Advances in Electrospun Hybrid Nanofibers for Biomedical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35683685
PubMed Central
PMC9181850
DOI
10.3390/nano12111829
PII: nano12111829
Knihovny.cz E-zdroje
- Klíčová slova
- bone regeneration, drug delivery, electrospinning, functional agents, hybrid nanofibers, nanomedicine, nanoparticles, tissue engineering,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Electrospun hybrid nanofibers, based on functional agents immobilized in polymeric matrix, possess a unique combination of collective properties. These are beneficial for a wide range of applications, which include theranostics, filtration, catalysis, and tissue engineering, among others. The combination of functional agents in a nanofiber matrix offer accessibility to multifunctional nanocompartments with significantly improved mechanical, electrical, and chemical properties, along with better biocompatibility and biodegradability. This review summarizes recent work performed for the fabrication, characterization, and optimization of different hybrid nanofibers containing varieties of functional agents, such as laser ablated inorganic nanoparticles (NPs), which include, for instance, gold nanoparticles (Au NPs) and titanium nitride nanoparticles (TiNPs), perovskites, drugs, growth factors, and smart, inorganic polymers. Biocompatible and biodegradable polymers such as chitosan, cellulose, and polycaprolactone are very promising macromolecules as a nanofiber matrix for immobilizing such functional agents. The assimilation of such polymeric matrices with functional agents that possess wide varieties of characteristics require a modified approach towards electrospinning techniques such as coelectrospinning and template spinning. Additional focus within this review is devoted to the state of the art for the implementations of these approaches as viable options for the achievement of multifunctional hybrid nanofibers. Finally, recent advances and challenges, in particular, mass fabrication and prospects of hybrid nanofibers for tissue engineering and biomedical applications have been summarized.
Zobrazit více v PubMed
Du L., Xu H., Zhang Y., Zou F. Electrospinning of polycaprolatone nanofibers with DMF additive: The effect of solution proprieties on jet perturbation and fiber morphologies. Fibers Polym. 2016;17:751–759. doi: 10.1007/s12221-016-6045-3. DOI
Kakoria A., Sinha-Ray S. A review on biopolymer-based fibers via electrospinning and solution blowing and their applications. Fibers. 2018;6:45. doi: 10.3390/fib6030045. DOI
Han D., Steckl A.J. Coaxial electrospinning formation of complex polymer fibers and their applications. ChemPlusChem. 2019;84:1453–1497. doi: 10.1002/cplu.201900281. PubMed DOI
Patil J.V., Mali S.S., Kamble A.S., Hong C.K., Kim J.H., Patil P.S. Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Appl. Surf. Sci. 2017;423:641–674. doi: 10.1016/j.apsusc.2017.06.116. DOI
Kishan A.P., Cosgriff-Hernandez E.M. Recent advancements in electrospinning design for tissue engineering applications: A review. J. Biomed. Mater. Res. Part A. 2017;105:2892–2905. doi: 10.1002/jbm.a.36124. PubMed DOI
Dikici B.A., Dikici S., Reilly G.C., MacNeil S., Claeyssens F. A novel bilayer polycaprolactone membrane for guided bone regeneration: Combining electrospinning and emulsion templating. Materials. 2019;12:2643. doi: 10.3390/ma12162643. PubMed DOI PMC
Gao H., Yang Y., Akampumuza O., Hou J., Zhang H., Qin X. A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture. Environ. Sci. Nano. 2017;4:864–875. doi: 10.1039/C6EN00696E. DOI
Ghosal K., Agatemor C., Špitálsky Z., Thomas S., Kny E. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chem. Eng. J. 2019;358:1262–1278. doi: 10.1016/j.cej.2018.10.117. DOI
Jiang S., Schmalz H., Agarwal S., Greiner A. Electrospinning of ABS nanofibers and their high filtration performance. Adv. Fiber Mater. 2020;2:34–43. doi: 10.1007/s42765-019-00026-7. DOI
Jin S., Li J., Wang J., Jiang J., Zuo Y., Li Y., Yang F. Electrospun silver ion-loaded calcium phosphate/chitosan antibacterial composite fibrous membranes for guided bone regeneration. Int. J. Nanomed. 2018;13:4591–4605. doi: 10.2147/IJN.S167793. PubMed DOI PMC
Liu G.S., Yan X., Yan F.F., Chen F.X., Hao L.Y., Chen S.J., Lou T., Ning X., Long Y.Z. In Situ Electrospinning Iodine-Based Fibrous Meshes for Antibacterial Wound Dressing. Nanoscale Res. Lett. 2018;13:1–7. doi: 10.1186/s11671-018-2733-9. PubMed DOI PMC
Liu W., Bi W., Sun Y., Wang L., Yu X., Cheng R., Yu Y., Cui W. Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration. Mater. Sci. Eng. C. 2020;110:110670. doi: 10.1016/j.msec.2020.110670. PubMed DOI
Al-Enizi A.M., Zagho M.M., Elzatahry A.A. Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials. 2018;8:259. doi: 10.3390/nano8040259. PubMed DOI PMC
Sridhar R., Lakshminarayanan R., Madhaiyan K., Barathi V.A., Lim K.H.C., Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev. 2015;44:790–814. doi: 10.1039/C4CS00226A. PubMed DOI
Ferraris S., Giachet F.T., Miola M., Bertone E., Varesano A., Vineis C., Cochis A., Sorrentino R., Rimondini L., Spriano S. Nanogrooves and keratin nanofibers on titanium surfaces aimed at driving gingival fibroblasts alignment and proliferation without increasing bacterial adhesion. Mater. Sci. Eng. C. 2017;76:1–12. doi: 10.1016/j.msec.2017.02.152. PubMed DOI
Kharaghani D., Dutta D., Ho K.K.K., Zhang K.-Q., Kai W., Ren X., Willcox M.D.P., Kim I.S. Active loading graphite/hydroxyapatite into the stable hydroxyethyl cellulose scaffold nanofibers for artificial cornea application. Cellulose. 2020;27:3319–3334. doi: 10.1007/s10570-020-02999-w. DOI
Miroshnichenko S., Timofeeva V., Permyakova E., Ershov S., Kiryukhantsev-Korneev P., Dvořaková E., Shtansky D.V., Zajíčková L., Solovieva A., Manakhov A. Plasma-coated polycaprolactone nanofibers with covalently bonded platelet-rich plasma enhance adhesion and growth of human fibroblasts. Nanomaterials. 2019;9:637. doi: 10.3390/nano9040637. PubMed DOI PMC
Sharma J., Lizu M., Stewart M., Zygula K., Lu Y., Chauhan R., Yan X., Guo Z., Wujcik E.K., Wei S. Multifunctional nanofibers towards active biomedical therapeutics. Polymers. 2015;7:186–219. doi: 10.3390/polym7020186. DOI
Wang A., Liu Z., Hu M., Wang C., Zhang X., Shi B., Fan Y., Cui Y., Li Z., Ren K. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy. 2018;43:63–71. doi: 10.1016/j.nanoen.2017.11.023. DOI
Keirouz A., Chung M., Kwon J., Fortunato G., Radacsi N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020;12:e1626. doi: 10.1002/wnan.1626. PubMed DOI
Migliorini F.L., Teodoro K.B.R., Scagion V.P., dos Santos D.M., Fonseca F.J., Mattoso L.H.C., Correa D.S. Tuning the electrical properties of electrospun nanofibers with hybrid nanomaterials for detecting isoborneol in water using an electronic tongue. Surfaces. 2019;2:432–443. doi: 10.3390/surfaces2020031. DOI
Restivo J., Soares O.S.G.S., Pereira M.F.R. Processing Methods Used in the Fabrication of Macrostructures Containing 1D Carbon Nanomaterials for Catalysis. Processes. 2020;8:1329. doi: 10.3390/pr8111329. DOI
Agarwal S., Burgard M.F., Greiner A., Wendorff J. Electrospinning A Practical Guide to Nanofibers. Walter de Gruyter GmbH & Co KG; Berlin, Germany: 2016.
Xue J., Wu T., Dai Y., Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. PubMed DOI PMC
Machado R.C.L., Alexis F., De Sousa F.B. Nanostructured and photochromic material for environmental detection of metal ions. Molecules. 2019;24:4243. doi: 10.3390/molecules24234243. PubMed DOI PMC
Bombin A.D.J., Dunne N.J., McCarthy H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C. 2020;114:110994. doi: 10.1016/j.msec.2020.110994. PubMed DOI
Mele E. Electrospinning of natural polymers for advanced wound care: Towards responsive and adaptive dressings. J. Mater. Chem. B. 2016;4:4801–4812. doi: 10.1039/C6TB00804F. PubMed DOI
Sharpe J.M., Lee H., Hall A.R., Bonin K., Guthold M. Mechanical properties of electrospun, blended fibrinogen: PCL nanofibers. Nanomaterials. 2020;10:1843. doi: 10.3390/nano10091843. PubMed DOI PMC
Baker S., Sigley J., Helms C.C., Stitzel J., Berry J., Bonin K., Guthold M. The mechanical properties of dry, electrospun fibrinogen fibers. Mater. Sci. Eng. C. 2012;32:215–221. doi: 10.1016/j.msec.2011.10.021. PubMed DOI PMC
Foraida Z.I., Kamaldinov T., Nelson D.A., Larsen M., Castracane J. Elastin-PLGA hybrid electrospun nanofiber scaffolds for salivary epithelial cell self-organization and polarization. Acta Biomater. 2017;62:116–127. doi: 10.1016/j.actbio.2017.08.009. PubMed DOI PMC
Yao Q., Hu Y., Yu F., Zhang W., Fu Y. A novel application of electrospun silk fibroin/poly(l-lactic acid-: Co -ϵ-caprolactone) scaffolds for conjunctiva reconstruction. RSC Adv. 2018;8:18372–18380. doi: 10.1039/C7RA13551C. PubMed DOI PMC
Rahmati M., Mills D.K., Urbanska A.M., Saeb M.R., Venugopal J.R., Ramakrishna S., Mozafari M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021;117:100721. doi: 10.1016/j.pmatsci.2020.100721. DOI
Séon-Lutz M., Couffin A.C., Vignoud S., Schlatter G., Hébraud A. Electrospinning in water and in situ crosslinking of hyaluronic acid / cyclodextrin nanofibers: Towards wound dressing with controlled drug release. Carbohydr. Polym. 2019;207:276–287. doi: 10.1016/j.carbpol.2018.11.085. PubMed DOI
Celebioglu A., Uyar T. Fast dissolving oral drug delivery system based on electrospun nanofibrous webs of cyclodextrin/ibuprofen inclusion complex nanofibers. Mol. Pharm. 2019;16:4387–4398. doi: 10.1021/acs.molpharmaceut.9b00798. PubMed DOI
Topuz F., Uyar T. Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics. 2019;11:6. doi: 10.3390/pharmaceutics11010006. PubMed DOI PMC
Kandhasamy S., Ramanathan G., Muthukumar T., Thyagarajan S., Umamaheshwari N., Santhanakrishnan V.P., Sivagnanam U.T., Perumal P.T. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics. Mater. Sci. Eng. C. 2017;74:70–85. doi: 10.1016/j.msec.2017.01.001. PubMed DOI
Dziemidowicz K., Sang Q., Wu J., Zhang Z., Zhou F., Lagaron J.M., Mo X., Parker G.J.M., Yu D.-G., Zhu L.-M. Electrospinning for healthcare: Recent advancements. J. Mater. Chem. B. 2021;9:939–951. doi: 10.1039/D0TB02124E. PubMed DOI
Lee E.-S., Kim Y.-O., Ha Y.-M., Lim D., Hwang J.Y., Kim J., Park M., Cho J.W., Jung Y.C. Antimicrobial properties of lignin-decorated thin multi-walled carbon nanotubes in poly (vinyl alcohol) nanocomposites. Eur. Polym. J. 2018;105:79–84. doi: 10.1016/j.eurpolymj.2018.05.014. DOI
Muxika A., Etxabide A., Uranga J., Guerrero P., de la Caba K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 2017;105:1358–1368. doi: 10.1016/j.ijbiomac.2017.07.087. PubMed DOI
Al-Kattan A., Nirwan V.P., Munnier E., Chourpa I., Fahmi A., Kabashin A.V. Toward multifunctional hybrid platforms for tissue engineering based on chitosan(PEO) nanofibers functionalized by bare laser-synthesized Au and Si nanoparticles. RSC Adv. 2017;7:31759–31766. doi: 10.1039/C7RA02255G. DOI
Zhang L., Zhao D., Feng M., He B., Chen X., Wei L., Zhai S.-R., An Q.-D., Sun J. Hydrogen bond promoted lignin solubilization and electrospinning in low cost protic ionic liquids. ACS Sustain. Chem. Eng. 2019;7:18593–18602. doi: 10.1021/acssuschemeng.9b04907. DOI
Lemma S.M., Bossard F., Rinaudo M. Preparation of pure and stable chitosan nanofibers by electrospinning in the presence of poly(ethylene oxide) Int. J. Mol. Sci. 2016;17:1790. doi: 10.3390/ijms17111790. PubMed DOI PMC
Kharaghani D., Gitigard P., Ohtani H., Kim K.O., Ullah S., Saito Y., Khan M.Q., Kim I.S. Design and characterization of dual drug delivery based on in-situ assembled PVA/PAN core-shell nanofibers for wound dressing application. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-49132-x. PubMed DOI PMC
Pant B., Park M., Ojha G.P., Kim D.U., Kim H.Y., Park S.J. Electrospun salicylic acid/polyurethane composite nanofibers for biomedical applications. Int. J. Polym. Mater. Polym. Biomater. 2017;67:739–744. doi: 10.1080/00914037.2017.1376200. DOI
Pant B., Park M., Park S.J. One-Step Synthesis of Silver Nanoparticles Embedded Polyurethane Nano-Fiber/Net Structured Membrane as an Effective Antibacterial Medium. Polymers. 2019;11:1185. doi: 10.3390/polym11071185. PubMed DOI PMC
dos Santos Silva A., Rodrigues B.V.M., Oliveira F.C., Carvalho J.O., de Vasconcellos L.M.R., de Araújo J.C.R., Marciano F.R., Lobo A.O. Characterization and in vitro and in vivo assessment of poly (butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. J. Polym. Res. 2019;26:53. doi: 10.1007/s10965-019-1706-8. DOI
Zhang H., Fu Q.-W., Sun T.-W., Chen F., Qi C., Wu J., Cai Z.-Y., Qian Q.-R., Zhu Y.-J. Amorphous calcium phosphate, hydroxyapatite and poly (D, L-lactic acid) composite nanofibers: Electrospinning preparation, mineralization and in vivo bone defect repair. Colloids Surf. B Biointerfaces. 2015;136:27–36. doi: 10.1016/j.colsurfb.2015.08.015. PubMed DOI
Malysheva K., Kwaśniak K., Gnilitskyi I., Barylyak A., Zinchenko V., Fahmi A., Korchynskyi O., Bobitski Y. Functionalization of Polycaprolactone Electrospun Osteoplastic Scaffolds with Fluorapatite and Hydroxyapatite Nanoparticles: Biocompatibility Comparison of Human Versus Mouse Mesenchymal Stem Cells. Materials. 2021;14:1333. doi: 10.3390/ma14061333. PubMed DOI PMC
Villarreal-Gómez L.J., Cornejo-Bravo J.M., Vera-Graziano R., Grande D. Electrospinning as a powerful technique for biomedical applications: A critically selected survey. J. Biomater. Sci. Polym. Ed. 2016;27:157–176. doi: 10.1080/09205063.2015.1116885. PubMed DOI
Burke L., Mortimer C.J., Curtis D.J., Lewis A.R., Williams R., Hawkins K., Maffeis T.G.G., Wright C.J. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning. Mater. Sci. Eng. C. 2017;70:512–519. doi: 10.1016/j.msec.2016.09.014. PubMed DOI
Zhang M., Zhao X., Zhang G., Wei G., Su Z. Electrospinning design of functional nanostructures for biosensor applications. J. Mater. Chem. B. 2017;5:1699–1711. doi: 10.1039/C6TB03121H. PubMed DOI
Prabu G.T.V., Dhurai B. A novel profiled multi-pin electrospinning system for nanofiber production and encapsulation of nanoparticles into nanofibers. Sci. Rep. 2020;10:4302. doi: 10.1038/s41598-020-60752-6. PubMed DOI PMC
Zhang F., Zhang C., Peng H., Cong H., Qian H. Near-infrared photocatalytic upconversion nanoparticles/TiO2 nanofibers assembled in large scale by electrospinning. Part. Part. Syst. Charact. 2016;33:248–253. doi: 10.1002/ppsc.201600010. DOI
Lan T., Shao Z., Wang J., Gu M. Fabrication of hydroxyapatite nanoparticles decorated cellulose triacetate nanofibers for protein adsorption by coaxial electrospinning. Chem. Eng. J. 2015;260:818–825. doi: 10.1016/j.cej.2014.09.004. DOI
Castro-Mayorga J.L., Fabra M.J., Cabedo L., Lagaron J.M. On the use of the electrospinning coating technique to produce antimicrobial polyhydroxyalkanoate materials containing in situ-stabilized silver nanoparticles. Nanomaterials. 2017;7:4. doi: 10.3390/nano7010004. PubMed DOI PMC
Amarjargal A., Tijing L.D., Park C.H., Im I.T., Kim C.S. Controlled assembly of superparamagnetic iron oxide nanoparticles on electrospun PU nanofibrous membrane: A novel heat-generating substrate for magnetic hyperthermia application. Eur. Polym. J. 2013;49:3796–3805. doi: 10.1016/j.eurpolymj.2013.08.026. DOI
Uskokovic V. Nanotechnologies in Preventive and Regenerative Medicine. Elsevier; Amsterdam, The Netherlands: 2018.
Lyu J., Wang X., Liu L., Kim Y., Tanyi E.K., Chi H., Feng W., Xu L., Li T., Noginov M.A., et al. High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. Adv. Funct. Mater. 2016;26:8435–8445. doi: 10.1002/adfm.201603230. DOI
Li K., Nejadnik H., Daldrup-Link H.E. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov. Today. 2017;22:1421–1429. doi: 10.1016/j.drudis.2017.04.008. PubMed DOI PMC
Pinto T.V., Costa P., Sousa C.M., Sousa C.A.D., Pereira C., Silva C.J.S.M., Pereira M.F.R., Coelho P.J., Freire C. Screen-printed photochromic textiles through new inks based on SiO2@ naphthopyran nanoparticles. ACS Appl. Mater. Interfaces. 2016;8:28935–28945. doi: 10.1021/acsami.6b06686. PubMed DOI
Hickey D.J., Ercan B., Sun L., Webster T.J. Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater. 2015;14:175–184. doi: 10.1016/j.actbio.2014.12.004. PubMed DOI
Tang J., Li J., Vlassak J.J., Suo Z. Adhesion between highly stretchable materials. Soft Matter. 2016;12:1093–1099. doi: 10.1039/C5SM02305J. PubMed DOI
Huang L., Zhao S., Wang Z., Wu J., Wang J., Wang S. In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. J. Memb. Sci. 2016;499:269–281. doi: 10.1016/j.memsci.2015.10.055. DOI
Mustafa M.N., Shafie S., Wahid M.H., Sulaiman Y. Light scattering effect of polyvinyl-alcohol/titanium dioxide nanofibers in the dye-sensitized solar cell. Sci. Rep. 2019;9:1–8. doi: 10.1038/s41598-019-50292-z. PubMed DOI PMC
Yarmohamadi-Vasel M., Modarresi-Alam A.R., Noroozifar M., Hadavi M.S. An investigation into the photovoltaic activity of a new nanocomposite of (polyaniline nanofibers)/(titanium dioxide nanoparticles) with different architectures. Synth. Met. 2019;252:50–61. doi: 10.1016/j.synthmet.2019.04.007. DOI
Šišková A.O., Frajová J., Nosko M. Recycling of poly(ethylene terephthalate) by electrospinning to enhanced the filtration efficiency. Mater. Lett. 2020;278:128426. doi: 10.1016/j.matlet.2020.128426. DOI
Zulfi A., Hapidin D.A., Saputra C., Mustika W.S., Munir M.M., Khairurrijal K. The synthesis of fiber membranes from High-Impact Polystyrene (HIPS) Waste using needleless electrospinning as air filtration media. Mater. Today Proc. 2019;13:154–159. doi: 10.1016/j.matpr.2019.03.206. DOI
Sadeghi I., Govinna N., Cebe P., Asatekin A. Superoleophilic, Mechanically Strong Electrospun Membranes for Fast and Efficient Gravity-Driven Oil/Water Separation. ACS Appl. Polym. Mater. 2019;1:765–776. doi: 10.1021/acsapm.8b00279. DOI
Barhoum A., Pal K., Rahier H., Uludag H., Kim I.S., Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today. 2019;17:1–35. doi: 10.1016/j.apmt.2019.06.015. DOI
Venkatesan M., Veeramuthu L., Liang F.-C., Chen W.-C., Cho C.-J., Chen C.-W., Chen J.-Y., Yan Y., Chang S.-H., Kuo C.-C. Evolution of electrospun nanofibers fluorescent and colorimetric sensors for environmental toxicants, pH, temperature, and cancer cells–A review with insights on applications. Chem. Eng. J. 2020;397:125431. doi: 10.1016/j.cej.2020.125431. DOI
Hussain N., Ullah S., Sarwar M.N., Hashmi M., Khatri M., Yamaguchi T., Khatri Z., Kim I.S. Fabrication and Characterization of Novel Antibacterial Ultrafine Nylon-6 Nanofibers Impregnated by Garlic Sour. Fibers Polym. 2020;21:2780–2787.
Bortolassi A.C.C., Nagarajan S., de Araújo Lima B., Guerra V.G., Aguiar M.L., Huon V., Soussan L., Cornu D., Miele P., Bechelany M. Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater. Sci. Eng. C. 2019;102:718–729. doi: 10.1016/j.msec.2019.04.094. PubMed DOI
Sridhar R., Sundarrajan S., Venugopal J.R., Ravichandran R., Ramakrishna S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. J. Biomater. Sci. Polym. Ed. 2013;24:365–385. PubMed
Hassiba A.J., El Zowalaty M.E., Webster T.J., Abdullah A.M., Nasrallah G.K., Khalil K.A., Luyt A.S., Elzatahry A.A. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications. Int. J. Nanomed. 2017;12:2205–2213. PubMed PMC
Tang L., Zhu L., Tang F., Yao C., Wang J., Li L. Mild synthesis of copper nanoparticles with enhanced oxidative stability and their application in antibacterial films. Langmuir. 2018;34:14570–14576. doi: 10.1021/acs.langmuir.8b02470. PubMed DOI
Bhadauriya P., Mamtani H., Ashfaq M., Raghav A., Teotia A.K., Kumar A., Verma N. Synthesis of yeast-immobilized and copper nanoparticle-dispersed carbon nanofiber-based diabetic wound dressing material: Simultaneous control of glucose and bacterial infections. ACS Appl. Bio Mater. 2018;1:246–258. doi: 10.1021/acsabm.8b00018. PubMed DOI
Jayaramudu T., Varaprasad K., Pyarasani R.D., Reddy K.K., Kumar K.D., Akbari-Fakhrabadi A., Mangalaraja R.V., Amalraj J. Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films. Int. J. Biol. Macromol. 2019;128:499–508. doi: 10.1016/j.ijbiomac.2019.01.145. PubMed DOI
Nirwan V.P., Fahmi A., Malkoch M. Electrospinning of hybrid nanofibres elaborated with PEG core dendrimers and SPIONs synthesized in-situ: As multifunctional material for biomedical applications; Proceedings of the 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP); Zatoka, Ukraine. 10–15 September 2017; Piscataway, NJ, USA: IEEE; 2017. pp. 03NNSA37-1–03NNSA37-5.
Lalegül-Ülker Ö., Vurat M.T., Elçin A.E., Elçin Y.M. Magnetic silk fibroin composite nanofibers for biomedical applications: Fabrication and evaluation of the chemical, thermal, mechanical, and in vitro biological properties. J. Appl. Polym. Sci. 2019;136:48040. doi: 10.1002/app.48040. DOI
Raju G.S.R., Benton L., Pavitra E., Yu J.S. Multifunctional nanoparticles: Recent progress in cancer therapeutics. Chem. Commun. 2015;51:13248–13259. doi: 10.1039/C5CC04643B. PubMed DOI
Awada H., Al Samad A., Laurencin D., Gilbert R., Dumail X., El Jundi A., Bethry A., Pomrenke R., Johnson C., Lemaire L. Controlled Anchoring of Iron Oxide Nanoparticles on Polymeric Nanofibers: Easy Access to Core@ Shell Organic–Inorganic Nanocomposites for Magneto-Scaffolds. ACS Appl. Mater. Interfaces. 2019;11:9519–9529. doi: 10.1021/acsami.8b19099. PubMed DOI
Maximova K., Aristov A., Sentis M., Kabashin A.V. Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water. Nanotechnology. 2015;26:65601. PubMed
Contreras-Cáceres R., Cabeza L., Perazzoli G., Díaz A., López-Romero J.M., Melguizo C., Prados J. Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials. 2019;9:656. PubMed PMC
Park M., Lee D., Shin S., Hyun J. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering. Colloids Surf. B Biointerfaces. 2015;130:222–228. doi: 10.1016/j.colsurfb.2015.04.014. PubMed DOI
Al-Kattan A., Nirwan V., Popov A., Ryabchikov Y., Tselikov G., Sentis M., Fahmi A., Kabashin A. Recent Advances in Laser-Ablative Synthesis of Bare Au and Si Nanoparticles and Assessment of Their Prospects for Tissue Engineering Applications. Int. J. Mol. Sci. 2018;19:1563. doi: 10.3390/ijms19061563. PubMed DOI PMC
Gao C., Che S. Organically functionalized mesoporous silica by co-structure-directing route. Adv. Funct. Mater. 2010;20:2750–2768. doi: 10.1002/adfm.201000074. DOI
Reverberi A.P., Kuznetsov N.T., Meshalkin V.P., Salerno M., Fabiano B. Systematical analysis of chemical methods in metal nanoparticles synthesis. Theor. Found. Chem. Eng. 2016;50:59–66. doi: 10.1134/S0040579516010127. DOI
De Matteis V., Cascione M., Toma C.C., Leporatti S. Silver nanoparticles: Synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials. 2018;8:319. doi: 10.3390/nano8050319. PubMed DOI PMC
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–2650. doi: 10.1039/c1gc15386b. DOI
Sylvestre J.-P., Kabashin A.V., Sacher E., Meunier M., Luong J.H.T. Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J. Am. Chem. Soc. 2004;126:7176–7177. doi: 10.1021/ja048678s. PubMed DOI
Kabashin A.V., Singh A., Swihart M.T., Zavestovskaya I.N., Prasad P.N. Laser-Processed Nanosilicon: A Multifunctional Nanomaterial for Energy and Healthcare. ACS Nano. 2019;13:9841–9867. doi: 10.1021/acsnano.9b04610. PubMed DOI
Kabashin A.V., Timoshenko V.Y. What theranostic applications could ultrapure laser-synthesized Si nanoparticles have in cancer? Nanomedicine. 2016;11:2247–2250. doi: 10.2217/nnm-2016-0228. PubMed DOI
Hebié S., Holade Y., Maximova K., Sentis M., Delaporte P., Kokoh K.B., Napporn T.W., Kabashin A.V. Advanced Electrocatalysts on the Basis of Bare Au Nanomaterials for Biofuel Cell Applications. ACS Catal. 2015;5:6489–6496. doi: 10.1021/acscatal.5b01478. DOI
Povarnitsyn M.E., Itina T.E., Levashov P.R., Khishchenko K. V Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment. Phys. Chem. Chem. Phys. 2013;15:3108–3114. doi: 10.1039/c2cp42650a. PubMed DOI
Kabashin A.V., Meunier M. Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 2003;94:7941–7943. doi: 10.1063/1.1626793. DOI
Itina T.E., Gouriet K., Zhigilei L.V., Noël S., Hermann J., Sentis M. Mechanisms of small clusters production by short and ultra-short laser ablation. Appl. Surf. Sci. 2007;253:7656–7661. doi: 10.1016/j.apsusc.2007.02.034. DOI
Sajti C.L., Sattari R., Chichkov B.N., Barcikowski S. Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J. Phys. Chem. C. 2010;114:2421–2427. doi: 10.1021/jp906960g. DOI
Correard F., Maximova K., Estève M.A., Villard C., Roy M., Al-Kattan A., Sentis M., Gingras M., Kabashin A.V., Braguer D. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: Assessment of safety and biological identity for nanomedicine applications. Int. J. Nanomed. 2014;9:5415–5430. PubMed PMC
Popov A.A., Tselikov G., Dumas N., Berard C., Metwally K., Jones N., Al-Kattan A., Larrat B., Braguer D., Mensah S., et al. Laser- synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications. Sci. Rep. 2019;9:1194. doi: 10.1038/s41598-018-37519-1. PubMed DOI PMC
Baati T., Al-Kattan A., Esteve M.A., Njim L., Ryabchikov Y., Chaspoul F., Hammami M., Sentis M., Kabashin A.V., Braguer D. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: In vivo assessment of safety and biodistribution. Sci. Rep. 2016;6:25400. doi: 10.1038/srep25400. PubMed DOI PMC
Gongalsky M.B., Osminkina L.A., Pereira A., Manankov A.A., Fedorenko A.A., Vasiliev A.N., Solovyev V.V., Kudryavtsev A.A., Sentis M., Kabashin A.V., et al. Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging. Sci. Rep. 2016;6:24732. doi: 10.1038/srep24732. PubMed DOI PMC
Kögler M., Ryabchikov Y.V., Uusitalo S., Popov A., Popov A., Tselikov G., Välimaa A.L., Al-Kattan A., Hiltunen J., Laitinen R., et al. Bare laser-synthesized Au-based nanoparticles as nondisturbing surface-enhanced Raman scattering probes for bacteria identification. J. Biophotonics. 2018;11:e201700225. doi: 10.1002/jbio.201700225. PubMed DOI
De Morais M.G., Stillings C., Dersch R., Rudisile M., Pranke P., Costa J.A.V., Wendorff J. Biofunctionalized nanofibers using Arthrospira (Spirulina) biomass and biopolymer. Biomed. Res. Int. 2015;2015:967814. doi: 10.1155/2015/967814. PubMed DOI PMC
Shammas M., Zinicovscaia I., Humelnicu D., Cepoi L., Nirwan V., Demčák Š., Fahmi A. Bioinspired elelctrospun hybrid nanofibers based on biomass templated within polymeric matrix for metal removal from wastewater. Polym. Bull. 2020;77:3207–3222. doi: 10.1007/s00289-019-02916-7. DOI
Li H., Wang M., Williams G.R., Wu J., Sun X., Lv Y., Zhu L.-M. Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials. RSC Adv. 2016;6:50267–50277. doi: 10.1039/C6RA05092A. DOI
Lakshmanan R., Kumaraswamy P., Krishnan U.M., Sethuraman S. Engineering a growth factor embedded nanofiber matrix niche to promote vascularization for functional cardiac regeneration. Biomaterials. 2016;97:176–195. doi: 10.1016/j.biomaterials.2016.02.033. PubMed DOI
Hu J., Tian L., Prabhakaran M.P., Ding X., Ramakrishna S. Fabrication of nerve growth factor encapsulated aligned poly(ε-caprolactone) nanofibers and their assessment as a potential neural tissue engineering scaffold. Polymers. 2016;8:54. doi: 10.3390/polym8020054. PubMed DOI PMC
He B., Zhao J., Ou Y., Jiang D. Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration. Mater. Sci. Eng. C. 2018;90:728–738. doi: 10.1016/j.msec.2018.04.063. PubMed DOI
Fathi M., Nasrabadi M.N., Varshosaz J. Characteristics of vitamin E-loaded nanofibres from dextran. Int. J. Food Prop. 2017;20:2665–2674. doi: 10.1080/10942912.2016.1247365. DOI
Srbová J., Slováková M., Křípalová Z., Žárská M., Špačková M., Stránská D., Bílková Z. Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React. Funct. Polym. 2016;104:38–44. doi: 10.1016/j.reactfunctpolym.2016.05.009. DOI
Jain R., Shetty S., Yadav K.S. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. J. Drug Deliv. Sci. Technol. 2020;57:101604. doi: 10.1016/j.jddst.2020.101604. DOI
Aziz S., Hosseinzadeh L., Arkan E., Azandaryani A.H. Preparation of electrospun nanofibers based on wheat gluten containing azathioprine for biomedical application. Int. J. Polym. Mater. Polym. Biomater. 2019;68:639–646. doi: 10.1080/00914037.2018.1482464. DOI
Dullaert K.A.L.H., Dorschu M., Qiu J., Thies J.C. Membrane Suitable for Blood Filtration. US20130256230A1. U.S. Patent. 2013 October 10;
Wu D., Feng Q., Li M., Wei A., Li J., Liu C., Xu H., Cheng W. Preparation and protein separation properties of the porous polystyrene/ethylene–vinyl acetate copolymer blend nanofibers membranes. ACS Omega. 2019;4:20152–20158. doi: 10.1021/acsomega.9b01946. PubMed DOI PMC
Han Y., Yue S., Cui B. Low-Dimensional Metal Halide Perovskite Crystal Materials: Structure Strategies and Luminescence Applications. Adv. Sci. 2021;8:2004805. doi: 10.1002/advs.202004805. PubMed DOI PMC
Zhu Y., Poddar S., Shu L., Fu Y., Fan Z. Recent progress on interface engineering for high-performance, stable perovskites solar cells. Adv. Mater. Interfaces. 2020;7:2000118. doi: 10.1002/admi.202000118. DOI
Burn P.L., Meredith P. The rise of the perovskites: The future of low cost solar photovoltaics? NPG Asia Mater. 2014;6:e79. doi: 10.1038/am.2013.74. DOI
Benas J.-S., Liang F.-C., Chen W.-C., Hung C.-W., Chen J.-Y., Zhou Y., Han S.-T., Borsali R., Kuo C.-C. Lewis adduct approach for self-assembled block copolymer perovskite quantum dots composite toward optoelectronic application: Challenges and prospects. Chem. Eng. J. 2022;431:133701. doi: 10.1016/j.cej.2021.133701. DOI
Góra A., Tian L., Ramakrishna S., Mukherjee S. Design of novel perovskite-based polymeric poly (L-lactide-co-glycolide) nanofibers with anti-microbial properties for tissue engineering. Nanomaterials. 2020;10:1127. doi: 10.3390/nano10061127. PubMed DOI PMC
Ercan E., Liu C., Chen W. Nano–Micro Dimensional Structures of Fiber-Shaped Luminous Halide Perovskite Composites for Photonic and Optoelectronic Applications. Macromol. Rapid Commun. 2020;41:2000157. doi: 10.1002/marc.202000157. PubMed DOI
Kailasa S., Reddy M.S.B., Maurya M.R., Rani B.G., Rao K.V., Sadasivuni K.K. Electrospun Nanofibers: Materials, Synthesis Parameters, and Their Role in Sensing Applications. Macromol. Mater. Eng. 2021;306:2100410. doi: 10.1002/mame.202100410. DOI
Hamed I., Özogul F., Regenstein J.M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 2016;48:40–50. doi: 10.1016/j.tifs.2015.11.007. DOI
Elieh-Ali-Komi D., Hamblin M.R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016;4:411–427. PubMed PMC
Jayakumar R., Menon D., Manzoor K., Nair S.V., Tamura H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr. Polym. 2010;82:227–232. doi: 10.1016/j.carbpol.2010.04.074. DOI
Elsabee M.Z., Naguib H.F., Morsi R.E. Chitosan based nanofibers, review. Mater. Sci. Eng. C. 2012;32:1711–1726. doi: 10.1016/j.msec.2012.05.009. PubMed DOI
Gu B.K., Park S.J., Kim M.S., Kang C.M., Kim J.-I., Kim C.H. Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr. Polym. 2013;97:65–73. doi: 10.1016/j.carbpol.2013.04.060. PubMed DOI
Pakravan M., Heuzey M.C., Ajji A. A fundamental study of chitosan/PEO electrospinning. Polymer. 2011;52:4813–4824. doi: 10.1016/j.polymer.2011.08.034. DOI
Kalantari K., Afifi A.M., Jahangirian H., Webster T.J. Biomedical applications of chitosan electrospun nanofibers as a green polymer–Review. Carbohydr. Polym. 2019;207:588–600. doi: 10.1016/j.carbpol.2018.12.011. PubMed DOI
Adeli H., Khorasani M.T., Parvazinia M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 2019;122:238–254. doi: 10.1016/j.ijbiomac.2018.10.115. PubMed DOI
Yang D., Li L., Chen B., Shi S., Nie J., Ma G. Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer. 2019;163:74–85. doi: 10.1016/j.polymer.2018.12.046. DOI
Shankar A., Seyam A.F.M., Hudson S.M. Electrospinning of soy protein fibers and their compatibility with synthetic polymers. J. Text. Apparel, Technol. Manag. 2013;8:1–14.
Nirwan V.P., Al-Kattan A., Fahmi A., Kabashin A.V. Fabrication of Stable Nanofiber Matrices for Tissue Engineering via Electrospinning of Bare Laser-Synthesized Au Nanoparticles in Solutions of High Molecular Weight Chitosan. Nanomaterials. 2019;9:1058. doi: 10.3390/nano9081058. PubMed DOI PMC
Rengifo A.F.C., Stefanes N.M., Toigo J., Mendes C., Argenta D.F., Dotto M.E.R., da Silva M.C.S., Nunes R.J., Caon T., Parize A.L. PEO-chitosan nanofibers containing carboxymethyl-hexanoyl chitosan/dodecyl sulfate nanoparticles loaded with pyrazoline for skin cancer treatment. Eur. Polym. J. 2019;119:335–343. doi: 10.1016/j.eurpolymj.2019.08.001. DOI
Pandey S., Lönnecke P., Hey-Hawkins E. Phosphorus-boron-based polymers obtained by dehydrocoupling of ferrocenylphosphine-borane adducts. Eur. J. Inorg. Chem. 2014;2014:2456–2465. doi: 10.1002/ejic.201402021. DOI
Deng J., Zhao B., Deng J. Optically Active Helical Polyacetylene Bearing Ferrocenyl Amino-Acid Derivative in Pendants. Preparation and Application as Chiral Organocatalyst for Asymmetric Aldol Reaction. Ind. Eng. Chem. Res. 2016;55:7328–7337. doi: 10.1021/acs.iecr.6b01908. DOI
Wei Z., Wang D., Liu Y., Guo X., Zhu Y., Meng Z., Yu Z.-Q., Wong W.-Y. Ferrocene-based hyperbranched polymers: A synthetic strategy for shape control and applications as electroactive materials and precursor-derived magnetic ceramics. J. Mater. Chem. C. 2020;8:10774–10780. doi: 10.1039/D0TC01380C. DOI
Pietschnig R. Polymers with pendant ferrocenes. Chem. Soc. Rev. 2016;45:5216–5231. doi: 10.1039/C6CS00196C. PubMed DOI
Pandey S., Lönnecke P., Hey-Hawkins E. Cross-dehydrocoupling: A novel synthetic route to P-B-P-B chains. Inorg. Chem. 2014;53:8242–8249. doi: 10.1021/ic500316w. PubMed DOI
Nirwan V.P., Pandey S., Hey-Hawkins E., Fahmi A. Hybrid 2D nanofibers based on poly(ethylene oxide)/polystyrene matrix and poly(ferrocenylphosphinoboranes) as functional agents. J. Appl. Polym. Sci. 2020;137:49091. doi: 10.1002/app.49091. DOI
Wen S., Liang M., Zou R., Wang Z., Yue D., Liu L. Electrospinning of palladium/silica nanofibers for catalyst applications. RSC Adv. 2015;5:41513–41519. doi: 10.1039/C5RA02660A. DOI
Wang Y., Cui W., Chou J., Wen S., Sun Y., Zhang H. Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Colloids Surf. B Biointerfaces. 2018;172:90–97. doi: 10.1016/j.colsurfb.2018.08.032. PubMed DOI
Zhang J., Wang X.-X., Zhang B., Ramakrishna S., Yu M., Ma J.-W., Long Y.-Z. In situ assembly of well-dispersed Ag nanoparticles throughout electrospun alginate nanofibers for monitoring human breath—Smart fabrics. ACS Appl. Mater. Interfaces. 2018;10:19863–19870. doi: 10.1021/acsami.8b01718. PubMed DOI
Chen D., Zhang L., Ning P., Yuan H., Zhang Y., Zhang M., Fu T., He X. In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria. Nano Res. 2021;14:4885–4893. doi: 10.1007/s12274-021-3530-9. DOI
Jalalian N., Nabavi S.R. Electrosprayed chitosan nanoparticles decorated on polyamide6 electrospun nanofibers as membrane for acid fuchsin dye filtration from water. Surf. Interfaces. 2020;21:100779. doi: 10.1016/j.surfin.2020.100779. DOI
Nekounam H., Allahyari Z., Gholizadeh S., Mirzaei E., Shokrgozar M.A., Faridi-Majidi R. Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications. Mater. Sci. Eng. C. 2020;117:111226. doi: 10.1016/j.msec.2020.111226. PubMed DOI
Eltom A., Zhong G., Muhammad A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv. Mater. Sci. Eng. 2019;2019:3429527. doi: 10.1155/2019/3429527. DOI
Saberi A., Jabbari F., Zarrintaj P., Saeb M.R., Mozafari M. Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules. 2019;9:448. doi: 10.3390/biom9090448. PubMed DOI PMC
Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater. Sci. Eng. C. 2017;78:1246–1262. doi: 10.1016/j.msec.2017.05.017. PubMed DOI
Leonés A., Mujica-Garcia A., Arrieta M.P., Salaris V., Lopez D., Kenny J.M., Peponi L. Organic and Inorganic PCL-Based Electrospun Fibers. Polymers. 2020;12:1325. doi: 10.3390/polym12061325. PubMed DOI PMC
Yang J., Wang K., Yu D.-G., Yang Y., Bligh S.W.A., Williams G.R. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C. 2020;111:110805. doi: 10.1016/j.msec.2020.110805. PubMed DOI
Francis C.F.J., Kyratzis I.L., Best A.S. Lithium-Ion battery separators for ionic-liquid electrolytes: A review. Adv. Mater. 2020;32:1904205. doi: 10.1002/adma.201904205. PubMed DOI
Jaritphun S., Park J.S., Chung O.H., Nguyen T.T.T. Sandwiched polyimide-composite separator for lithium-ion batteries via electrospinning and electrospraying. Polym. Compos. 2020;41:4478–4488. doi: 10.1002/pc.25725. DOI
Zelepukin I.V., Popov A., Shipunova V.O., Tikhonowski G.V., Mirkasymov A.B., Popova-Kuznetsova E.A., Klimentov S.M., Kabashin A.V., Deyev S.M. Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics. Mater. Sci. Eng. C. 2020;120:111717. doi: 10.1016/j.msec.2020.111717. PubMed DOI
Koupaei N., Karkhaneh A., Joupari M.D. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds. J. Biomed. Mater. Res. Part A. 2015;103:3919–3926. doi: 10.1002/jbm.a.35513. PubMed DOI
Wang L., Wang D., Zhou Y., Zhang Y., Li Q., Shen C. Fabrication of open-porous PCL/PLA tissue engineering scaffolds and the relationship of foaming process, morphology, and mechanical behavior. Polym. Adv. Technol. 2019;30:2539–2548. doi: 10.1002/pat.4701. DOI
Saracino E., Cirillo V., Marrese M., Guarino V., Benfenati V., Zamboni R., Ambrosio L. Structural and functional properties of astrocytes on PCL based electrospun fibres. Mater. Sci. Eng. C. 2021;118:111363. doi: 10.1016/j.msec.2020.111363. PubMed DOI
Nirwan V.P., Filova E., Al-Kattan A., Kabashin A.V., Fahmi A. Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering. Nanomaterials. 2021;11:519. doi: 10.3390/nano11020519. PubMed DOI PMC
Gugliandolo A., Fonticoli L., Trubiani O., Rajan T.S., Marconi G.D., Bramanti P., Mazzon E., Pizzicannella J., Diomede F. Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. Int. J. Mol. Sci. 2021;22:5236. doi: 10.3390/ijms22105236. PubMed DOI PMC
Gadalla D., Goldstein A.S. Improving the osteogenicity of PCL fiber substrates by surface-immobilization of bone morphogenic protein-2. Ann. Biomed. Eng. 2020;48:1006–1015. doi: 10.1007/s10439-019-02286-1. PubMed DOI
Sanaei-rad P., Jamshidi D., Adel M., Seyedjafari E. Electrospun poly (l-lactide) nanofibers coated with mineral trioxide aggregate enhance odontogenic differentiation of dental pulp stem cells. Polym. Adv. Technol. 2021;32:402–410. doi: 10.1002/pat.5095. DOI
Chieruzzi M., Pagano S., Moretti S., Pinna R., Milia E., Torre L., Eramo S. Nanomaterials for tissue engineering in dentistry. Nanomaterials. 2016;6:134. doi: 10.3390/nano6070134. PubMed DOI PMC
Yousefzade O., Katsarava R., Puiggalí J. Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics. 2020;5:49. doi: 10.3390/biomimetics5040049. PubMed DOI PMC
Swanson W.B., Zhang Z., Xiu K., Gong T., Eberle M., Wang Z., Ma P.X. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation. Acta Biomater. 2020;118:215–232. doi: 10.1016/j.actbio.2020.09.052. PubMed DOI PMC
Malek-Khatabi A., Javar H.A., Dashtimoghadam E., Ansari S., Hasani-Sadrabadi M.M., Moshaverinia A. In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomater. 2020;108:326–336. doi: 10.1016/j.actbio.2020.03.008. PubMed DOI
Wang Z., Lin M., Xie Q., Sun H., Huang Y., Zhang D., Yu Z., Bi X., Chen J., Wang J. Electrospun silk fibroin/poly (lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Int. J. Nanomed. 2016;11:1483. PubMed PMC
Qi P., Niu Y., Wang B. MicroRNA-181a/b-1-encapsulated PEG/PLGA nanofibrous scaffold promotes osteogenesis of human mesenchymal stem cells. J. Cell. Mol. Med. 2021;25:5744–5752. doi: 10.1111/jcmm.16595. PubMed DOI PMC
Vocetkova K., Sovkova V., Buzgo M., Lukasova V., Divin R., Rampichova M., Blazek P., Zikmund T., Kaiser J., Karpisek Z. A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment. Nanomaterials. 2020;10:1801. doi: 10.3390/nano10091801. PubMed DOI PMC
Mickova A., Buzgo M., Benada O., Rampichova M., Fisar Z., Filova E., Tesarova M., Lukas D., Amler E. Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules. 2012;13:952–962. doi: 10.1021/bm2018118. PubMed DOI
Vocetkova K., Buzgo M., Sovkova V., Rampichova M., Staffa A., Filova E., Lukasova V., Doupnik M., Fiori F., Amler E. A comparison of high throughput core–shell 2D electrospinning and 3D centrifugal spinning techniques to produce platelet lyophilisate-loaded fibrous scaffolds and their effects on skin cells. RSC Adv. 2017;7:53706–53719. doi: 10.1039/C7RA08728D. DOI
Vysloužilová L., Buzgo M., Pokorný P., Chvojka J., Míčková A., Rampichová M., Kula J., Pejchar K., Bílek M., Lukáš D. Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers. Int. J. Pharm. 2017;516:293–300. doi: 10.1016/j.ijpharm.2016.11.034. PubMed DOI
Buzgo M., Filova E., Staffa A.M., Rampichova M., Doupnik M., Vocetkova K., Lukasova V., Kolcun R., Lukas D., Necas A. Needleless emulsion electrospinning for the regulated delivery of susceptible proteins. J. Tissue Eng. Regen. Med. 2018;12:583–597. doi: 10.1002/term.2474. PubMed DOI
Filova E., Blanquer A., Knitlova J., Plencner M., Jencova V., Koprivova B., Lisnenko M., Kostakova E.K., Prochazkova R., Bacakova L. The Effect of the Controlled Release of Platelet Lysate from PVA Nanomats on Keratinocytes, Endothelial Cells and Fibroblasts. Nanomaterials. 2021;11:995. doi: 10.3390/nano11040995. PubMed DOI PMC
Unal S., Arslan S., Yilmaz B.K., Oktar F.N., Ficai D., Ficai A., Gunduz O. Polycaprolactone/gelatin/hyaluronic acid electrospun scaffolds to mimic glioblastoma extracellular matrix. Materials. 2020;13:2661. doi: 10.3390/ma13112661. PubMed DOI PMC
Yahia S., Khalil I.A., El-Sherbiny I.M. Sandwich-Like Nanofibrous Scaffolds for Bone Tissue Regeneration. ACS Appl. Mater. Interfaces. 2019;11:28610–28620. doi: 10.1021/acsami.9b06359. PubMed DOI
Su Y., Su Q., Liu W., Lim M., Venugopal J.R., Mo X., Ramakrishna S., Al-Deyab S.S., El-Newehy M. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core–shell PLLACL–collagen fibers for use in bone tissue engineering. Acta Biomater. 2012;8:763–771. doi: 10.1016/j.actbio.2011.11.002. PubMed DOI
Haider A., Kim S., Huh M.-W., Kang I.-K. BMP-2 grafted nHA/PLGA hybrid nanofiber scaffold stimulates osteoblastic cells growth. Biomed. Res. Int. 2015;2015:281909. doi: 10.1155/2015/281909. PubMed DOI PMC
Schofer M.D., Fuchs-Winkelmann S., Gräbedünkel C., Wack C., Dersch R., Rudisile M., Wendorff J.H., Greiner A., Paletta J.R.J., Boudriot U. Influence of poly (L-lactic acid) nanofibers and BMP-2–containing poly (L-lactic acid) nanofibers on growth and osteogenic differentiation of human mesenchymal stem cells. ScientificWorldJournal. 2008;8:1269–1279. doi: 10.1100/tsw.2008.163. PubMed DOI PMC
Schofer M.D., Roessler P.P., Schaefer J., Theisen C., Schlimme S., Heverhagen J.T., Voelker M., Dersch R., Agarwal S., Fuchs-Winkelmann S. Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects. PLoS ONE. 2011;6:e25462. doi: 10.1371/journal.pone.0025462. PubMed DOI PMC
Suchý T., Šupová M., Sauerová P., Kalbáčová M.H., Klapková E., Pokorný M., Horný L., Závora J., Ballay R., Denk F. Evaluation of collagen/hydroxyapatite electrospun layers loaded with vancomycin, gentamicin and their combination: Comparison of release kinetics, antimicrobial activity and cytocompatibility. Eur. J. Pharm. Biopharm. 2019;140:50–59. doi: 10.1016/j.ejpb.2019.04.021. PubMed DOI
Gopinath V.K., Soumya S., Chakrapani V.Y., Kumar T.S.S. Odontogenic differentiation of inflamed dental pulp stem cells (IDPSCs) on polycaprolactone (PCL) nanofiber blended with hydroxyapatite. Dent. Mater. J. 2020;40:312–321. doi: 10.4012/dmj.2020-005. PubMed DOI
Khoroushi M., Foroughi M.R., Karbasi S., Hashemibeni B., Khademi A.A. Effect of polyhydroxybutyrate/chitosan/bioglass nanofiber scaffold on proliferation and differentiation of stem cells from human exfoliated deciduous teeth into odontoblast-like cells. Mater. Sci. Eng. C. 2018;89:128–139. doi: 10.1016/j.msec.2018.03.028. PubMed DOI
Bar J.K., Kowalczyk T., Grelewski P.G., Stamnitz S., Paprocka M., Lis J., Lis-Nawara A., An S., Klimczak A. Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly (l-lactide-co-caprolactone) Scaffold. Materials. 2022;15:1900. doi: 10.3390/ma15051900. PubMed DOI PMC
Zamani M., Prabhakaran M.P., Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomed. 2013;8:2997. PubMed PMC
Reneker D.H., Yarin A.L., Zussman E., Xu H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 2007;41:43–346.
Nakielski P., Kowalczyk T., Zembrzycki K., Kowalewski T.A. Experimental and numerical evaluation of drug release from nanofiber mats to brain tissue. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015;103:282–291. doi: 10.1002/jbm.b.33197. PubMed DOI
Kowalczyk T. Functional micro-and nanofibers obtained by nonwoven post-modification. Polymers. 2020;12:1087. doi: 10.3390/polym12051087. PubMed DOI PMC
Lee H., Xu G., Kharaghani D., Nishino M., Song K.H., Lee J.S., Kim I.S. Electrospun tri-layered zein/PVP-GO/zein nanofiber mats for providing biphasic drug release profiles. Int. J. Pharm. 2017;531:101–107. doi: 10.1016/j.ijpharm.2017.08.081. PubMed DOI
Singh B., Shukla N., Kim J., Kim K., Park M.-H. Stimuli-Responsive Nanofibers Containing Gold Nanorods for On-Demand Drug Delivery Platforms. Pharmaceutics. 2021;13:1319. doi: 10.3390/pharmaceutics13081319. PubMed DOI PMC
Zhong L., Hu D., Qu Y., Peng J., Huang K., Lei M., Wu T., Xiao Y., Gu Y., Qian Z. Preparation of adenosine-loaded electrospun nanofibers and their application in bone regeneration. J. Biomed. Nanotechnol. 2019;15:857–877. doi: 10.1166/jbn.2019.2761. PubMed DOI
Fu Q.-W., Zi Y.-P., Xu W., Zhou R., Cai Z.-Y., Zheng W.-J., Chen F., Qian Q.-R. Electrospinning of calcium phosphate-poly (D, L-lactic acid) nanofibers for sustained release of water-soluble drug and fast mineralization. Int. J. Nanomed. 2016;11:5087. doi: 10.2147/IJN.S114224. PubMed DOI PMC
Gao Y., Wang Y., Wang Y., Cui W. Fabrication of gelatin-based electrospun composite fibers for anti-bacterial properties and protein adsorption. Mar. Drugs. 2016;14:192. doi: 10.3390/md14100192. PubMed DOI PMC
Ashokkumar M., Aravind K., Sangeetha D. Evaluation of Polyether Sulfone/Nanohydroxyapatite Nanofiber Composite as Bone Graft Material. Trends Biomater. Artif. Organs. 2015;29:54–63.
Huang R., Chen X., Dong Y., Zhang X., Wei Y., Yang Z., Li W., Guo Y., Liu J., Yang Z. MXene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio Mater. 2020;3:2125–2131. doi: 10.1021/acsabm.0c00007. PubMed DOI
Haidar M.K., Timur S.S., Kazanci A., Turkoglu O.F., Gürsoy R.N., Nemutlu E., Sargon M.F., Bodur E., Gök M., Ulubayram K. Composite nanofibers incorporating alpha lipoic acid and atorvastatin provide neuroprotection after peripheral nerve injury in rats. Eur. J. Pharm. Biopharm. 2020;153:1–13. doi: 10.1016/j.ejpb.2020.05.032. PubMed DOI
Zhao Y., Tian C., Wu K., Zhou X., Feng K., Li Z., Wang Z., Han X. Vancomycin-Loaded Polycaprolactone Electrospinning Nanofibers Modulate the Airway Interfaces to Restrain Tracheal Stenosis. Front. Bioeng. Biotechnol. 2021;9:760395. doi: 10.3389/fbioe.2021.760395. PubMed DOI PMC
Bulbul Y.E., Eskitoros-Togay Ş.M., Demirtas-Korkmaz F., Dilsiz N. Multi-walled carbon nanotube-incorporating electrospun composite fibrous mats for controlled drug release profile. Int. J. Pharm. 2019;568:118513. doi: 10.1016/j.ijpharm.2019.118513. PubMed DOI
Nguyen T.T.T., Ghosh C., Hwang S.-G., Chanunpanich N., Park J.S. Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int. J. Pharm. 2012;439:296–306. doi: 10.1016/j.ijpharm.2012.09.019. PubMed DOI
Huang L., Yu D., Zhu L.-M., Branford-White C.J., White K. Preparation of fast-dissolving ursolic acid nanofiber membrances using electrospinning; Proceedings of the 2011 5th International Conference on Bioinformatics and Biomedical Engineering; Wuhan, China. 13–15 May 2015; Piscataway, NJ, USA: IEEE; 2011. pp. 1–4.
Shao S., Li L., Yang G., Li J., Luo C., Gong T., Zhou S. Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. Int. J. Pharm. 2011;421:310–320. doi: 10.1016/j.ijpharm.2011.09.033. PubMed DOI
Wang W., Cheng Y., Li Y., Zhou H., Xu L., Wen Y., Zhao L., Zhang X. Enrichment and Viability Inhibition of Circulating Tumor Cells on a Dual Acid-Responsive Composite Nanofiber Film. ChemMedChem. 2017;12:529–536. doi: 10.1002/cmdc.201600633. PubMed DOI
Naresh V., Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21:1109. doi: 10.3390/s21041109. PubMed DOI PMC
Rani S.D., Ramachandran R., Sheet S., Aziz M.A., Lee Y.S., Al-Sehemi A.G., Pannipara M., Xia Y., Tsai S.-Y., Ng F.-L. NiMoO4 nanoparticles decorated carbon nanofiber membranes for the flexible and high performance glucose sensors. Sens. Actuators B Chem. 2020;312:127886. doi: 10.1016/j.snb.2020.127886. DOI
Baek S.H., Roh J., Park C.Y., Kim M.W., Shi R., Kailasa S.K., Park T.J. Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection. Mater. Sci. Eng. C. 2020;107:110273. doi: 10.1016/j.msec.2019.110273. PubMed DOI
Ozoemena O.C., Shai L.J., Maphumulo T., Ozoemena K.I. Electrochemical sensing of dopamine using onion-like carbons and their carbon nanofiber composites. Electrocatalysis. 2019;10:381–391. doi: 10.1007/s12678-019-00520-x. DOI
Ruiz V., Pérez-Marquez A., Maudes J., Grande H.J., Murillo N. Enhanced photostability and sensing performance of graphene quantum dots encapsulated in electrospun polyacrylonitrile nanofibrous filtering membranes. Sens. Actuators B Chem. 2018;262:902–912. doi: 10.1016/j.snb.2018.02.081. DOI
Omer S., Forgách L., Zelkó R., Sebe I. Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics. 2021;13:286. doi: 10.3390/pharmaceutics13020286. PubMed DOI PMC
Valipouri A. Production scale up of nanofibers: A review. J. Text. Polym. 2017;5:8–16.
Partheniadis I., Nikolakakis I., Laidmäe I., Heinämäki J. A mini-review: Needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes. 2020;8:673. doi: 10.3390/pr8060673. DOI
Wang L., Zhang C., Gao F., Pan G. Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration. RSC Adv. 2016;6:105988–105995. doi: 10.1039/C6RA24557A. DOI
Buzgo M., Greplová J., Soural M., Bezděková D., Míčková A., Kofroňová O., Benada O., Hlaváč J., Amler E. PVA immunonanofibers with controlled decay. Polymer. 2015;77:387–398. doi: 10.1016/j.polymer.2015.09.018. DOI
Filová E., Tonar Z., Lukášová V., Buzgo M., Litvinec A., Rampichová M., Beznoska J., Plencner M., Staffa A., Daňková J. Hydrogel Containing Anti-CD44-Labeled Microparticles, Guide Bone Tissue Formation in Osteochondral Defects in Rabbits. Nanomaterials. 2020;10:1504. doi: 10.3390/nano10081504. PubMed DOI PMC