Immobilization of thrombocytes on PCL nanofibres enhances chondrocyte proliferation in vitro

. 2011 Apr ; 44 (2) : 183-91.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21401760

OBJECTIVES: The aim of this study was to develop functionalized nanofibres as a simple delivery system for growth factors (GFs) and make nanofibre cell-seeded scaffold implants a one-step intervention. MATERIALS AND METHODS: We have functionalized polycaprolactone (PCL) nanofibres with thrombocytes adherent on them. Immobilized, these thrombocytes attached to nanofibre scaffolds were used as a nanoscale delivery system for native (autologous) proliferation and differentiation factors, in vitro. Pig chondrocytes were seeded on the thrombocyte-coated scaffolds and levels of proliferation and differentiation of these cells were compared with those seeded on non-coated scaffolds. RESULTS: Immobilized thrombocytes on PCL nanofibres effectively enhanced chondrocyte proliferation due to time-dependent degradation of thrombocytes and release of their GFs. CONCLUSIONS: These simply functionalized scaffolds present new possibilities for nanofibre applications, as smart cell scaffolds equipped with a GF delivery tool.

Zobrazit více v PubMed

Sampson S, Gerhardt M, Mandelbaum B (2008) Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr. Rev. Musculoskelet. Med. 1, 165–174. PubMed PMC

Alsousou J, Thompson M, Hulley P, Noble A, Willett K (2009) The biology of platelet‐rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J. Bone Joint Surg. Br. 91, 987–996. PubMed

Hall MP, Band PA, Meislin RJ, Jazrawi LM, Cardone DA (2009) Platelet‐rich plasma: current concepts and application in sports medicine. J. Am. Acad. Orthop. Surg. 17, 602–608. PubMed

Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J. Cell Biol. 153, 1133–1140. PubMed PMC

Kajikawa Y, Morihara T, Watanabe N, Sakamoto H, Matsuda K, Kobayashi M PubMed

Volkman A, Gowans JL (1965) The production of macrophages in the rat. Br. J. Exp. Pathol. 46, 50–61. PubMed PMC

Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue‐engineering scaffolds. Tissue Eng. 11, 101–109. PubMed

Roldan JC, Jepsen S, Miller J, Freitag S, Rueger DC, Açil Y PubMed

Lucarelli E, Fini M, Beccheroni A, Giavaresi G, Di Bella C, Aldini NN PubMed

Akeda K, An HS, Okuma M, Attawia M, Miyamoto K, Thonar EJ PubMed

Nagae M, Ikeda T, Mikami Y, Hase H, Ozawa H, Matsuda K PubMed

Anitua E, Sanchez M, Orivea G, Andia I (2007) The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials 28, 4551–4560. PubMed

Sanchez AR, Sheridan PJ, Kupp LI (2003) Is platelet‐rich plasma the perfect enhancement factor? A current review. Int. J. Oral Maxillofac. Implants 18, 93–103. PubMed

Everts PA, Brown Mahoney C, Hoffmann JJ, Schönberger JP, Box HA, van Zundert A PubMed

Kim TG, Park TG (2006) Surface functionalized electrospun biodegradable nanofibers for immobilization of bioactive molecules. Biotechnol. Prog. 22, 1108–1113. PubMed

Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv. 28, 142–150. PubMed

Hromadka M, Collins JB, Reed CH, Li K, Kamal K, Bruce A PubMed

Lukas D, Sarkar A, Martinova L, Vodsedalkova K, Lubasova D, Chaloupek J

Baenziger NL, Brodie GN, Majerus PW (1971) A thrombin‐sensitive protein of human platelet membranes. Proc. Natl. Acad. Sci. USA 68, 240–243. PubMed PMC

Ruzek D, Vancova M, Tesarova M, Ahantarig A, Kopecky J, Grubhoffer L (2009) Morphological changes in human neural cells following tick‐borne encephalitis virus infection. J. Gen. Virol. 90, 1649–1658. PubMed

Erlandsen SL, Ottenwaelter C, Fretham C, Chen Y (2001) Cryo field emission scanning electron microscopy. Biotechniques 31, 300–305. PubMed

Filova E, Rampichova M, Handl M, Lytvynets A, Halouzka R, Usvald D PubMed

Tvrdik D, Svatošová J, Dundr P, Povýšil C (2005) Molecular diagnosis of synovial sarcoma: detection of SYT‐SSX11/2 fusion transcripts by RT‐PCR in paraffin‐embedded tissue. Med. Sci. Monit. 11, MT1–MT7. PubMed

Yang H, Lang S, Zhai Z, Li L, Kahr WHA, Chen P PubMed

Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81. PubMed PMC

Chesney J, Bucala R (1997) Peripheral blood fibrocytes: novel fibroblast‐like cells that present antigen and mediate tissue repair. Biochem. Soc. Trans. 25, 520–524. PubMed

Freymiller EG, Aghaloo TL (2004) Platelet‐rich plasma: ready or not? J. Oral Maxillofac. Surg. 62, 484–488. PubMed

Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V PubMed PMC

Dumont LJ, VandenBroeke T (2003) Seven‐day storage of apheresis platelets: report of an in vitro study. Transfusion 43, 143–150. PubMed

Drengk A, Zapf A, Stürmer EK, Stürmer KM, Frosch KH (2009) Influence of platelet‐rich plasma on chondrogenic differentiation and proliferation of chondrocytes and mesenchymal stem cells. Cells Tissues Organs 189, 317–326. PubMed

Heywood HK, Lee DA (2008) Monolayer expansion induces an oxidative metabolism and ROS in chondrocytes. Biochem. Biophys. Res. Commun. 373, 224–229. PubMed

Tonti GA, Mannello F (2008) From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera? Int. J. Dev. Biol. 52, 1023–1032. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Liquid resorbable nanofibrous surgical mesh: a proof of a concept

. 2022 Apr ; 26 (2) : 557-565. [epub] 20220404

A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment

. 2020 Sep 10 ; 10 (9) : . [epub] 20200910

Hydrogel Containing Anti-CD44-Labeled Microparticles, Guide Bone Tissue Formation in Osteochondral Defects in Rabbits

. 2020 Jul 31 ; 10 (8) : . [epub] 20200731

Platelet-functionalized three-dimensional poly-ε-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors

. 2017 ; 12 () : 347-361. [epub] 20170106

Nanofibrous polycaprolactone scaffolds with adhered platelets stimulate proliferation of skin cells

. 2016 Oct ; 49 (5) : 568-78. [epub] 20160724

Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution

. 2015 ; 10 () : 2635-46. [epub] 20150401

Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation

. 2014 ; 9 () : 3263-77. [epub] 20140709

Thin-layer hydroxyapatite deposition on a nanofiber surface stimulates mesenchymal stem cell proliferation and their differentiation into osteoblasts

. 2012 ; 2012 () : 428503. [epub] 20120129

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...