The Effect of the Controlled Release of Platelet Lysate from PVA Nanomats on Keratinocytes, Endothelial Cells and Fibroblasts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-01-00332
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
33924537
PubMed Central
PMC8070234
DOI
10.3390/nano11040995
PII: nano11040995
Knihovny.cz E-zdroje
- Klíčová slova
- PVA nanofibers, cell differentiation, controlled release, endothelial cells, fibroblasts, keratinocytes, platelet lysate,
- Publikační typ
- časopisecké články MeSH
Platelet lysate (PL) provides a natural source of growth factors and other bioactive molecules, and the local controlled release of these bioactive PL components is capable of improving the healing of chronic wounds. Therefore, we prepared composite nanofibrous meshes via the needleless electrospinning technique using poly(vinyl alcohol) (PVA) with a high molecular weight and with a high degree of hydrolysis with the incorporated PL (10% w/w). The morphology, wettability and protein release from the nanofibers was then assessed from the resulting composite PVA-PL nanomats. The bioactivity of the PVA-PL nanomats was proved in vitro using HaCaT keratinocytes, human saphenous endothelial cells (HSVECs) and 3T3 fibroblasts. The PVA-PL supported cell adhesion, proliferation, and viability. The improved phenotypic maturation of the HaCaT cells due to the PVA-PL was manifested via the formation of intermediate filaments positive for cytokeratin 10. The PVA-PL enhanced both the synthesis of the von Willebrand factor via HSVECs and HSVECs chemotaxis through membranes with 8 µm-sized pores. These results indicated the favorable effects of the PVA-PL nanomats on the three cell types involved in the wound healing process, and established PVA-PL nanomats as a promising candidate for further evaluation with respect to in vivo experiments.
Zobrazit více v PubMed
Demidova-Rice T.N., Hamblin M.R., Herman I.M. Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care. Adv. Skin Wound Care. 2012;25:304–314. doi: 10.1097/01.ASW.0000416006.55218.d0. PubMed DOI PMC
Martinez-Zapata M.J., Martí-Carvajal A.J., Solà I., Expósito J.A., Bolíbar I., Rodríguez L., Garcia J., Zaror C. Autologous platelet-rich plasma for treating chronic wounds. Cochrane Database Syst. Rev. 2016;5:CD006899. doi: 10.1002/14651858.CD006899.pub3. PubMed DOI PMC
Usui M.L., Mansbridge J.N., Carter W.G., Fujita M., Olerud J.E. Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds. J. Histochem. Cytochem. 2008;56:687–696. doi: 10.1369/jhc.2008.951194. PubMed DOI PMC
Wang M.J., Qing C., Liao Z.J., Lin W.D., Ge K., Xie T., Shi G.Y., Sheng Z.Y., Lu S.L. The biological characteristics of dermal fibroblast of the diabetic rats with deep-partial thickness scald. Zhonghua Shao Shang Za Zhi. 2006;22:42.e45. PubMed
Burrow J.W., Koch J.A., Chuang H.H., Zhong W., Dean D.D., Sylvia V.L. Nitric oxide donors selectively reduce the expression of matrix metalloproteinases-8 and -9 by human diabetic skin fibroblasts. J. Surg. Res. 2007;140:90.e98. doi: 10.1016/j.jss.2006.11.010. PubMed DOI
Rodrigues M., Kosaric N., Bonham C.A., Gurtner G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019;99:665–706. doi: 10.1152/physrev.00067.2017. PubMed DOI PMC
Pallua N., Wolter T., Markowicz M. Platelet-rich plasma in burns. Burns. 2010;36:4–8. doi: 10.1016/j.burns.2009.05.002. PubMed DOI
Italiano J.E., Jr., Richardson J.L., Patel-Hett S., Battinelli E., Zaslavsky A., Short S., Ryeom S., Folkman J., Klement G.L. Angiogenesis is regulated by a novel mechanism: Pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111:1227–1233. doi: 10.1182/blood-2007-09-113837. PubMed DOI PMC
Vavken P., Sadoghi P., Murray M.M. The effect of platelet concentrates on graft maturation and graft-bone interface healing in ACL reconstruction in human patients: A systematic review of controlled trials. Arthroscopy. 2011;27:1573–1583. doi: 10.1016/j.arthro.2011.06.003. PubMed DOI PMC
Sovkova V., Vocetkova K., Rampichova M., Mickova A., Buzgo M., Lukasova V., Dankova J., Filova E., Necas A., Amler E. Platelet lysate as a serum replacement for skin cell culture on biomimetic PCL nanofibers. Platelets. 2018;29:395–405. doi: 10.1080/09537104.2017.1316838. PubMed DOI
Blair P., Flaumenhaft R. Platelet α-granules: Basic biology and clinical correlates. Blood Rev. 2009;23:177–189. doi: 10.1016/j.blre.2009.04.001. PubMed DOI PMC
Nurden A.T. The biology of the platelet with special reference to inflammation, wound healing and immunity. Front. Biosci. 2018;23:726–751. doi: 10.2741/4613. PubMed DOI
Margraf A., Zarbock A. Platelets in Inflammation and Resolution. J. Immunol. 2019;203:2357–2367. doi: 10.4049/jimmunol.1900899. PubMed DOI
Piccin A., Di Pierro A.M., Canzian L., Primerano M., Corvetta D., Negri G., Mazzoleni G., Gastl G., Steurer M., Gentilini I., et al. Platelet gel: A new therapeutic tool with great potential. Blood Transfus. 2017;15:333–340. PubMed PMC
Knighton D.R., Ciresi K.F., Fiegel V.D., Austin L.L., Butler E.R. Classification and treatment of chronic nonhealing wounds. Successful treatment with autologous platelet-derived wound healing factors (PDWHF) Ann. Surg. 1986;204:322–330. doi: 10.1097/00000658-198609000-00011. PubMed DOI PMC
Elsaid A., El-Said M., Emile S., Youssef M., Khafagy W., Elshobaky A. Randomized Controlled Trial on Autologous Platelet-Rich Plasma Versus Saline Dressing in Treatment of Non-healing Diabetic Foot Ulcers. World J. Surg. 2020;44:1294–1301. doi: 10.1007/s00268-019-05316-0. PubMed DOI
Crovetti G., Martinelli G., Issi M., Barone M., Guizzardi M., Campanati B., Moroni M., Carabelli A. Platelet gel for healing cutaneous chronic wounds. Transfus Apher Sci. 2004;30:145–151. doi: 10.1016/j.transci.2004.01.004. PubMed DOI
Mohammadi M.H., Molavi B., Mohammadi S., Nikbakht M., Mohammadi M., Mostafaei S., Norooznezhad A.H., Abdegah A.G., Ghavamzadeh A. Evaluation of wound healing in diabetic foot ulcer using platelet-rich plasma gel: A single-arm clinical trial. Transfus. Apher Sci. 2017;56:160–164. doi: 10.1016/j.transci.2016.10.020. PubMed DOI
De Angelis B., D’Autilio M.F.L.M., Orlandi F., Pepe G., Garcovich S., Scioli M.G., Orlandi A., Cervelli V., Gentile P. Wound Healing: In Vitro and In Vivo Evaluation of a Bio-Functionalized Scaffold Based on Hyaluronic Acid and Platelet-Rich Plasma in Chronic Ulcers. J. Clin. Med. 2019;8:1486. doi: 10.3390/jcm8091486. PubMed DOI PMC
Piccin A., Di Pierro A.M., Tagnin M., Russo C., Fustos R., Corvetta D., Primerano M., Magri E., Conci V., Gentilini I., et al. Healing of a soft tissue wound of the neck and jaw osteoradionecrosis sing platelet gel. Regen Med. 2016;11:459–463. doi: 10.2217/rme-2016-0031. PubMed DOI
Ruiz A., Cuestas D., Garcıa P., Jose Quintero J., Forero Y., Galvis I., Velasquez O. Early intervention in scar management and cutaneous burns with autologous platelet-rich plasma. J. Cosmet. Dermatol. 2018;17:1194–1199. doi: 10.1111/jocd.12554. PubMed DOI
Klosová H., Stětinský J., Bryjová I., Hledík S., Klein L. Objective evaluation of the effect of autologous platelet concentrate on post-operative scarring in deep burns. Burns. 2013;39:1263–1276. doi: 10.1016/j.burns.2013.01.020. PubMed DOI
Xu F., Zou D., Dai T., Xu H.Y., An R., Liu Y., Liu B. Effects of incorporation of granule lyophilised platelet-rich fibrin into polyvinyl alcohol hydrogel on wound healing. Sci. Rep. 2018;8:14042. doi: 10.1038/s41598-018-32208-5. PubMed DOI PMC
Miroshnichenko S., Timofeeva V., Permyakova E., Ershov S., Kiryukhantsev-Korneev P., Dvořaková E., Shtansky D.V., Zajíčková L., Solovieva A., Manakhov A. Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. Nanomaterials. 2019;9:637. doi: 10.3390/nano9040637. PubMed DOI PMC
Oliveira C., Costa-Pinto A.R., Reis R.L., Martins A., Neves N.M. Biofunctional nanofibrous substrate comprising immobilized antibodies and selective binding of autologous growth factors. Biomacromolecules. 2014;15:2196–2205. doi: 10.1021/bm500346s. PubMed DOI
Blanquer A., Musilkova J., Filova E., Taborska J., Brynda E., Riedel T., Klapstova A., Jencova V., Mullerova J., Kuzelova Kostakova E., et al. The Effect of a Polyester Nanofibrous Membrane with a Fibrin-Platelet Lysate Coating on Keratinocytes and Endothelial Cells in a Co-Culture Systém. Nanomaterials. 2021;11:457. doi: 10.3390/nano11020457. PubMed DOI PMC
Adamson A.W., Gast A.P. Physical Chemistry of Surfaces. 6th ed. Wiley; New York, NY, USA: 1997. pp. 469–470.
Patnaik A., Rengasamy R.S., Kothari V.K., Ghosh A. Wetting and Wicking in Fibrous Materials. Textile Progress. 2006;38:1–105. doi: 10.1533/jotp.2006.38.1.1. DOI
Halima N.B. Poly(vinyl alcohol): Review of its promising applications and insights into biodegradation. RSC Adv. 2016;6:39823–39832. doi: 10.1039/C6RA05742J. DOI
Kamoun E.A., Chen X., Mohy Eldin M.S., Kenawy E.-R.S. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab. J. Chem. 2015;8:1–14. doi: 10.1016/j.arabjc.2014.07.005. DOI
Zhang X., Tang K., Zheng X. Electrospinning and crosslinking of COL/PVA Nanofiber-microsphere Containing Salicylic Acid for Drug Delivery. J. Bionic Eng. 2016;13:143–149. doi: 10.1016/S1672-6529(14)60168-2. DOI
Alves M.-H., Jensen B.E.B., Smith A.A.A., Zelikin A.N. Poly(Vinyl Alcohol) Physical Hydrogels: New Vista on a Long Serving. Biomater. Macromol. Biosci. 2011;11:1293–1313. doi: 10.1002/mabi.201100145. PubMed DOI
Koprivova B., Lisnenko M., Solarska-Sciuk K., Prochazkova R., Novotny V., Mullerova J., Mikes P., Jencova V. Large-scale electrospinning of poly (vinylalcohol) nanofibers incorporated with platelet-derived growth factors. Express Polym. Lett. 2020;14:987–1000. doi: 10.3144/expresspolymlett.2020.80. DOI
Rampichová M., Buzgo M., Míčková A., Vocetková K., Sovková V., Lukášová V., Filová E., Rustichelli F., Amler E. Platelet-functionalized three-dimensional poly-ε-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors. Int. J. Nanomed. 2017;12:347–361. doi: 10.2147/IJN.S120206. PubMed DOI PMC
Baik S.Y., Lim Y.A., Kang S.J., Ahn S.H., Lee W.G., Kim C.H. Effects of Platelet Lysate Preparations on the Proliferation of HaCaT Cells. Ann. Lab. Med. 2014;34:43–50. doi: 10.3343/alm.2014.34.1.43. PubMed DOI PMC
Barsotti M.C., Losi P., Briganti E., Sanguinetti E., Magera A., Al Kayal T., Feriani R., Di Stefano R., Soldani G. Effect of platelet lysate on human cells involved in different phases of wound healing. PLoS ONE. 2013;8:e84753. doi: 10.1371/journal.pone.0084753. PubMed DOI PMC
Schoop V.M., Mirancea N., Fusenig N.E. Epidermal Organization and Differentiation of HaCaT Keratinocytes in Organotypic Coculture with Human Dermal Fibroblasts. J. Investig. Dermatol. 1999;112:343–353. doi: 10.1046/j.1523-1747.1999.00524.x. PubMed DOI
El-Ghalbzouri A., Gibbs S., Lamme E., van Blitterswijk C.A., Ponec M. Cutaneous Biology. Effect of fibroblasts on epidermal regeneration. Br. J. Dermatol. 2002;147:230–243. doi: 10.1046/j.1365-2133.2002.04871.x. PubMed DOI
Oliveira S.M., Pirraco R.P., Marques A.P., Santo V.E., Gomes M.E., Reis R.L., Mano J.F. Platelet lysate-based pro-angiogenic nanocoatings. Acta Biomater. 2016;32:129–137. doi: 10.1016/j.actbio.2015.12.028. PubMed DOI
Eisinger F., Patzelt J., Langer H.F. The Platelet Response to Tissue Injury. Front. Med. 2018;5:317. doi: 10.3389/fmed.2018.00317. PubMed DOI PMC
Romaldini A., Ulivi V., Nardini M., Mastrogiacomo M., Cancedda R., Descalzi F. Platelet lysate inhibits NF- κB activation and induces proliferation and an alert state in quiescent human umbilical vein endothelial cells retaining their differentiation capability. Cells. 2019;8:331. doi: 10.3390/cells8040331. PubMed DOI PMC
Muraglia A., Todeschi M.R., Papait A., Poggi A., Spanò R., Strada P., Cancedda R., Mastrogiacomo M. Combined platelet and plasma derivatives enhance proliferation of stem/progenitor cells maintaining their differentiation potential. Cytotherapy. 2015;17:1793–1806. doi: 10.1016/j.jcyt.2015.09.004. PubMed DOI
Moghadam F.H., Tayebi T., Moradi A., Nadri H., Barzegar K., Eslami G. Treatment with platelet lysate induces endothelial differentiation of bone marow mesenchymal stem cells under fluid shear stress. EXCLI J. 2014;13:638–649. PubMed PMC
Lenting P.J., Christophe O.D., Denis C.V. Von Willebrand factor biosynthesis, secretion, and clearance: Connecting the far ends. Blood. 2015;125:2019–2028. doi: 10.1182/blood-2014-06-528406. PubMed DOI
Tang R., Zhang G., Chen S.-Y. Smooth muscle cell proangiogenic phenotype induced by cyclopentenyl cytosine promotes endothelial cell proliferation and migration. J. Biol. Chem. 2016;291:26913–26921. doi: 10.1074/jbc.M116.741967. PubMed DOI PMC
Ding B.-S., Cao Z., Lis R., Nolan D.J., Guo P., Simons M., Penfold M.E., Shido K., Rabbany S.Y., Rafii S. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature. 2014;505:97–102. doi: 10.1038/nature12681. PubMed DOI PMC
Yang H.S., Shin J., Bhang S.H., Shin J.Y., Park J., Im G.I., Kim C.S., Kim B.S. Enhanced skin wound healing by a sustained release of growth factors contained in platelet-rich plasma. Exp. Mol. Med. 2011;43:622–629. doi: 10.3858/emm.2011.43.11.070. PubMed DOI PMC
Borzini P., Mazzucco L. Platelet gels and releasates. Curr. Opin. Hematol. 2005;12:473–479. doi: 10.1097/01.moh.0000177831.70657.e8. PubMed DOI
Advances in Electrospun Hybrid Nanofibers for Biomedical Applications