Advances in Electrospun Hybrid Nanofibers for Biomedical Applications

. 2022 May 27 ; 12 (11) : . [epub] 20220527

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35683685

Electrospun hybrid nanofibers, based on functional agents immobilized in polymeric matrix, possess a unique combination of collective properties. These are beneficial for a wide range of applications, which include theranostics, filtration, catalysis, and tissue engineering, among others. The combination of functional agents in a nanofiber matrix offer accessibility to multifunctional nanocompartments with significantly improved mechanical, electrical, and chemical properties, along with better biocompatibility and biodegradability. This review summarizes recent work performed for the fabrication, characterization, and optimization of different hybrid nanofibers containing varieties of functional agents, such as laser ablated inorganic nanoparticles (NPs), which include, for instance, gold nanoparticles (Au NPs) and titanium nitride nanoparticles (TiNPs), perovskites, drugs, growth factors, and smart, inorganic polymers. Biocompatible and biodegradable polymers such as chitosan, cellulose, and polycaprolactone are very promising macromolecules as a nanofiber matrix for immobilizing such functional agents. The assimilation of such polymeric matrices with functional agents that possess wide varieties of characteristics require a modified approach towards electrospinning techniques such as coelectrospinning and template spinning. Additional focus within this review is devoted to the state of the art for the implementations of these approaches as viable options for the achievement of multifunctional hybrid nanofibers. Finally, recent advances and challenges, in particular, mass fabrication and prospects of hybrid nanofibers for tissue engineering and biomedical applications have been summarized.

Zobrazit více v PubMed

Du L., Xu H., Zhang Y., Zou F. Electrospinning of polycaprolatone nanofibers with DMF additive: The effect of solution proprieties on jet perturbation and fiber morphologies. Fibers Polym. 2016;17:751–759. doi: 10.1007/s12221-016-6045-3. DOI

Kakoria A., Sinha-Ray S. A review on biopolymer-based fibers via electrospinning and solution blowing and their applications. Fibers. 2018;6:45. doi: 10.3390/fib6030045. DOI

Han D., Steckl A.J. Coaxial electrospinning formation of complex polymer fibers and their applications. ChemPlusChem. 2019;84:1453–1497. doi: 10.1002/cplu.201900281. PubMed DOI

Patil J.V., Mali S.S., Kamble A.S., Hong C.K., Kim J.H., Patil P.S. Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Appl. Surf. Sci. 2017;423:641–674. doi: 10.1016/j.apsusc.2017.06.116. DOI

Kishan A.P., Cosgriff-Hernandez E.M. Recent advancements in electrospinning design for tissue engineering applications: A review. J. Biomed. Mater. Res. Part A. 2017;105:2892–2905. doi: 10.1002/jbm.a.36124. PubMed DOI

Dikici B.A., Dikici S., Reilly G.C., MacNeil S., Claeyssens F. A novel bilayer polycaprolactone membrane for guided bone regeneration: Combining electrospinning and emulsion templating. Materials. 2019;12:2643. doi: 10.3390/ma12162643. PubMed DOI PMC

Gao H., Yang Y., Akampumuza O., Hou J., Zhang H., Qin X. A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture. Environ. Sci. Nano. 2017;4:864–875. doi: 10.1039/C6EN00696E. DOI

Ghosal K., Agatemor C., Špitálsky Z., Thomas S., Kny E. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chem. Eng. J. 2019;358:1262–1278. doi: 10.1016/j.cej.2018.10.117. DOI

Jiang S., Schmalz H., Agarwal S., Greiner A. Electrospinning of ABS nanofibers and their high filtration performance. Adv. Fiber Mater. 2020;2:34–43. doi: 10.1007/s42765-019-00026-7. DOI

Jin S., Li J., Wang J., Jiang J., Zuo Y., Li Y., Yang F. Electrospun silver ion-loaded calcium phosphate/chitosan antibacterial composite fibrous membranes for guided bone regeneration. Int. J. Nanomed. 2018;13:4591–4605. doi: 10.2147/IJN.S167793. PubMed DOI PMC

Liu G.S., Yan X., Yan F.F., Chen F.X., Hao L.Y., Chen S.J., Lou T., Ning X., Long Y.Z. In Situ Electrospinning Iodine-Based Fibrous Meshes for Antibacterial Wound Dressing. Nanoscale Res. Lett. 2018;13:1–7. doi: 10.1186/s11671-018-2733-9. PubMed DOI PMC

Liu W., Bi W., Sun Y., Wang L., Yu X., Cheng R., Yu Y., Cui W. Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration. Mater. Sci. Eng. C. 2020;110:110670. doi: 10.1016/j.msec.2020.110670. PubMed DOI

Al-Enizi A.M., Zagho M.M., Elzatahry A.A. Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials. 2018;8:259. doi: 10.3390/nano8040259. PubMed DOI PMC

Sridhar R., Lakshminarayanan R., Madhaiyan K., Barathi V.A., Lim K.H.C., Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev. 2015;44:790–814. doi: 10.1039/C4CS00226A. PubMed DOI

Ferraris S., Giachet F.T., Miola M., Bertone E., Varesano A., Vineis C., Cochis A., Sorrentino R., Rimondini L., Spriano S. Nanogrooves and keratin nanofibers on titanium surfaces aimed at driving gingival fibroblasts alignment and proliferation without increasing bacterial adhesion. Mater. Sci. Eng. C. 2017;76:1–12. doi: 10.1016/j.msec.2017.02.152. PubMed DOI

Kharaghani D., Dutta D., Ho K.K.K., Zhang K.-Q., Kai W., Ren X., Willcox M.D.P., Kim I.S. Active loading graphite/hydroxyapatite into the stable hydroxyethyl cellulose scaffold nanofibers for artificial cornea application. Cellulose. 2020;27:3319–3334. doi: 10.1007/s10570-020-02999-w. DOI

Miroshnichenko S., Timofeeva V., Permyakova E., Ershov S., Kiryukhantsev-Korneev P., Dvořaková E., Shtansky D.V., Zajíčková L., Solovieva A., Manakhov A. Plasma-coated polycaprolactone nanofibers with covalently bonded platelet-rich plasma enhance adhesion and growth of human fibroblasts. Nanomaterials. 2019;9:637. doi: 10.3390/nano9040637. PubMed DOI PMC

Sharma J., Lizu M., Stewart M., Zygula K., Lu Y., Chauhan R., Yan X., Guo Z., Wujcik E.K., Wei S. Multifunctional nanofibers towards active biomedical therapeutics. Polymers. 2015;7:186–219. doi: 10.3390/polym7020186. DOI

Wang A., Liu Z., Hu M., Wang C., Zhang X., Shi B., Fan Y., Cui Y., Li Z., Ren K. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy. 2018;43:63–71. doi: 10.1016/j.nanoen.2017.11.023. DOI

Keirouz A., Chung M., Kwon J., Fortunato G., Radacsi N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020;12:e1626. doi: 10.1002/wnan.1626. PubMed DOI

Migliorini F.L., Teodoro K.B.R., Scagion V.P., dos Santos D.M., Fonseca F.J., Mattoso L.H.C., Correa D.S. Tuning the electrical properties of electrospun nanofibers with hybrid nanomaterials for detecting isoborneol in water using an electronic tongue. Surfaces. 2019;2:432–443. doi: 10.3390/surfaces2020031. DOI

Restivo J., Soares O.S.G.S., Pereira M.F.R. Processing Methods Used in the Fabrication of Macrostructures Containing 1D Carbon Nanomaterials for Catalysis. Processes. 2020;8:1329. doi: 10.3390/pr8111329. DOI

Agarwal S., Burgard M.F., Greiner A., Wendorff J. Electrospinning A Practical Guide to Nanofibers. Walter de Gruyter GmbH & Co KG; Berlin, Germany: 2016.

Xue J., Wu T., Dai Y., Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. PubMed DOI PMC

Machado R.C.L., Alexis F., De Sousa F.B. Nanostructured and photochromic material for environmental detection of metal ions. Molecules. 2019;24:4243. doi: 10.3390/molecules24234243. PubMed DOI PMC

Bombin A.D.J., Dunne N.J., McCarthy H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C. 2020;114:110994. doi: 10.1016/j.msec.2020.110994. PubMed DOI

Mele E. Electrospinning of natural polymers for advanced wound care: Towards responsive and adaptive dressings. J. Mater. Chem. B. 2016;4:4801–4812. doi: 10.1039/C6TB00804F. PubMed DOI

Sharpe J.M., Lee H., Hall A.R., Bonin K., Guthold M. Mechanical properties of electrospun, blended fibrinogen: PCL nanofibers. Nanomaterials. 2020;10:1843. doi: 10.3390/nano10091843. PubMed DOI PMC

Baker S., Sigley J., Helms C.C., Stitzel J., Berry J., Bonin K., Guthold M. The mechanical properties of dry, electrospun fibrinogen fibers. Mater. Sci. Eng. C. 2012;32:215–221. doi: 10.1016/j.msec.2011.10.021. PubMed DOI PMC

Foraida Z.I., Kamaldinov T., Nelson D.A., Larsen M., Castracane J. Elastin-PLGA hybrid electrospun nanofiber scaffolds for salivary epithelial cell self-organization and polarization. Acta Biomater. 2017;62:116–127. doi: 10.1016/j.actbio.2017.08.009. PubMed DOI PMC

Yao Q., Hu Y., Yu F., Zhang W., Fu Y. A novel application of electrospun silk fibroin/poly(l-lactic acid-: Co -ϵ-caprolactone) scaffolds for conjunctiva reconstruction. RSC Adv. 2018;8:18372–18380. doi: 10.1039/C7RA13551C. PubMed DOI PMC

Rahmati M., Mills D.K., Urbanska A.M., Saeb M.R., Venugopal J.R., Ramakrishna S., Mozafari M. Electrospinning for tissue engineering applications. Prog. Mater. Sci. 2021;117:100721. doi: 10.1016/j.pmatsci.2020.100721. DOI

Séon-Lutz M., Couffin A.C., Vignoud S., Schlatter G., Hébraud A. Electrospinning in water and in situ crosslinking of hyaluronic acid / cyclodextrin nanofibers: Towards wound dressing with controlled drug release. Carbohydr. Polym. 2019;207:276–287. doi: 10.1016/j.carbpol.2018.11.085. PubMed DOI

Celebioglu A., Uyar T. Fast dissolving oral drug delivery system based on electrospun nanofibrous webs of cyclodextrin/ibuprofen inclusion complex nanofibers. Mol. Pharm. 2019;16:4387–4398. doi: 10.1021/acs.molpharmaceut.9b00798. PubMed DOI

Topuz F., Uyar T. Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics. 2019;11:6. doi: 10.3390/pharmaceutics11010006. PubMed DOI PMC

Kandhasamy S., Ramanathan G., Muthukumar T., Thyagarajan S., Umamaheshwari N., Santhanakrishnan V.P., Sivagnanam U.T., Perumal P.T. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics. Mater. Sci. Eng. C. 2017;74:70–85. doi: 10.1016/j.msec.2017.01.001. PubMed DOI

Dziemidowicz K., Sang Q., Wu J., Zhang Z., Zhou F., Lagaron J.M., Mo X., Parker G.J.M., Yu D.-G., Zhu L.-M. Electrospinning for healthcare: Recent advancements. J. Mater. Chem. B. 2021;9:939–951. doi: 10.1039/D0TB02124E. PubMed DOI

Lee E.-S., Kim Y.-O., Ha Y.-M., Lim D., Hwang J.Y., Kim J., Park M., Cho J.W., Jung Y.C. Antimicrobial properties of lignin-decorated thin multi-walled carbon nanotubes in poly (vinyl alcohol) nanocomposites. Eur. Polym. J. 2018;105:79–84. doi: 10.1016/j.eurpolymj.2018.05.014. DOI

Muxika A., Etxabide A., Uranga J., Guerrero P., de la Caba K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 2017;105:1358–1368. doi: 10.1016/j.ijbiomac.2017.07.087. PubMed DOI

Al-Kattan A., Nirwan V.P., Munnier E., Chourpa I., Fahmi A., Kabashin A.V. Toward multifunctional hybrid platforms for tissue engineering based on chitosan(PEO) nanofibers functionalized by bare laser-synthesized Au and Si nanoparticles. RSC Adv. 2017;7:31759–31766. doi: 10.1039/C7RA02255G. DOI

Zhang L., Zhao D., Feng M., He B., Chen X., Wei L., Zhai S.-R., An Q.-D., Sun J. Hydrogen bond promoted lignin solubilization and electrospinning in low cost protic ionic liquids. ACS Sustain. Chem. Eng. 2019;7:18593–18602. doi: 10.1021/acssuschemeng.9b04907. DOI

Lemma S.M., Bossard F., Rinaudo M. Preparation of pure and stable chitosan nanofibers by electrospinning in the presence of poly(ethylene oxide) Int. J. Mol. Sci. 2016;17:1790. doi: 10.3390/ijms17111790. PubMed DOI PMC

Kharaghani D., Gitigard P., Ohtani H., Kim K.O., Ullah S., Saito Y., Khan M.Q., Kim I.S. Design and characterization of dual drug delivery based on in-situ assembled PVA/PAN core-shell nanofibers for wound dressing application. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-49132-x. PubMed DOI PMC

Pant B., Park M., Ojha G.P., Kim D.U., Kim H.Y., Park S.J. Electrospun salicylic acid/polyurethane composite nanofibers for biomedical applications. Int. J. Polym. Mater. Polym. Biomater. 2017;67:739–744. doi: 10.1080/00914037.2017.1376200. DOI

Pant B., Park M., Park S.J. One-Step Synthesis of Silver Nanoparticles Embedded Polyurethane Nano-Fiber/Net Structured Membrane as an Effective Antibacterial Medium. Polymers. 2019;11:1185. doi: 10.3390/polym11071185. PubMed DOI PMC

dos Santos Silva A., Rodrigues B.V.M., Oliveira F.C., Carvalho J.O., de Vasconcellos L.M.R., de Araújo J.C.R., Marciano F.R., Lobo A.O. Characterization and in vitro and in vivo assessment of poly (butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. J. Polym. Res. 2019;26:53. doi: 10.1007/s10965-019-1706-8. DOI

Zhang H., Fu Q.-W., Sun T.-W., Chen F., Qi C., Wu J., Cai Z.-Y., Qian Q.-R., Zhu Y.-J. Amorphous calcium phosphate, hydroxyapatite and poly (D, L-lactic acid) composite nanofibers: Electrospinning preparation, mineralization and in vivo bone defect repair. Colloids Surf. B Biointerfaces. 2015;136:27–36. doi: 10.1016/j.colsurfb.2015.08.015. PubMed DOI

Malysheva K., Kwaśniak K., Gnilitskyi I., Barylyak A., Zinchenko V., Fahmi A., Korchynskyi O., Bobitski Y. Functionalization of Polycaprolactone Electrospun Osteoplastic Scaffolds with Fluorapatite and Hydroxyapatite Nanoparticles: Biocompatibility Comparison of Human Versus Mouse Mesenchymal Stem Cells. Materials. 2021;14:1333. doi: 10.3390/ma14061333. PubMed DOI PMC

Villarreal-Gómez L.J., Cornejo-Bravo J.M., Vera-Graziano R., Grande D. Electrospinning as a powerful technique for biomedical applications: A critically selected survey. J. Biomater. Sci. Polym. Ed. 2016;27:157–176. doi: 10.1080/09205063.2015.1116885. PubMed DOI

Burke L., Mortimer C.J., Curtis D.J., Lewis A.R., Williams R., Hawkins K., Maffeis T.G.G., Wright C.J. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning. Mater. Sci. Eng. C. 2017;70:512–519. doi: 10.1016/j.msec.2016.09.014. PubMed DOI

Zhang M., Zhao X., Zhang G., Wei G., Su Z. Electrospinning design of functional nanostructures for biosensor applications. J. Mater. Chem. B. 2017;5:1699–1711. doi: 10.1039/C6TB03121H. PubMed DOI

Prabu G.T.V., Dhurai B. A novel profiled multi-pin electrospinning system for nanofiber production and encapsulation of nanoparticles into nanofibers. Sci. Rep. 2020;10:4302. doi: 10.1038/s41598-020-60752-6. PubMed DOI PMC

Zhang F., Zhang C., Peng H., Cong H., Qian H. Near-infrared photocatalytic upconversion nanoparticles/TiO2 nanofibers assembled in large scale by electrospinning. Part. Part. Syst. Charact. 2016;33:248–253. doi: 10.1002/ppsc.201600010. DOI

Lan T., Shao Z., Wang J., Gu M. Fabrication of hydroxyapatite nanoparticles decorated cellulose triacetate nanofibers for protein adsorption by coaxial electrospinning. Chem. Eng. J. 2015;260:818–825. doi: 10.1016/j.cej.2014.09.004. DOI

Castro-Mayorga J.L., Fabra M.J., Cabedo L., Lagaron J.M. On the use of the electrospinning coating technique to produce antimicrobial polyhydroxyalkanoate materials containing in situ-stabilized silver nanoparticles. Nanomaterials. 2017;7:4. doi: 10.3390/nano7010004. PubMed DOI PMC

Amarjargal A., Tijing L.D., Park C.H., Im I.T., Kim C.S. Controlled assembly of superparamagnetic iron oxide nanoparticles on electrospun PU nanofibrous membrane: A novel heat-generating substrate for magnetic hyperthermia application. Eur. Polym. J. 2013;49:3796–3805. doi: 10.1016/j.eurpolymj.2013.08.026. DOI

Uskokovic V. Nanotechnologies in Preventive and Regenerative Medicine. Elsevier; Amsterdam, The Netherlands: 2018.

Lyu J., Wang X., Liu L., Kim Y., Tanyi E.K., Chi H., Feng W., Xu L., Li T., Noginov M.A., et al. High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. Adv. Funct. Mater. 2016;26:8435–8445. doi: 10.1002/adfm.201603230. DOI

Li K., Nejadnik H., Daldrup-Link H.E. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov. Today. 2017;22:1421–1429. doi: 10.1016/j.drudis.2017.04.008. PubMed DOI PMC

Pinto T.V., Costa P., Sousa C.M., Sousa C.A.D., Pereira C., Silva C.J.S.M., Pereira M.F.R., Coelho P.J., Freire C. Screen-printed photochromic textiles through new inks based on SiO2@ naphthopyran nanoparticles. ACS Appl. Mater. Interfaces. 2016;8:28935–28945. doi: 10.1021/acsami.6b06686. PubMed DOI

Hickey D.J., Ercan B., Sun L., Webster T.J. Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater. 2015;14:175–184. doi: 10.1016/j.actbio.2014.12.004. PubMed DOI

Tang J., Li J., Vlassak J.J., Suo Z. Adhesion between highly stretchable materials. Soft Matter. 2016;12:1093–1099. doi: 10.1039/C5SM02305J. PubMed DOI

Huang L., Zhao S., Wang Z., Wu J., Wang J., Wang S. In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. J. Memb. Sci. 2016;499:269–281. doi: 10.1016/j.memsci.2015.10.055. DOI

Mustafa M.N., Shafie S., Wahid M.H., Sulaiman Y. Light scattering effect of polyvinyl-alcohol/titanium dioxide nanofibers in the dye-sensitized solar cell. Sci. Rep. 2019;9:1–8. doi: 10.1038/s41598-019-50292-z. PubMed DOI PMC

Yarmohamadi-Vasel M., Modarresi-Alam A.R., Noroozifar M., Hadavi M.S. An investigation into the photovoltaic activity of a new nanocomposite of (polyaniline nanofibers)/(titanium dioxide nanoparticles) with different architectures. Synth. Met. 2019;252:50–61. doi: 10.1016/j.synthmet.2019.04.007. DOI

Šišková A.O., Frajová J., Nosko M. Recycling of poly(ethylene terephthalate) by electrospinning to enhanced the filtration efficiency. Mater. Lett. 2020;278:128426. doi: 10.1016/j.matlet.2020.128426. DOI

Zulfi A., Hapidin D.A., Saputra C., Mustika W.S., Munir M.M., Khairurrijal K. The synthesis of fiber membranes from High-Impact Polystyrene (HIPS) Waste using needleless electrospinning as air filtration media. Mater. Today Proc. 2019;13:154–159. doi: 10.1016/j.matpr.2019.03.206. DOI

Sadeghi I., Govinna N., Cebe P., Asatekin A. Superoleophilic, Mechanically Strong Electrospun Membranes for Fast and Efficient Gravity-Driven Oil/Water Separation. ACS Appl. Polym. Mater. 2019;1:765–776. doi: 10.1021/acsapm.8b00279. DOI

Barhoum A., Pal K., Rahier H., Uludag H., Kim I.S., Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today. 2019;17:1–35. doi: 10.1016/j.apmt.2019.06.015. DOI

Venkatesan M., Veeramuthu L., Liang F.-C., Chen W.-C., Cho C.-J., Chen C.-W., Chen J.-Y., Yan Y., Chang S.-H., Kuo C.-C. Evolution of electrospun nanofibers fluorescent and colorimetric sensors for environmental toxicants, pH, temperature, and cancer cells–A review with insights on applications. Chem. Eng. J. 2020;397:125431. doi: 10.1016/j.cej.2020.125431. DOI

Hussain N., Ullah S., Sarwar M.N., Hashmi M., Khatri M., Yamaguchi T., Khatri Z., Kim I.S. Fabrication and Characterization of Novel Antibacterial Ultrafine Nylon-6 Nanofibers Impregnated by Garlic Sour. Fibers Polym. 2020;21:2780–2787.

Bortolassi A.C.C., Nagarajan S., de Araújo Lima B., Guerra V.G., Aguiar M.L., Huon V., Soussan L., Cornu D., Miele P., Bechelany M. Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater. Sci. Eng. C. 2019;102:718–729. doi: 10.1016/j.msec.2019.04.094. PubMed DOI

Sridhar R., Sundarrajan S., Venugopal J.R., Ravichandran R., Ramakrishna S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. J. Biomater. Sci. Polym. Ed. 2013;24:365–385. PubMed

Hassiba A.J., El Zowalaty M.E., Webster T.J., Abdullah A.M., Nasrallah G.K., Khalil K.A., Luyt A.S., Elzatahry A.A. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications. Int. J. Nanomed. 2017;12:2205–2213. PubMed PMC

Tang L., Zhu L., Tang F., Yao C., Wang J., Li L. Mild synthesis of copper nanoparticles with enhanced oxidative stability and their application in antibacterial films. Langmuir. 2018;34:14570–14576. doi: 10.1021/acs.langmuir.8b02470. PubMed DOI

Bhadauriya P., Mamtani H., Ashfaq M., Raghav A., Teotia A.K., Kumar A., Verma N. Synthesis of yeast-immobilized and copper nanoparticle-dispersed carbon nanofiber-based diabetic wound dressing material: Simultaneous control of glucose and bacterial infections. ACS Appl. Bio Mater. 2018;1:246–258. doi: 10.1021/acsabm.8b00018. PubMed DOI

Jayaramudu T., Varaprasad K., Pyarasani R.D., Reddy K.K., Kumar K.D., Akbari-Fakhrabadi A., Mangalaraja R.V., Amalraj J. Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films. Int. J. Biol. Macromol. 2019;128:499–508. doi: 10.1016/j.ijbiomac.2019.01.145. PubMed DOI

Nirwan V.P., Fahmi A., Malkoch M. Electrospinning of hybrid nanofibres elaborated with PEG core dendrimers and SPIONs synthesized in-situ: As multifunctional material for biomedical applications; Proceedings of the 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP); Zatoka, Ukraine. 10–15 September 2017; Piscataway, NJ, USA: IEEE; 2017. pp. 03NNSA37-1–03NNSA37-5.

Lalegül-Ülker Ö., Vurat M.T., Elçin A.E., Elçin Y.M. Magnetic silk fibroin composite nanofibers for biomedical applications: Fabrication and evaluation of the chemical, thermal, mechanical, and in vitro biological properties. J. Appl. Polym. Sci. 2019;136:48040. doi: 10.1002/app.48040. DOI

Raju G.S.R., Benton L., Pavitra E., Yu J.S. Multifunctional nanoparticles: Recent progress in cancer therapeutics. Chem. Commun. 2015;51:13248–13259. doi: 10.1039/C5CC04643B. PubMed DOI

Awada H., Al Samad A., Laurencin D., Gilbert R., Dumail X., El Jundi A., Bethry A., Pomrenke R., Johnson C., Lemaire L. Controlled Anchoring of Iron Oxide Nanoparticles on Polymeric Nanofibers: Easy Access to Core@ Shell Organic–Inorganic Nanocomposites for Magneto-Scaffolds. ACS Appl. Mater. Interfaces. 2019;11:9519–9529. doi: 10.1021/acsami.8b19099. PubMed DOI

Maximova K., Aristov A., Sentis M., Kabashin A.V. Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water. Nanotechnology. 2015;26:65601. PubMed

Contreras-Cáceres R., Cabeza L., Perazzoli G., Díaz A., López-Romero J.M., Melguizo C., Prados J. Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials. 2019;9:656. PubMed PMC

Park M., Lee D., Shin S., Hyun J. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering. Colloids Surf. B Biointerfaces. 2015;130:222–228. doi: 10.1016/j.colsurfb.2015.04.014. PubMed DOI

Al-Kattan A., Nirwan V., Popov A., Ryabchikov Y., Tselikov G., Sentis M., Fahmi A., Kabashin A. Recent Advances in Laser-Ablative Synthesis of Bare Au and Si Nanoparticles and Assessment of Their Prospects for Tissue Engineering Applications. Int. J. Mol. Sci. 2018;19:1563. doi: 10.3390/ijms19061563. PubMed DOI PMC

Gao C., Che S. Organically functionalized mesoporous silica by co-structure-directing route. Adv. Funct. Mater. 2010;20:2750–2768. doi: 10.1002/adfm.201000074. DOI

Reverberi A.P., Kuznetsov N.T., Meshalkin V.P., Salerno M., Fabiano B. Systematical analysis of chemical methods in metal nanoparticles synthesis. Theor. Found. Chem. Eng. 2016;50:59–66. doi: 10.1134/S0040579516010127. DOI

De Matteis V., Cascione M., Toma C.C., Leporatti S. Silver nanoparticles: Synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials. 2018;8:319. doi: 10.3390/nano8050319. PubMed DOI PMC

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–2650. doi: 10.1039/c1gc15386b. DOI

Sylvestre J.-P., Kabashin A.V., Sacher E., Meunier M., Luong J.H.T. Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J. Am. Chem. Soc. 2004;126:7176–7177. doi: 10.1021/ja048678s. PubMed DOI

Kabashin A.V., Singh A., Swihart M.T., Zavestovskaya I.N., Prasad P.N. Laser-Processed Nanosilicon: A Multifunctional Nanomaterial for Energy and Healthcare. ACS Nano. 2019;13:9841–9867. doi: 10.1021/acsnano.9b04610. PubMed DOI

Kabashin A.V., Timoshenko V.Y. What theranostic applications could ultrapure laser-synthesized Si nanoparticles have in cancer? Nanomedicine. 2016;11:2247–2250. doi: 10.2217/nnm-2016-0228. PubMed DOI

Hebié S., Holade Y., Maximova K., Sentis M., Delaporte P., Kokoh K.B., Napporn T.W., Kabashin A.V. Advanced Electrocatalysts on the Basis of Bare Au Nanomaterials for Biofuel Cell Applications. ACS Catal. 2015;5:6489–6496. doi: 10.1021/acscatal.5b01478. DOI

Povarnitsyn M.E., Itina T.E., Levashov P.R., Khishchenko K. V Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment. Phys. Chem. Chem. Phys. 2013;15:3108–3114. doi: 10.1039/c2cp42650a. PubMed DOI

Kabashin A.V., Meunier M. Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 2003;94:7941–7943. doi: 10.1063/1.1626793. DOI

Itina T.E., Gouriet K., Zhigilei L.V., Noël S., Hermann J., Sentis M. Mechanisms of small clusters production by short and ultra-short laser ablation. Appl. Surf. Sci. 2007;253:7656–7661. doi: 10.1016/j.apsusc.2007.02.034. DOI

Sajti C.L., Sattari R., Chichkov B.N., Barcikowski S. Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J. Phys. Chem. C. 2010;114:2421–2427. doi: 10.1021/jp906960g. DOI

Correard F., Maximova K., Estève M.A., Villard C., Roy M., Al-Kattan A., Sentis M., Gingras M., Kabashin A.V., Braguer D. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: Assessment of safety and biological identity for nanomedicine applications. Int. J. Nanomed. 2014;9:5415–5430. PubMed PMC

Popov A.A., Tselikov G., Dumas N., Berard C., Metwally K., Jones N., Al-Kattan A., Larrat B., Braguer D., Mensah S., et al. Laser- synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications. Sci. Rep. 2019;9:1194. doi: 10.1038/s41598-018-37519-1. PubMed DOI PMC

Baati T., Al-Kattan A., Esteve M.A., Njim L., Ryabchikov Y., Chaspoul F., Hammami M., Sentis M., Kabashin A.V., Braguer D. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: In vivo assessment of safety and biodistribution. Sci. Rep. 2016;6:25400. doi: 10.1038/srep25400. PubMed DOI PMC

Gongalsky M.B., Osminkina L.A., Pereira A., Manankov A.A., Fedorenko A.A., Vasiliev A.N., Solovyev V.V., Kudryavtsev A.A., Sentis M., Kabashin A.V., et al. Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging. Sci. Rep. 2016;6:24732. doi: 10.1038/srep24732. PubMed DOI PMC

Kögler M., Ryabchikov Y.V., Uusitalo S., Popov A., Popov A., Tselikov G., Välimaa A.L., Al-Kattan A., Hiltunen J., Laitinen R., et al. Bare laser-synthesized Au-based nanoparticles as nondisturbing surface-enhanced Raman scattering probes for bacteria identification. J. Biophotonics. 2018;11:e201700225. doi: 10.1002/jbio.201700225. PubMed DOI

De Morais M.G., Stillings C., Dersch R., Rudisile M., Pranke P., Costa J.A.V., Wendorff J. Biofunctionalized nanofibers using Arthrospira (Spirulina) biomass and biopolymer. Biomed. Res. Int. 2015;2015:967814. doi: 10.1155/2015/967814. PubMed DOI PMC

Shammas M., Zinicovscaia I., Humelnicu D., Cepoi L., Nirwan V., Demčák Š., Fahmi A. Bioinspired elelctrospun hybrid nanofibers based on biomass templated within polymeric matrix for metal removal from wastewater. Polym. Bull. 2020;77:3207–3222. doi: 10.1007/s00289-019-02916-7. DOI

Li H., Wang M., Williams G.R., Wu J., Sun X., Lv Y., Zhu L.-M. Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials. RSC Adv. 2016;6:50267–50277. doi: 10.1039/C6RA05092A. DOI

Lakshmanan R., Kumaraswamy P., Krishnan U.M., Sethuraman S. Engineering a growth factor embedded nanofiber matrix niche to promote vascularization for functional cardiac regeneration. Biomaterials. 2016;97:176–195. doi: 10.1016/j.biomaterials.2016.02.033. PubMed DOI

Hu J., Tian L., Prabhakaran M.P., Ding X., Ramakrishna S. Fabrication of nerve growth factor encapsulated aligned poly(ε-caprolactone) nanofibers and their assessment as a potential neural tissue engineering scaffold. Polymers. 2016;8:54. doi: 10.3390/polym8020054. PubMed DOI PMC

He B., Zhao J., Ou Y., Jiang D. Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration. Mater. Sci. Eng. C. 2018;90:728–738. doi: 10.1016/j.msec.2018.04.063. PubMed DOI

Fathi M., Nasrabadi M.N., Varshosaz J. Characteristics of vitamin E-loaded nanofibres from dextran. Int. J. Food Prop. 2017;20:2665–2674. doi: 10.1080/10942912.2016.1247365. DOI

Srbová J., Slováková M., Křípalová Z., Žárská M., Špačková M., Stránská D., Bílková Z. Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React. Funct. Polym. 2016;104:38–44. doi: 10.1016/j.reactfunctpolym.2016.05.009. DOI

Jain R., Shetty S., Yadav K.S. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. J. Drug Deliv. Sci. Technol. 2020;57:101604. doi: 10.1016/j.jddst.2020.101604. DOI

Aziz S., Hosseinzadeh L., Arkan E., Azandaryani A.H. Preparation of electrospun nanofibers based on wheat gluten containing azathioprine for biomedical application. Int. J. Polym. Mater. Polym. Biomater. 2019;68:639–646. doi: 10.1080/00914037.2018.1482464. DOI

Dullaert K.A.L.H., Dorschu M., Qiu J., Thies J.C. Membrane Suitable for Blood Filtration. US20130256230A1. U.S. Patent. 2013 October 10;

Wu D., Feng Q., Li M., Wei A., Li J., Liu C., Xu H., Cheng W. Preparation and protein separation properties of the porous polystyrene/ethylene–vinyl acetate copolymer blend nanofibers membranes. ACS Omega. 2019;4:20152–20158. doi: 10.1021/acsomega.9b01946. PubMed DOI PMC

Han Y., Yue S., Cui B. Low-Dimensional Metal Halide Perovskite Crystal Materials: Structure Strategies and Luminescence Applications. Adv. Sci. 2021;8:2004805. doi: 10.1002/advs.202004805. PubMed DOI PMC

Zhu Y., Poddar S., Shu L., Fu Y., Fan Z. Recent progress on interface engineering for high-performance, stable perovskites solar cells. Adv. Mater. Interfaces. 2020;7:2000118. doi: 10.1002/admi.202000118. DOI

Burn P.L., Meredith P. The rise of the perovskites: The future of low cost solar photovoltaics? NPG Asia Mater. 2014;6:e79. doi: 10.1038/am.2013.74. DOI

Benas J.-S., Liang F.-C., Chen W.-C., Hung C.-W., Chen J.-Y., Zhou Y., Han S.-T., Borsali R., Kuo C.-C. Lewis adduct approach for self-assembled block copolymer perovskite quantum dots composite toward optoelectronic application: Challenges and prospects. Chem. Eng. J. 2022;431:133701. doi: 10.1016/j.cej.2021.133701. DOI

Góra A., Tian L., Ramakrishna S., Mukherjee S. Design of novel perovskite-based polymeric poly (L-lactide-co-glycolide) nanofibers with anti-microbial properties for tissue engineering. Nanomaterials. 2020;10:1127. doi: 10.3390/nano10061127. PubMed DOI PMC

Ercan E., Liu C., Chen W. Nano–Micro Dimensional Structures of Fiber-Shaped Luminous Halide Perovskite Composites for Photonic and Optoelectronic Applications. Macromol. Rapid Commun. 2020;41:2000157. doi: 10.1002/marc.202000157. PubMed DOI

Kailasa S., Reddy M.S.B., Maurya M.R., Rani B.G., Rao K.V., Sadasivuni K.K. Electrospun Nanofibers: Materials, Synthesis Parameters, and Their Role in Sensing Applications. Macromol. Mater. Eng. 2021;306:2100410. doi: 10.1002/mame.202100410. DOI

Hamed I., Özogul F., Regenstein J.M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 2016;48:40–50. doi: 10.1016/j.tifs.2015.11.007. DOI

Elieh-Ali-Komi D., Hamblin M.R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016;4:411–427. PubMed PMC

Jayakumar R., Menon D., Manzoor K., Nair S.V., Tamura H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr. Polym. 2010;82:227–232. doi: 10.1016/j.carbpol.2010.04.074. DOI

Elsabee M.Z., Naguib H.F., Morsi R.E. Chitosan based nanofibers, review. Mater. Sci. Eng. C. 2012;32:1711–1726. doi: 10.1016/j.msec.2012.05.009. PubMed DOI

Gu B.K., Park S.J., Kim M.S., Kang C.M., Kim J.-I., Kim C.H. Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr. Polym. 2013;97:65–73. doi: 10.1016/j.carbpol.2013.04.060. PubMed DOI

Pakravan M., Heuzey M.C., Ajji A. A fundamental study of chitosan/PEO electrospinning. Polymer. 2011;52:4813–4824. doi: 10.1016/j.polymer.2011.08.034. DOI

Kalantari K., Afifi A.M., Jahangirian H., Webster T.J. Biomedical applications of chitosan electrospun nanofibers as a green polymer–Review. Carbohydr. Polym. 2019;207:588–600. doi: 10.1016/j.carbpol.2018.12.011. PubMed DOI

Adeli H., Khorasani M.T., Parvazinia M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 2019;122:238–254. doi: 10.1016/j.ijbiomac.2018.10.115. PubMed DOI

Yang D., Li L., Chen B., Shi S., Nie J., Ma G. Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer. 2019;163:74–85. doi: 10.1016/j.polymer.2018.12.046. DOI

Shankar A., Seyam A.F.M., Hudson S.M. Electrospinning of soy protein fibers and their compatibility with synthetic polymers. J. Text. Apparel, Technol. Manag. 2013;8:1–14.

Nirwan V.P., Al-Kattan A., Fahmi A., Kabashin A.V. Fabrication of Stable Nanofiber Matrices for Tissue Engineering via Electrospinning of Bare Laser-Synthesized Au Nanoparticles in Solutions of High Molecular Weight Chitosan. Nanomaterials. 2019;9:1058. doi: 10.3390/nano9081058. PubMed DOI PMC

Rengifo A.F.C., Stefanes N.M., Toigo J., Mendes C., Argenta D.F., Dotto M.E.R., da Silva M.C.S., Nunes R.J., Caon T., Parize A.L. PEO-chitosan nanofibers containing carboxymethyl-hexanoyl chitosan/dodecyl sulfate nanoparticles loaded with pyrazoline for skin cancer treatment. Eur. Polym. J. 2019;119:335–343. doi: 10.1016/j.eurpolymj.2019.08.001. DOI

Pandey S., Lönnecke P., Hey-Hawkins E. Phosphorus-boron-based polymers obtained by dehydrocoupling of ferrocenylphosphine-borane adducts. Eur. J. Inorg. Chem. 2014;2014:2456–2465. doi: 10.1002/ejic.201402021. DOI

Deng J., Zhao B., Deng J. Optically Active Helical Polyacetylene Bearing Ferrocenyl Amino-Acid Derivative in Pendants. Preparation and Application as Chiral Organocatalyst for Asymmetric Aldol Reaction. Ind. Eng. Chem. Res. 2016;55:7328–7337. doi: 10.1021/acs.iecr.6b01908. DOI

Wei Z., Wang D., Liu Y., Guo X., Zhu Y., Meng Z., Yu Z.-Q., Wong W.-Y. Ferrocene-based hyperbranched polymers: A synthetic strategy for shape control and applications as electroactive materials and precursor-derived magnetic ceramics. J. Mater. Chem. C. 2020;8:10774–10780. doi: 10.1039/D0TC01380C. DOI

Pietschnig R. Polymers with pendant ferrocenes. Chem. Soc. Rev. 2016;45:5216–5231. doi: 10.1039/C6CS00196C. PubMed DOI

Pandey S., Lönnecke P., Hey-Hawkins E. Cross-dehydrocoupling: A novel synthetic route to P-B-P-B chains. Inorg. Chem. 2014;53:8242–8249. doi: 10.1021/ic500316w. PubMed DOI

Nirwan V.P., Pandey S., Hey-Hawkins E., Fahmi A. Hybrid 2D nanofibers based on poly(ethylene oxide)/polystyrene matrix and poly(ferrocenylphosphinoboranes) as functional agents. J. Appl. Polym. Sci. 2020;137:49091. doi: 10.1002/app.49091. DOI

Wen S., Liang M., Zou R., Wang Z., Yue D., Liu L. Electrospinning of palladium/silica nanofibers for catalyst applications. RSC Adv. 2015;5:41513–41519. doi: 10.1039/C5RA02660A. DOI

Wang Y., Cui W., Chou J., Wen S., Sun Y., Zhang H. Electrospun nanosilicates-based organic/inorganic nanofibers for potential bone tissue engineering. Colloids Surf. B Biointerfaces. 2018;172:90–97. doi: 10.1016/j.colsurfb.2018.08.032. PubMed DOI

Zhang J., Wang X.-X., Zhang B., Ramakrishna S., Yu M., Ma J.-W., Long Y.-Z. In situ assembly of well-dispersed Ag nanoparticles throughout electrospun alginate nanofibers for monitoring human breath—Smart fabrics. ACS Appl. Mater. Interfaces. 2018;10:19863–19870. doi: 10.1021/acsami.8b01718. PubMed DOI

Chen D., Zhang L., Ning P., Yuan H., Zhang Y., Zhang M., Fu T., He X. In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria. Nano Res. 2021;14:4885–4893. doi: 10.1007/s12274-021-3530-9. DOI

Jalalian N., Nabavi S.R. Electrosprayed chitosan nanoparticles decorated on polyamide6 electrospun nanofibers as membrane for acid fuchsin dye filtration from water. Surf. Interfaces. 2020;21:100779. doi: 10.1016/j.surfin.2020.100779. DOI

Nekounam H., Allahyari Z., Gholizadeh S., Mirzaei E., Shokrgozar M.A., Faridi-Majidi R. Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications. Mater. Sci. Eng. C. 2020;117:111226. doi: 10.1016/j.msec.2020.111226. PubMed DOI

Eltom A., Zhong G., Muhammad A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv. Mater. Sci. Eng. 2019;2019:3429527. doi: 10.1155/2019/3429527. DOI

Saberi A., Jabbari F., Zarrintaj P., Saeb M.R., Mozafari M. Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules. 2019;9:448. doi: 10.3390/biom9090448. PubMed DOI PMC

Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater. Sci. Eng. C. 2017;78:1246–1262. doi: 10.1016/j.msec.2017.05.017. PubMed DOI

Leonés A., Mujica-Garcia A., Arrieta M.P., Salaris V., Lopez D., Kenny J.M., Peponi L. Organic and Inorganic PCL-Based Electrospun Fibers. Polymers. 2020;12:1325. doi: 10.3390/polym12061325. PubMed DOI PMC

Yang J., Wang K., Yu D.-G., Yang Y., Bligh S.W.A., Williams G.R. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C. 2020;111:110805. doi: 10.1016/j.msec.2020.110805. PubMed DOI

Francis C.F.J., Kyratzis I.L., Best A.S. Lithium-Ion battery separators for ionic-liquid electrolytes: A review. Adv. Mater. 2020;32:1904205. doi: 10.1002/adma.201904205. PubMed DOI

Jaritphun S., Park J.S., Chung O.H., Nguyen T.T.T. Sandwiched polyimide-composite separator for lithium-ion batteries via electrospinning and electrospraying. Polym. Compos. 2020;41:4478–4488. doi: 10.1002/pc.25725. DOI

Zelepukin I.V., Popov A., Shipunova V.O., Tikhonowski G.V., Mirkasymov A.B., Popova-Kuznetsova E.A., Klimentov S.M., Kabashin A.V., Deyev S.M. Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics. Mater. Sci. Eng. C. 2020;120:111717. doi: 10.1016/j.msec.2020.111717. PubMed DOI

Koupaei N., Karkhaneh A., Joupari M.D. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds. J. Biomed. Mater. Res. Part A. 2015;103:3919–3926. doi: 10.1002/jbm.a.35513. PubMed DOI

Wang L., Wang D., Zhou Y., Zhang Y., Li Q., Shen C. Fabrication of open-porous PCL/PLA tissue engineering scaffolds and the relationship of foaming process, morphology, and mechanical behavior. Polym. Adv. Technol. 2019;30:2539–2548. doi: 10.1002/pat.4701. DOI

Saracino E., Cirillo V., Marrese M., Guarino V., Benfenati V., Zamboni R., Ambrosio L. Structural and functional properties of astrocytes on PCL based electrospun fibres. Mater. Sci. Eng. C. 2021;118:111363. doi: 10.1016/j.msec.2020.111363. PubMed DOI

Nirwan V.P., Filova E., Al-Kattan A., Kabashin A.V., Fahmi A. Smart Electrospun Hybrid Nanofibers Functionalized with Ligand-Free Titanium Nitride (TiN) Nanoparticles for Tissue Engineering. Nanomaterials. 2021;11:519. doi: 10.3390/nano11020519. PubMed DOI PMC

Gugliandolo A., Fonticoli L., Trubiani O., Rajan T.S., Marconi G.D., Bramanti P., Mazzon E., Pizzicannella J., Diomede F. Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. Int. J. Mol. Sci. 2021;22:5236. doi: 10.3390/ijms22105236. PubMed DOI PMC

Gadalla D., Goldstein A.S. Improving the osteogenicity of PCL fiber substrates by surface-immobilization of bone morphogenic protein-2. Ann. Biomed. Eng. 2020;48:1006–1015. doi: 10.1007/s10439-019-02286-1. PubMed DOI

Sanaei-rad P., Jamshidi D., Adel M., Seyedjafari E. Electrospun poly (l-lactide) nanofibers coated with mineral trioxide aggregate enhance odontogenic differentiation of dental pulp stem cells. Polym. Adv. Technol. 2021;32:402–410. doi: 10.1002/pat.5095. DOI

Chieruzzi M., Pagano S., Moretti S., Pinna R., Milia E., Torre L., Eramo S. Nanomaterials for tissue engineering in dentistry. Nanomaterials. 2016;6:134. doi: 10.3390/nano6070134. PubMed DOI PMC

Yousefzade O., Katsarava R., Puiggalí J. Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics. 2020;5:49. doi: 10.3390/biomimetics5040049. PubMed DOI PMC

Swanson W.B., Zhang Z., Xiu K., Gong T., Eberle M., Wang Z., Ma P.X. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation. Acta Biomater. 2020;118:215–232. doi: 10.1016/j.actbio.2020.09.052. PubMed DOI PMC

Malek-Khatabi A., Javar H.A., Dashtimoghadam E., Ansari S., Hasani-Sadrabadi M.M., Moshaverinia A. In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomater. 2020;108:326–336. doi: 10.1016/j.actbio.2020.03.008. PubMed DOI

Wang Z., Lin M., Xie Q., Sun H., Huang Y., Zhang D., Yu Z., Bi X., Chen J., Wang J. Electrospun silk fibroin/poly (lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Int. J. Nanomed. 2016;11:1483. PubMed PMC

Qi P., Niu Y., Wang B. MicroRNA-181a/b-1-encapsulated PEG/PLGA nanofibrous scaffold promotes osteogenesis of human mesenchymal stem cells. J. Cell. Mol. Med. 2021;25:5744–5752. doi: 10.1111/jcmm.16595. PubMed DOI PMC

Vocetkova K., Sovkova V., Buzgo M., Lukasova V., Divin R., Rampichova M., Blazek P., Zikmund T., Kaiser J., Karpisek Z. A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment. Nanomaterials. 2020;10:1801. doi: 10.3390/nano10091801. PubMed DOI PMC

Mickova A., Buzgo M., Benada O., Rampichova M., Fisar Z., Filova E., Tesarova M., Lukas D., Amler E. Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules. 2012;13:952–962. doi: 10.1021/bm2018118. PubMed DOI

Vocetkova K., Buzgo M., Sovkova V., Rampichova M., Staffa A., Filova E., Lukasova V., Doupnik M., Fiori F., Amler E. A comparison of high throughput core–shell 2D electrospinning and 3D centrifugal spinning techniques to produce platelet lyophilisate-loaded fibrous scaffolds and their effects on skin cells. RSC Adv. 2017;7:53706–53719. doi: 10.1039/C7RA08728D. DOI

Vysloužilová L., Buzgo M., Pokorný P., Chvojka J., Míčková A., Rampichová M., Kula J., Pejchar K., Bílek M., Lukáš D. Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers. Int. J. Pharm. 2017;516:293–300. doi: 10.1016/j.ijpharm.2016.11.034. PubMed DOI

Buzgo M., Filova E., Staffa A.M., Rampichova M., Doupnik M., Vocetkova K., Lukasova V., Kolcun R., Lukas D., Necas A. Needleless emulsion electrospinning for the regulated delivery of susceptible proteins. J. Tissue Eng. Regen. Med. 2018;12:583–597. doi: 10.1002/term.2474. PubMed DOI

Filova E., Blanquer A., Knitlova J., Plencner M., Jencova V., Koprivova B., Lisnenko M., Kostakova E.K., Prochazkova R., Bacakova L. The Effect of the Controlled Release of Platelet Lysate from PVA Nanomats on Keratinocytes, Endothelial Cells and Fibroblasts. Nanomaterials. 2021;11:995. doi: 10.3390/nano11040995. PubMed DOI PMC

Unal S., Arslan S., Yilmaz B.K., Oktar F.N., Ficai D., Ficai A., Gunduz O. Polycaprolactone/gelatin/hyaluronic acid electrospun scaffolds to mimic glioblastoma extracellular matrix. Materials. 2020;13:2661. doi: 10.3390/ma13112661. PubMed DOI PMC

Yahia S., Khalil I.A., El-Sherbiny I.M. Sandwich-Like Nanofibrous Scaffolds for Bone Tissue Regeneration. ACS Appl. Mater. Interfaces. 2019;11:28610–28620. doi: 10.1021/acsami.9b06359. PubMed DOI

Su Y., Su Q., Liu W., Lim M., Venugopal J.R., Mo X., Ramakrishna S., Al-Deyab S.S., El-Newehy M. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core–shell PLLACL–collagen fibers for use in bone tissue engineering. Acta Biomater. 2012;8:763–771. doi: 10.1016/j.actbio.2011.11.002. PubMed DOI

Haider A., Kim S., Huh M.-W., Kang I.-K. BMP-2 grafted nHA/PLGA hybrid nanofiber scaffold stimulates osteoblastic cells growth. Biomed. Res. Int. 2015;2015:281909. doi: 10.1155/2015/281909. PubMed DOI PMC

Schofer M.D., Fuchs-Winkelmann S., Gräbedünkel C., Wack C., Dersch R., Rudisile M., Wendorff J.H., Greiner A., Paletta J.R.J., Boudriot U. Influence of poly (L-lactic acid) nanofibers and BMP-2–containing poly (L-lactic acid) nanofibers on growth and osteogenic differentiation of human mesenchymal stem cells. ScientificWorldJournal. 2008;8:1269–1279. doi: 10.1100/tsw.2008.163. PubMed DOI PMC

Schofer M.D., Roessler P.P., Schaefer J., Theisen C., Schlimme S., Heverhagen J.T., Voelker M., Dersch R., Agarwal S., Fuchs-Winkelmann S. Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects. PLoS ONE. 2011;6:e25462. doi: 10.1371/journal.pone.0025462. PubMed DOI PMC

Suchý T., Šupová M., Sauerová P., Kalbáčová M.H., Klapková E., Pokorný M., Horný L., Závora J., Ballay R., Denk F. Evaluation of collagen/hydroxyapatite electrospun layers loaded with vancomycin, gentamicin and their combination: Comparison of release kinetics, antimicrobial activity and cytocompatibility. Eur. J. Pharm. Biopharm. 2019;140:50–59. doi: 10.1016/j.ejpb.2019.04.021. PubMed DOI

Gopinath V.K., Soumya S., Chakrapani V.Y., Kumar T.S.S. Odontogenic differentiation of inflamed dental pulp stem cells (IDPSCs) on polycaprolactone (PCL) nanofiber blended with hydroxyapatite. Dent. Mater. J. 2020;40:312–321. doi: 10.4012/dmj.2020-005. PubMed DOI

Khoroushi M., Foroughi M.R., Karbasi S., Hashemibeni B., Khademi A.A. Effect of polyhydroxybutyrate/chitosan/bioglass nanofiber scaffold on proliferation and differentiation of stem cells from human exfoliated deciduous teeth into odontoblast-like cells. Mater. Sci. Eng. C. 2018;89:128–139. doi: 10.1016/j.msec.2018.03.028. PubMed DOI

Bar J.K., Kowalczyk T., Grelewski P.G., Stamnitz S., Paprocka M., Lis J., Lis-Nawara A., An S., Klimczak A. Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly (l-lactide-co-caprolactone) Scaffold. Materials. 2022;15:1900. doi: 10.3390/ma15051900. PubMed DOI PMC

Zamani M., Prabhakaran M.P., Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomed. 2013;8:2997. PubMed PMC

Reneker D.H., Yarin A.L., Zussman E., Xu H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 2007;41:43–346.

Nakielski P., Kowalczyk T., Zembrzycki K., Kowalewski T.A. Experimental and numerical evaluation of drug release from nanofiber mats to brain tissue. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015;103:282–291. doi: 10.1002/jbm.b.33197. PubMed DOI

Kowalczyk T. Functional micro-and nanofibers obtained by nonwoven post-modification. Polymers. 2020;12:1087. doi: 10.3390/polym12051087. PubMed DOI PMC

Lee H., Xu G., Kharaghani D., Nishino M., Song K.H., Lee J.S., Kim I.S. Electrospun tri-layered zein/PVP-GO/zein nanofiber mats for providing biphasic drug release profiles. Int. J. Pharm. 2017;531:101–107. doi: 10.1016/j.ijpharm.2017.08.081. PubMed DOI

Singh B., Shukla N., Kim J., Kim K., Park M.-H. Stimuli-Responsive Nanofibers Containing Gold Nanorods for On-Demand Drug Delivery Platforms. Pharmaceutics. 2021;13:1319. doi: 10.3390/pharmaceutics13081319. PubMed DOI PMC

Zhong L., Hu D., Qu Y., Peng J., Huang K., Lei M., Wu T., Xiao Y., Gu Y., Qian Z. Preparation of adenosine-loaded electrospun nanofibers and their application in bone regeneration. J. Biomed. Nanotechnol. 2019;15:857–877. doi: 10.1166/jbn.2019.2761. PubMed DOI

Fu Q.-W., Zi Y.-P., Xu W., Zhou R., Cai Z.-Y., Zheng W.-J., Chen F., Qian Q.-R. Electrospinning of calcium phosphate-poly (D, L-lactic acid) nanofibers for sustained release of water-soluble drug and fast mineralization. Int. J. Nanomed. 2016;11:5087. doi: 10.2147/IJN.S114224. PubMed DOI PMC

Gao Y., Wang Y., Wang Y., Cui W. Fabrication of gelatin-based electrospun composite fibers for anti-bacterial properties and protein adsorption. Mar. Drugs. 2016;14:192. doi: 10.3390/md14100192. PubMed DOI PMC

Ashokkumar M., Aravind K., Sangeetha D. Evaluation of Polyether Sulfone/Nanohydroxyapatite Nanofiber Composite as Bone Graft Material. Trends Biomater. Artif. Organs. 2015;29:54–63.

Huang R., Chen X., Dong Y., Zhang X., Wei Y., Yang Z., Li W., Guo Y., Liu J., Yang Z. MXene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio Mater. 2020;3:2125–2131. doi: 10.1021/acsabm.0c00007. PubMed DOI

Haidar M.K., Timur S.S., Kazanci A., Turkoglu O.F., Gürsoy R.N., Nemutlu E., Sargon M.F., Bodur E., Gök M., Ulubayram K. Composite nanofibers incorporating alpha lipoic acid and atorvastatin provide neuroprotection after peripheral nerve injury in rats. Eur. J. Pharm. Biopharm. 2020;153:1–13. doi: 10.1016/j.ejpb.2020.05.032. PubMed DOI

Zhao Y., Tian C., Wu K., Zhou X., Feng K., Li Z., Wang Z., Han X. Vancomycin-Loaded Polycaprolactone Electrospinning Nanofibers Modulate the Airway Interfaces to Restrain Tracheal Stenosis. Front. Bioeng. Biotechnol. 2021;9:760395. doi: 10.3389/fbioe.2021.760395. PubMed DOI PMC

Bulbul Y.E., Eskitoros-Togay Ş.M., Demirtas-Korkmaz F., Dilsiz N. Multi-walled carbon nanotube-incorporating electrospun composite fibrous mats for controlled drug release profile. Int. J. Pharm. 2019;568:118513. doi: 10.1016/j.ijpharm.2019.118513. PubMed DOI

Nguyen T.T.T., Ghosh C., Hwang S.-G., Chanunpanich N., Park J.S. Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int. J. Pharm. 2012;439:296–306. doi: 10.1016/j.ijpharm.2012.09.019. PubMed DOI

Huang L., Yu D., Zhu L.-M., Branford-White C.J., White K. Preparation of fast-dissolving ursolic acid nanofiber membrances using electrospinning; Proceedings of the 2011 5th International Conference on Bioinformatics and Biomedical Engineering; Wuhan, China. 13–15 May 2015; Piscataway, NJ, USA: IEEE; 2011. pp. 1–4.

Shao S., Li L., Yang G., Li J., Luo C., Gong T., Zhou S. Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. Int. J. Pharm. 2011;421:310–320. doi: 10.1016/j.ijpharm.2011.09.033. PubMed DOI

Wang W., Cheng Y., Li Y., Zhou H., Xu L., Wen Y., Zhao L., Zhang X. Enrichment and Viability Inhibition of Circulating Tumor Cells on a Dual Acid-Responsive Composite Nanofiber Film. ChemMedChem. 2017;12:529–536. doi: 10.1002/cmdc.201600633. PubMed DOI

Naresh V., Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21:1109. doi: 10.3390/s21041109. PubMed DOI PMC

Rani S.D., Ramachandran R., Sheet S., Aziz M.A., Lee Y.S., Al-Sehemi A.G., Pannipara M., Xia Y., Tsai S.-Y., Ng F.-L. NiMoO4 nanoparticles decorated carbon nanofiber membranes for the flexible and high performance glucose sensors. Sens. Actuators B Chem. 2020;312:127886. doi: 10.1016/j.snb.2020.127886. DOI

Baek S.H., Roh J., Park C.Y., Kim M.W., Shi R., Kailasa S.K., Park T.J. Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection. Mater. Sci. Eng. C. 2020;107:110273. doi: 10.1016/j.msec.2019.110273. PubMed DOI

Ozoemena O.C., Shai L.J., Maphumulo T., Ozoemena K.I. Electrochemical sensing of dopamine using onion-like carbons and their carbon nanofiber composites. Electrocatalysis. 2019;10:381–391. doi: 10.1007/s12678-019-00520-x. DOI

Ruiz V., Pérez-Marquez A., Maudes J., Grande H.J., Murillo N. Enhanced photostability and sensing performance of graphene quantum dots encapsulated in electrospun polyacrylonitrile nanofibrous filtering membranes. Sens. Actuators B Chem. 2018;262:902–912. doi: 10.1016/j.snb.2018.02.081. DOI

Omer S., Forgách L., Zelkó R., Sebe I. Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics. 2021;13:286. doi: 10.3390/pharmaceutics13020286. PubMed DOI PMC

Valipouri A. Production scale up of nanofibers: A review. J. Text. Polym. 2017;5:8–16.

Partheniadis I., Nikolakakis I., Laidmäe I., Heinämäki J. A mini-review: Needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes. 2020;8:673. doi: 10.3390/pr8060673. DOI

Wang L., Zhang C., Gao F., Pan G. Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration. RSC Adv. 2016;6:105988–105995. doi: 10.1039/C6RA24557A. DOI

Buzgo M., Greplová J., Soural M., Bezděková D., Míčková A., Kofroňová O., Benada O., Hlaváč J., Amler E. PVA immunonanofibers with controlled decay. Polymer. 2015;77:387–398. doi: 10.1016/j.polymer.2015.09.018. DOI

Filová E., Tonar Z., Lukášová V., Buzgo M., Litvinec A., Rampichová M., Beznoska J., Plencner M., Staffa A., Daňková J. Hydrogel Containing Anti-CD44-Labeled Microparticles, Guide Bone Tissue Formation in Osteochondral Defects in Rabbits. Nanomaterials. 2020;10:1504. doi: 10.3390/nano10081504. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace