Liquid resorbable nanofibrous surgical mesh: a proof of a concept

. 2022 Apr ; 26 (2) : 557-565. [epub] 20220404

Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35377083
Odkazy

PubMed 35377083
DOI 10.1007/s10029-022-02582-1
PII: 10.1007/s10029-022-02582-1
Knihovny.cz E-zdroje

BACKGROUND: Surgical mesh is widely used not only to treat but also to prevent incisional hernia formation. Despite much effort by material engineers, the 'ideal' mesh mechanically, biologically and surgically easy to use remains elusive. Advances in tissue engineering and nanomedicine have allowed new concepts to be tested with promising results in both small and large animals. Abandoning the concept of a pre-formed mesh completely for a 'pour in liquid mesh' has never been tested before. MATERIALS AND METHODS: Thirty rabbits underwent midline laparotomy with closure using an absorbable suture and small stitch small bites technique. In addition, their abdominal wall closure was reinforced by a liquid nanofibrous scaffold composed of a fibrin sealant and nanofibres of poly-ε-caprolactone with or without hyaluronic acid or the sealant alone, poured in as an 'onlay' over the closed abdominal wall. The animals were killed at 6 weeks and their abdominal wall was subjected to histological and biomechanical evaluations. RESULTS: All the animals survived the study period with no major complication. Histological evaluation showed an eosinophilic infiltration in all groups and foreign body reaction more pronounced in the groups with nanofibres. Biomechanical testing demonstrated that groups treated with nanofibres developed a scar with higher tensile yield strength. CONCLUSION: The use of nanofibres in a liquid form applied to the closed abdominal wall is easy to use and improves the biomechanical properties of healing fascia at 6 weeks after midline laparotomy in a rabbit model.

Zobrazit více v PubMed

Fink C, Baumann P, Wente MN et al (2014) Incisional hernia rate 3 years after midline laparotomy. Br J Surg 101:51–54 PubMed DOI

Henriksen NA, Montgomery A, Kaufmann R, Berrevoet F, East B, Fischer J, Hope W, Klassen D, Lorenz R, Renard Y, Garcia Urena MA, Simons MP, European and Americas Hernia Societies (EHS and AHS) (2020) Guidelines for treatment of umbilical and epigastric hernias from the European Hernia Society and Americas Hernia Society. BJS 107(3):171–190 DOI

The Hernia Surge Group (2018) International guidelines for groin hernia management. Hernia 22:1–165 DOI

San Miguel C, Melero D, Jiménez E, López P, Robin A, Blázquez LA, López-Monclús ML, González E, Jiménez C, García-Ureña MA (2018) Long-term outcomes after prophylactic use of onlay mesh in midline laparotomy. Hernia 22(6):1113–1122 PubMed DOI

Jairam AP, Timmermans L, Eker HH, Pierik RM, van Klaveren D, Steyerberg EW, Timman R, van der Ham AC, Dawson I, Charbon JA, Schuhmacher C, Mihaljevic A, Izbicki JR, Fikatas P, Knebel P, Fortelny RH, Kleinrensink GJ, Lange JF, Jeekel HJ (2017) Prevention of incisional hernia with prophylactic onlay and sublay mesh reinforcement versus primary suture only in midline laparotomies (PRIMA): 2-year follow-up of a multicentre, double-blind, randomised controlled trial. Lancet 390(10094):567–576 PubMed DOI

Plencner M, East B, Tonar Z, Otáhal M, Prosecká E, Rampichová M, Krejčí T, Litvinec A, Buzgo M, Míčková A, Nečas A, Hoch J, Amler E (2014) Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. Int J Nanomed 9(9):3263–3277 DOI

Vozzi F, Nardo T, Guerrazzi I, Domenici C, Rocchiccioli S, Cecchettini A, Comelli L, Vozzi G, De Maria C, Montemurro F, Ciardelli G, Chiono V (2018) Integration of biomechanical and biological characterization in the development of porous poly(caprolactone)-based membranes for abdominal wall hernia treatment. Int J Pol Sci 2018:1–15 DOI

Cipitria A, Skelton A, Dargaville TR, Daltonac PD, Hutmacher DW (2011) Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem 21:9419–9453 DOI

East B, Plencner M, Kralovic M, Rampichova M, Sovkova V, Vocetkova K, Otahal M, Tonar Z, Kolinko Y, Amler E, Hoch J (2018) A polypropylene mesh modified with poly-ε-caprolactone nanofibers in hernia repair: large animal experiment. Int J Nanomed 28(13):3129–3143 DOI

Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohyd Polym 92(2):1262–1279 DOI

Plencner M, Prosecká E, Rampichová M, East B, Buzgo M, Vysloužilová L, Hoch J, Amler E (2015) Significant improvement of biocompatibility of polypropylene mesh for incisional hernia repair by using poly-ε-caprolactone nanofibers functionalized with thrombocyte-rich solution. Int J Nanomed 10:2635–2646 DOI

Jakubova R, Mickova A, Buzgo M, Rampichova M, Prosecka E, Tvrdik D, Amler E (2011) Immobilization of thrombocytes on PCL nanofibres enhances chondrocyte proliferation in vitro. Cell Prolif 44(2):183–191 PubMed DOI PMC

Vocetkova K, Buzgo M, Sovkova V, Bezdekova D, Kneppo P, Amler E (2016) Nanofibrous polycaprolactone scaffolds with adhered platelets stimulate proliferation of skin cells. Cell Prolif 49(5):568–578 PubMed DOI PMC

Cao H, McHugh K, Chew SY, Anderson JM (2010) The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J Biomed Mater Res A 93(3):1151–1159 PubMed

Burger JW, Lange JF, Halm JA, Kleinrensink GJ, Jeekel H (2005) Incisional hernia: early complication of abdominal surgery. World J Surg 29(12):1608–1613 PubMed DOI

Harlaar JJ, Deerenberg EB, Dwarkasing RS, Kamperman AM, Kleinrensink GJ, Jeekel J, Lange JF (2017) Development of incisional herniation after midline laparotomy. BJS Open 1(1):18–23 PubMed DOI PMC

Li S, Liu L, Garreau H, Vert M (2003) Lipase-catalyzed biodegradation of poly(ε-caprolactone) blended with various polylactide-based polymers. Biomacromol 4(2):372–377 DOI

Azimi B, Nourpanah P et al (2014) Poly (ε-caprolactone) fiber: an overview. J Eng Fibers Fabr 9(3):74–90

Coden ME, Loffredo LF, Walker MT, Jeong BM, Nam K, Bochner BS, Abdala-Valencia H, Berdnikovs S (2020) Fibrinogen is a specific trigger for cytolytic eosinophil degranulation. J Immunol 204(2):438–448 PubMed DOI

Kramer M, Font E (2017) Reducing sample size in experiments with animals: historical controls and related strategies. Biol Rev 92:431–445 PubMed DOI

Sarver DC, Kharaz YA, Sugg KB, Gumucio JP, Comerford E, Mendias CL (2017) Sex differences in tendon structure and function. J Orthopaedic Res 35:2117–2126 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...