid Based Hydrogels for Cartilage Tissue Engineering. Biomaterials. 2009;30:2499–2506. doi: 10.1016/j.biomaterials.2008.12.080. PubMed DOI PMC
Plánka L., Nečas A., Gál P., Kecová H., Filová E., Křen L., Krupa P. Prevention of Bone Bridge Formation Using Transplantation of the Autogenous Mesenchymal Stem Cells to Physeal Defects: An Experimental Study in Rabbits. Acta Vet. Brno. 2007;76:253–263. doi: 10.2754/avb200776020253. DOI
Moutos F.T., Freed L.E., Guilak F. A Biomimetic Three-Dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage. Nat. Mater. 2007;6:162. doi: 10.1038/nmat1822. PubMed DOI
Coburn J., Gibson M., Bandalini P.A., Laird C., Mao H.-Q., Moroni L., Seliktar D., Elisseeff J. Biomimetics of the Extracellular Matrix: An Integrated Three-Dimensional Fiber-Hydrogel Composite for Cartilage Tissue Engineering. Smart Struct. Syst. 2011;7:213–222. doi: 10.12989/sss.2011.7.3.213. PubMed DOI PMC
Rampichová M., Buzgo M., Křížková B., Prosecká E., Pouzar M., Štrajtová L. Injectable Hydrogel Functionalised with Thrombocyte-Rich Solution and Microparticles for Accelerated Cartilage Regeneration. Acta Chir. Orthop. Traumatol. Cechoslov. 2013;80:82–88. PubMed
Marijnissen W.J.C.M., Van Osch G.J.V.M., Aigner J., Van Der Veen S.W., Hollander A.P., Verwoerd-Verhoef H.L., Verhaar J.A.N. Alginate as a Chondrocyte-Delivery Substance in Combination with a Non-Woven Scaffold for Cartilage Tissue Engineering. Biomaterials. 2002;23:1511–1517. doi: 10.1016/S0142-9612(01)00281-2. PubMed DOI
Peniche C., Argüelles-Monal W., Peniche H., Acosta N. Chitosan: An Attractive Biocompatible Polymer for Microencapsulation. Macromol. Biosci. 2003;3:511–520. doi: 10.1002/mabi.200300019. DOI
Ohkawa K., Cha D., Kim H., Nishida A., Yamamoto H. Electrospinning of Chitosan. Macromol. Rapid Commun. 2004;25:1600–1605. doi: 10.1002/marc.200400253. DOI
Ohkawa K., Minato K., Kumagai G., Hayashi S., Yamamoto H. Chitosan Nanofiber. Biomacromolecules. 2006;7:3291–3294. doi: 10.1021/bm0604395. PubMed DOI
Yang D., Jin Y., Ma G., Chen X., Lu F., Nie J. Fabrication and Characterization of Chitosan/Pva with Hydroxyapatite Biocomposite Nanoscaffolds. J. Appl. Polym. Sci. 2008;110:3328–3335. doi: 10.1002/app.28829. DOI
Klossner R.R., Queen H.A., Coughlin A.J., Krause W.E. Correlation of Chitosan’s Rheological Properties and Its Ability to Electrospin. Biomacromolecules. 2008;9:2947–2953. doi: 10.1021/bm800738u. PubMed DOI
Kriegel C., Kit K.M., Mcclements D.J., Weiss J. Influence of Surfactant Type and Concentration on Electrospinning of Chitosan–Poly(Ethylene Oxide) Blend Nanofibers. Food Biophys. 2009;4:213–228. doi: 10.1007/s11483-009-9119-6. DOI
Zhang Y.Z., Su B., Ramakrishna S., Lim C.T. Chitosan Nanofibers from an Easily Electrospinnable Uhmwpeo-Doped Chitosan Solution System. Biomacromolecules. 2008;9:136–141. doi: 10.1021/bm701130e. PubMed DOI
Nirmala R., Navamathavan R., Kang H.-S., El-Newehy M.H., Kim H.Y. Preparation of Polyamide-6/Chitosan Composite Nanofibers by a Single Solvent System Via Electrospinning for Biomedical Applications. Colloid Surf. B. 2011;83:173–178. doi: 10.1016/j.colsurfb.2010.11.026. PubMed DOI
Yang M.R., Chen K.S., Tsai J.C., Tseng C.C., Lin S.F. The Antibacterial Activities of Hydrophilic-Modified Nonwoven Pet. Mater. Sci. Eng. C. 2002;20:167–173. doi: 10.1016/S0928-4931(02)00028-0. DOI
Chen H., Fan X., Xia J., Chen P., Zhou X., Huang J., Yu J., Gu P. Electrospun Chitosan-Graft-Poly (Ɛ-Caprolactone)/Poly(Ɛ-Caprolactone) Nanofibrous Scaffolds for Retinal Tissue Engineering. Int. J. Nanomed. 2011;6:453–461. PubMed PMC
Zivanovic S., Li J., Davidson P.M., Kit K. Physical, Mechanical, and Antibacterial Properties of Chitosan/Peo Blend Films. Biomacromolecules. 2007;8:1505–1510. doi: 10.1021/bm061140p. PubMed DOI
Zhou F.-L., Gong R.-H., Porat I. Mass Production of Nanofibre Assemblies by Electrostatic Spinning. Polym. Int. 2009;58:331–342. doi: 10.1002/pi.2521. DOI
Jin J., Song M., Hourston D.J. Novel Chitosan-Based Films Cross-Linked by Genipin with Improved Physical Properties. Biomacromolecules. 2004;5:162–168. doi: 10.1021/bm034286m. PubMed DOI
Van Der Schueren L., Steyaert I., De Schoenmaker B., De Clerck K. Polycaprolactone/Chitosan Blend Nanofibres Electrospun from an Acetic Acid/Formic Acid Solvent System. Carbohydr. Polym. 2012;88:1221–1226. doi: 10.1016/j.carbpol.2012.01.085. DOI
Noriega S.E., Hasanova G.I., Schneider M.J., Larsen G.F., Subramanian A. Effect of Fiber Diameter on the Spreading, Proliferation and Differentiation of Chondrocytes on Electrospun Chitosan Matrices. Cells Tissues Organs. 2012;195:207–221. doi: 10.1159/000325144. PubMed DOI PMC
Lukasova V., Buzgo M., Vocetkova K., Kubíková T., Tonar Z., Doupník M., Blahnová V., Litvinec A., Sovková V., Voltrová B., et al. Osteoinductive 3d Scaffolds Prepared by Blend Centrifugal Spinning for Long-Term Delivery of Osteogenic Supplements. Rsc Adv. 2018;8:21889–21904. PubMed PMC
Bolaina-Lorenzo E., Martínez-Ramos C., Monleón-Pradas M., Herrera-Kao W., Cauich-Rodríguez J.V., Cervantes-Uc J.M. Electrospun Polycaprolactone/Chitosan Scaffolds for Nerve Tissue Engineering: Physicochemical Characterization and Schwann Cell Biocompatibility. Biomed. Mater. 2016;12:015008. doi: 10.1088/1748-605X/12/1/015008. PubMed DOI
Schexnailder P.J., Gaharwar A.K., Bartlett Ii R.L., Seal B.L., Schmidt G. Tuning Cell Adhesion by Incorporation of Charged Silicate Nanoparticles as Cross-Linkers to Polyethylene Oxide. Macromol. Biosci. 2010;10:1416–1423. doi: 10.1002/mabi.201000053. PubMed DOI
Anamelechi C.C., Truskey G.A., Reichert W.M. Mylar™ and Teflon-Af™ as Cell Culture Substrates for Studying Endothelial Cell Adhesion. Biomaterials. 2005;26:6887–6896. doi: 10.1016/j.biomaterials.2005.04.027. PubMed DOI
Tsai W.B., Wang M.C. Effect of an Avidin-Biotin Binding System on Chondrocyte Adhesion, Growth and Gene Expression. Biomaterials. 2005;26:3141–3151. doi: 10.1016/j.biomaterials.2004.08.014. PubMed DOI
Tsai W.B., Wang M.C. Effects of an Avidin-Biotin Binding System on Chondrocyte Adhesion and Growth on Biodegradable Polymers. Macromol. Biosci. 2005;5:214–221. doi: 10.1002/mabi.200400144. PubMed DOI
Feng S., Yan Z., Guo C., Chen Z., Zhang K., Mo X., Gu Y. Effects of an Avidin-Biotin Binding System on Schwann Cells Attachment, Proliferation, and Gene Expressions onto Electrospun Scaffolds. J. Biomed. Mater. Res. A. 2011;97:321–329. doi: 10.1002/jbm.a.33063. PubMed DOI
Chow G., Nietfeld J.J., Knudson C.B., Knudson W. Antisense Inhibition of Chondrocyte Cd44 Expression Leading to Cartilage Chondrolysis. Arthritis Rheumatol. 1998;41:1411–1419. doi: 10.1002/1529-0131(199808)41:8<1411::AID-ART10>3.0.CO;2-Z. PubMed DOI
Knudson W., Casey B., Nishida Y., Eger W., Kuettner K.E., Knudson C.B. Hyaluronan Oligosaccharides Perturb Cartilage Matrix Homeostasis and Induce Chondrocytic Chondrolysis. Arthritis Rheumatol. 2000;43:1165–1174. doi: 10.1002/1529-0131(200005)43:5<1165::AID-ANR27>3.0.CO;2-H. PubMed DOI
Goodison S., Urquidi V., Tarin D. Cd44 Cell Adhesion Molecules. Mol. Pathol. 1999;52:189–196. doi: 10.1136/mp.52.4.189. PubMed DOI PMC
Thorne R.F., Legg J.W., Isacke C.M. The Role of the Cd44 Transmembrane and Cytoplasmic Domains in Co-Ordinating Adhesive and Signalling Events. J. Cell Sci. 2004;117:373. doi: 10.1242/jcs.00954. PubMed DOI
Zhu H., Mitsuhashi N., Klein A., Barsky L.W., Weinberg K., Barr M.L., Demetriou A., Wu G.D. The Role of the Hyaluronan Receptor Cd44 in Mesenchymal Stem Cell Migration in the Extracellular Matrix. Stem Cells. 2006;24:928–935. doi: 10.1634/stemcells.2005-0186. PubMed DOI
Julovi S.M., Ito H., Nishitani K., Jackson C.J., Nakamura T. Hyaluronan Inhibits Matrix Metalloproteinase-13 in Human Arthritic Chondrocytes Via Cd44 and P38. Joredr. 2011;29:258–264. doi: 10.1002/jor.21216. PubMed DOI
Yatabe T., Mochizuki S., Takizawa M., Chijiiwa M., Okada A., Kimura T., Fujita Y., Matsumoto H., Toyama Y., Okada Y. Hyaluronan Inhibits Expression of Adamts4 (Aggrecanase-1) in Human Osteoarthritic Chondrocytes. Ann. Rheum. Dis. 2009;68:1051–1058. doi: 10.1136/ard.2007.086884. PubMed DOI PMC
Galandrini R., Galluzzo E., Albi N., Grossi C.E., Velardi A. Hyaluronate Is Costimulatory for Human T Cell Effector Functions and Binds to Cd44 on Activated T Cells. J. Immunol. 1994;153:21–31. PubMed
Ye X., Zhao Q., Sun X., Li H. Enhancement of Mesenchymal Stem Cell Attachment to Decellularized Porcine Aortic Valve Scaffold by In Vitro Coating with Antibody against Cd90: A Preliminary Study on Antibody-Modified Tissue-Engineered Heart Valve. Tissue Eng. Part A. 2009;15:1–11. doi: 10.1089/ten.tea.2008.0001. PubMed DOI
Yanada S., Ochi M., Adachi N., Nobuto H., Agung M., Kawamata S. Effects of Cd44 Antibody-- or Rgds Peptide--Immobilized Magnetic Beads on Cell Proliferation and Chondrogenesis of Mesenchymal Stem Cells. J. Biomed. Mater. Res. A. 2006;77:773–784. doi: 10.1002/jbm.a.30635. PubMed DOI
Lin H., Zhou J., Shen L., Ruan Y., Dong J., Guo C., Chen Z. Biotin-Conjugated Anti-Cd44 Antibody-Avidin Binding System for the Improvement of Chondrocyte Adhesion to Scaffolds. J. Biomed. Mater. Res. A. 2014;102:1140–1148. doi: 10.1002/jbm.a.34770. PubMed DOI
Jalani G., Rosenzweig D.H., Makhoul G., Abdalla S., Cecere R., Vetrone F., Haglund L., Cerruti M. Tough, In-Situ Thermogelling, Injectable Hydrogels for Biomedical Applications. Macromol. Biosci. 2015;15:473–480. doi: 10.1002/mabi.201400406. PubMed DOI
Wang W., Li B., Yang J., Xin L., Li Y., Yin H., Qi Y., Jiang Y., Ouyang H., Gao C. The Restoration of Full-Thickness Cartilage Defects with Bmscs and Tgf-Beta 1 Loaded Plga/Fibrin Gel Constructs. Biomaterials. 2010;31:8964–8973. doi: 10.1016/j.biomaterials.2010.08.018. PubMed DOI
Almeida H.V., Eswaramoorthy R., Cunniffe G.M., Buckley C.T., O’brien F.J., Kelly D.J. Fibrin Hydrogels Functionalized with Cartilage Extracellular Matrix and Incorporating Freshly Isolated Stromal Cells as an Injectable for Cartilage Regeneration. Acta Biomater. 2016;36:55–62. doi: 10.1016/j.actbio.2016.03.008. PubMed DOI
Mccarrel T., Fortier L. Temporal Growth Factor Release from Platelet-Rich Plasma, Trehalose Lyophilized Platelets, and Bone Marrow Aspirate and Their Effect on Tendon and Ligament Gene Expression. J. Orthop. Res. 2009;27:1033–1042. doi: 10.1002/jor.20853. PubMed DOI
Lukášová V., Buzgo M., Vocetková K., Sovková V., Doupník M., Himawanf E., Staffa A., Sedláček R., Chlup H., Rustichelli F., et al. Needleless Electrospun and Centrifugal Spun Poly-Ε-Caprolactone Scaffolds as a Carrier for Platelets in Tissue Engineering Applications: A Comparative Study with Hmscs. Mater. Sci. Eng. C. 2019;97:567–575. doi: 10.1016/j.msec.2018.12.069. PubMed DOI
Camargo P.M., Lekovic V., Weinlaender M., Vasilic N., Madzarevic M., Kenney E.B. Platelet-Rich Plasma and Bovine Porous Bone Mineral Combined with Guided Tissue Regeneration in the Treatment of Intrabony Defects in Humans. J. Periodontal Res. 2002;37:300–306. doi: 10.1034/j.1600-0765.2002.01001.x. PubMed DOI
Kon E., Mandelbaum B., Buda R., Filardo G., Delcogliano M., Timoncini A., Fornasari P.M., Giannini S., Marcacci M. Platelet-Rich Plasma Intra-Articular Injection Versus Hyaluronic Acid Viscosupplementation as Treatments for Cartilage Pathology: From Early Degeneration to Osteoarthritis. Arthroscopy. 2011;27:1490–1501. doi: 10.1016/j.arthro.2011.05.011. PubMed DOI
Yausep O.E., Madhi I., Trigkilidas D. Platelet Rich Plasma for Treatment of osteochondral Lesions of the Talus: A Systematic Review of Clinical Trials. J. Orthop. 2020;18:218–225. doi: 10.1016/j.jor.2020.01.046. PubMed DOI PMC
Fortier L.A., Hackett C.H., Cole B.J. The Effects of Platelet-Rich Plasma on Cartilage: Basic Science and Clinical Application. Oper. Tech. Sports Med. 2011;19:154–159. doi: 10.1053/j.otsm.2011.03.004. DOI
Chanda M., Roy S. Plastics Technology Handbook. 4th ed. Crc Press; Boca Raton, FL, USA: 2007. pp. 3–28.
Babrnáková J., Pavliňáková V., Brtníková J., Sedláček P., Prosecká E., Rampichová M., Filová E., Hearnden V., Vojtová L. Synergistic Effect of Bovine Platelet Lysate and Various Polysaccharides on the Biological Properties of Collagen-Based Scaffolds for Tissue Engineering: Scaffold Preparation, Chemo-Physical Characterization, In Vitro and Ex Ovo Evaluation. Mater. Sci. Eng. C. 2019;100:236–246. doi: 10.1016/j.msec.2019.02.092. PubMed DOI
He X., Fan X., Feng W., Chen Y., Guo T., Wang F., Liu J., Tang K. Incorporation of Microfibrillated Cellulose into Collagen-Hydroxyapatite Scaffold for Bone Tissue Engineering. Int. J. Biol. Macromol. 2018;115:385–392. doi: 10.1016/j.ijbiomac.2018.04.085. PubMed DOI
Mckee M.D., Cole W.G. Chapter 2—Bone Matrix and Mineralization. In: Glorieux F.H., Pettifor J.M., Jüppner H., editors. Pediatric Bone. 2nd ed. Academic Press; San Diego, CA, USA: 2012. pp. 9–37.
Price P.A., Otsuka A.A., Poser J.W., Kristaponis J., Raman N. Characterization of a Gamma-Carboxyglutamic Acid-Containing Protein from Bone. Proc. Natl. Acad. Sci. USA. 1976;73:1447–1451. doi: 10.1073/pnas.73.5.1447. PubMed DOI PMC
Eastell R., Hannon R.A. Chapter 27—Biochemical Markers of Bone Turnover. In: Lobo R.A., editor. Treatment of the Postmenopausal Woman. 3rd ed. Academic Press; St. Louis, MO, USA: 2007. pp. 337–349.
Sovkova V., Vocetkova K., Rampichova M., Mickova A., Buzgo M., Lukasova V., Dankova J., Filova E., Necas A., Amler E. Platelet Lysate as a Serum Replacement for Skin Cell Culture on Biomimetic Pcl Nanofibers. Platelets. 2018;29:395–405. doi: 10.1080/09537104.2017.1316838. PubMed DOI
Sarban S., Tabur H., Baba Z.F., Işıkan U.E. The Positive Impact of Platelet-Derived Growth Factor on the Repair of Full-Thickness Defects of Articular Cartilage. Eklem Hast. Cerrahisi. 2019;30:91–96. doi: 10.5606/ehc.2019.64018. PubMed DOI
Huang R.Y., Tai W.C., Ho M.H., Chang P.C. Combination of a Biomolecule-Aided Biphasic Cryogel Scaffold with a Barrier Membrane Adhering Pdgf-Encapsulated Nanofibers to Promote Periodontal Regeneration. J. Periodontal Res. 2020 doi: 10.1111/jre.12740. PubMed DOI
Wang S., Li Y., Li S., Yang J., Tang R., Li X., Li L., Fei J. Platelet-Rich Plasma Loaded with Antibiotics as an Affiliated Treatment for Infected Bone Defect by Combining Wound Healing Property and Antibacterial Activity. Platelets. 2020:1–13. doi: 10.1080/09537104.2020.1759792. PubMed DOI
Rampichová M., Buzgo M., Míčková A., Vocetková K., Sovková V., Lukášová V., Filová E., Rustichelli F., Amler E. Platelet-Functionalized Three-Dimensional Poly-Ε-Caprolactone Fibrous Scaffold Prepared Using Centrifugal Spinning for Delivery of Growth Factors. Int. J. Nanomed. 2017;12:347–361. doi: 10.2147/IJN.S120206. PubMed DOI PMC
Xie X., Wang Y., Zhao C., Guo S., Liu S., Jia W., Tuan R.S., Zhang C. Comparative Evaluation of Mscs from Bone Marrow and Adipose Tissue Seeded in Prp-Derived Scaffold for Cartilage Regeneration. Biomaterials. 2012;33:7008–7018. doi: 10.1016/j.biomaterials.2012.06.058. PubMed DOI
Shimizu Y., Van Seventer G.A., Siraganian R., Wahl L., Shaw S. Dual Role of the Cd44 Molecule in T Cell Adhesion and Activation. J. Immunol. 1989;143:2457–2463. PubMed
Krishnan V., Bryant H.U., Macdougald O.A. Regulation of Bone Mass by Wnt Signaling. J. Clin. Investig. 2006;116:1202–1209. doi: 10.1172/JCI28551. PubMed DOI PMC
Majidinia M., Sadeghpour A., Yousefi B. The Roles of Signaling Pathways in Bone Repair and Regeneration. J. Cell. Physiol. 2018;233:2937–2948. doi: 10.1002/jcp.26042. PubMed DOI
El Bialy I., Jiskoot W., Reza Nejadnik M. Formulation, Delivery and Stability of Bone Morphogenetic Proteins for Effective Bone Regeneration. Pharm. Res. 2017;34:1152–1170. doi: 10.1007/s11095-017-2147-x. PubMed DOI PMC
Zheng A.Q., Xiao J., Xie J., Lu P.P., Ding X.I.A.E.P. Bfgf Enhances Activation of Osteoblast Differentiation and Osteogenesis on Titanium Surfaces Via Pi3k/Akt Signaling Pathway. Int. J. Clin. Exp. Pathol. 2016;9:4680–4692.
Feng X., Huang D., Lu X., Feng G., Xing J., Lu J., Xu K., Xia W., Meng Y., Tao T., et al. Insulin-Like Growth Factor 1 Can Promote Proliferation and Osteogenic Differentiation of Human Dental Pulp Stem Cells Via Mtor Pathway. Dev. Growth Differ. 2014;56:615–624. doi: 10.1111/dgd.12179. PubMed DOI
Advances in Electrospun Hybrid Nanofibers for Biomedical Applications