Immobilization of thrombocytes on PCL nanofibres enhances chondrocyte proliferation in vitro
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21401760
PubMed Central
PMC6496422
DOI
10.1111/j.1365-2184.2011.00737.x
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace MeSH
- chondrocyty cytologie MeSH
- imobilizované buňky metabolismus MeSH
- kultivované buňky MeSH
- mezibuněčné signální peptidy a proteiny aplikace a dávkování MeSH
- nanovlákna chemie MeSH
- nosiče léků chemie MeSH
- polyestery chemie MeSH
- prasata MeSH
- proliferace buněk MeSH
- trombocyty cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mezibuněčné signální peptidy a proteiny MeSH
- nosiče léků MeSH
- polycaprolactone MeSH Prohlížeč
- polyestery MeSH
OBJECTIVES: The aim of this study was to develop functionalized nanofibres as a simple delivery system for growth factors (GFs) and make nanofibre cell-seeded scaffold implants a one-step intervention. MATERIALS AND METHODS: We have functionalized polycaprolactone (PCL) nanofibres with thrombocytes adherent on them. Immobilized, these thrombocytes attached to nanofibre scaffolds were used as a nanoscale delivery system for native (autologous) proliferation and differentiation factors, in vitro. Pig chondrocytes were seeded on the thrombocyte-coated scaffolds and levels of proliferation and differentiation of these cells were compared with those seeded on non-coated scaffolds. RESULTS: Immobilized thrombocytes on PCL nanofibres effectively enhanced chondrocyte proliferation due to time-dependent degradation of thrombocytes and release of their GFs. CONCLUSIONS: These simply functionalized scaffolds present new possibilities for nanofibre applications, as smart cell scaffolds equipped with a GF delivery tool.
Zobrazit více v PubMed
Sampson S, Gerhardt M, Mandelbaum B (2008) Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr. Rev. Musculoskelet. Med. 1, 165–174. PubMed PMC
Alsousou J, Thompson M, Hulley P, Noble A, Willett K (2009) The biology of platelet‐rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J. Bone Joint Surg. Br. 91, 987–996. PubMed
Hall MP, Band PA, Meislin RJ, Jazrawi LM, Cardone DA (2009) Platelet‐rich plasma: current concepts and application in sports medicine. J. Am. Acad. Orthop. Surg. 17, 602–608. PubMed
Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J. Cell Biol. 153, 1133–1140. PubMed PMC
Kajikawa Y, Morihara T, Watanabe N, Sakamoto H, Matsuda K, Kobayashi M et al. (2007) GFP chimeric models exhibited a biphasic pattern of mesenchymal cell invasion in tendon healing. J. Cell. Physiol. 210, 684–691. PubMed
Volkman A, Gowans JL (1965) The production of macrophages in the rat. Br. J. Exp. Pathol. 46, 50–61. PubMed PMC
Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue‐engineering scaffolds. Tissue Eng. 11, 101–109. PubMed
Roldan JC, Jepsen S, Miller J, Freitag S, Rueger DC, Açil Y et al. (2004) Bone formation in the presence of platelet‐rich plasma vs. bone morphogenetic protein‐7. Bone 34, 80–90. PubMed
Lucarelli E, Fini M, Beccheroni A, Giavaresi G, Di Bella C, Aldini NN et al. (2005) Stromal stem cells and platelet‐rich plasma improve bone allograft integration. Clin. Orthop. Relat. Res. 435, 62–68. PubMed
Akeda K, An HS, Okuma M, Attawia M, Miyamoto K, Thonar EJ et al. (2006) Platelet‐rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthritis Cartilage 14, 1272–1280. PubMed
Nagae M, Ikeda T, Mikami Y, Hase H, Ozawa H, Matsuda K et al. (2007) Intervertebral disc regeneration using platelet‐rich plasma and biodegradable gelatin hydrogel microspheres. Tissue Eng. 13, 147–158. PubMed
Anitua E, Sanchez M, Orivea G, Andia I (2007) The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials 28, 4551–4560. PubMed
Sanchez AR, Sheridan PJ, Kupp LI (2003) Is platelet‐rich plasma the perfect enhancement factor? A current review. Int. J. Oral Maxillofac. Implants 18, 93–103. PubMed
Everts PA, Brown Mahoney C, Hoffmann JJ, Schönberger JP, Box HA, van Zundert A et al. (2006) Platelet‐rich plasma preparation using three devices: implications for platelet activation and platelet growth factor release. Growth Factors 24, 165–171. PubMed
Kim TG, Park TG (2006) Surface functionalized electrospun biodegradable nanofibers for immobilization of bioactive molecules. Biotechnol. Prog. 22, 1108–1113. PubMed
Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv. 28, 142–150. PubMed
Hromadka M, Collins JB, Reed CH, Li K, Kamal K, Bruce A et al. (2008) Nanofiber applications for burn care. J. Burn Care Res. 29, 695–703. PubMed
Lukas D, Sarkar A, Martinova L, Vodsedalkova K, Lubasova D, Chaloupek J et al. (2009) Physical principles of electrospinning (electrospinning as a nano‐scale technology of the twenty‐first century). Textile Progress 41, 1–83.
Baenziger NL, Brodie GN, Majerus PW (1971) A thrombin‐sensitive protein of human platelet membranes. Proc. Natl. Acad. Sci. USA 68, 240–243. PubMed PMC
Ruzek D, Vancova M, Tesarova M, Ahantarig A, Kopecky J, Grubhoffer L (2009) Morphological changes in human neural cells following tick‐borne encephalitis virus infection. J. Gen. Virol. 90, 1649–1658. PubMed
Erlandsen SL, Ottenwaelter C, Fretham C, Chen Y (2001) Cryo field emission scanning electron microscopy. Biotechniques 31, 300–305. PubMed
Filova E, Rampichova M, Handl M, Lytvynets A, Halouzka R, Usvald D et al. (2007) Composite hyaluronate‐type I collagen‐fibrin scaffold in the therapy of osteochondral defects in miniature pigs. Physiol. Res. 56, 5–16. PubMed
Tvrdik D, Svatošová J, Dundr P, Povýšil C (2005) Molecular diagnosis of synovial sarcoma: detection of SYT‐SSX11/2 fusion transcripts by RT‐PCR in paraffin‐embedded tissue. Med. Sci. Monit. 11, MT1–MT7. PubMed
Yang H, Lang S, Zhai Z, Li L, Kahr WHA, Chen P et al. (2009) Fibrinogen is required for maintenance of platelet intracellular and cell‐surface P‐selectin expression. Blood 114, 425–436. PubMed
Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81. PubMed PMC
Chesney J, Bucala R (1997) Peripheral blood fibrocytes: novel fibroblast‐like cells that present antigen and mediate tissue repair. Biochem. Soc. Trans. 25, 520–524. PubMed
Freymiller EG, Aghaloo TL (2004) Platelet‐rich plasma: ready or not? J. Oral Maxillofac. Surg. 62, 484–488. PubMed
Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V et al. (2009) Buffered platelet‐rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng. Part C Methods 15, 431–435. PubMed PMC
Dumont LJ, VandenBroeke T (2003) Seven‐day storage of apheresis platelets: report of an in vitro study. Transfusion 43, 143–150. PubMed
Drengk A, Zapf A, Stürmer EK, Stürmer KM, Frosch KH (2009) Influence of platelet‐rich plasma on chondrogenic differentiation and proliferation of chondrocytes and mesenchymal stem cells. Cells Tissues Organs 189, 317–326. PubMed
Heywood HK, Lee DA (2008) Monolayer expansion induces an oxidative metabolism and ROS in chondrocytes. Biochem. Biophys. Res. Commun. 373, 224–229. PubMed
Tonti GA, Mannello F (2008) From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera? Int. J. Dev. Biol. 52, 1023–1032. PubMed
Liquid resorbable nanofibrous surgical mesh: a proof of a concept
Nanofibrous polycaprolactone scaffolds with adhered platelets stimulate proliferation of skin cells