The Effect of a Polyester Nanofibrous Membrane with a Fibrin-Platelet Lysate Coating on Keratinocytes and Endothelial Cells in a Co-Culture System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-01-00332
Czech Health Research Council, Ministry of Health of the Czech Republic
LM2018129 Czech-BioImaging
Ministry of Education, Youth and Sports of the Czech Republic
National Sustainability Programme II, project BIOCEV-FAR LQ1604
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33670150
PubMed Central
PMC7916860
DOI
10.3390/nano11020457
PII: nano11020457
Knihovny.cz E-zdroje
- Klíčová slova
- electrospun nanofibre, endothelial cells, fibrin, in vitro co-culture system, keratinocytes, platelet lysate, skin wound healing,
- Publikační typ
- časopisecké články MeSH
Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes.
Faculty of Health Technical University of Liberec Studentska 1402 2 461 17 Liberec 1 Czech Republic
Regional Hospital Liberec Husova 357 28 460 01 Liberec 1 Czech Republic
Zobrazit více v PubMed
Martinez-Zapata M., Martí-Carvajal A., Solà I., Expósito J., Bolíbar I., Rodríguez L., Garcia J., Zaror C. Autologous platelet-rich plasma for treating chronic wounds (Review) Cochrane Database Syst. Rev. 2016 doi: 10.1002/14651858.CD006899.pub3. PubMed DOI PMC
Sen C.K., Gordillo G.M., Roy S., Kirsner R., Lambert L., Hunt T.K., Gottrup F., Gurtner G.C., Longaker M.T. Human skin wounds: A major and snowballing threat to public health and the economy: PERSPECTIVE ARTICLE. Wound Repair Regen. 2009;17:763–771. doi: 10.1111/j.1524-475X.2009.00543.x. PubMed DOI PMC
Bacakova L., Zikmundova M., Pajorova J., Broz A., Filova E., Blanquer A., Matejka R., Stepanovska J., Mikes P., Jencova V., et al. Applications of Nanobiotechnology. IntechOpen; London, UK: 2020. Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Synthetic Polymers.
Jeong S.I., Jun I.D., Choi M.J., Nho Y.C., Lee Y.M., Shin H. Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-ε-caprolactone) for the control of cell adhesion. Macromol. Biosci. 2008;8:627–637. doi: 10.1002/mabi.200800005. PubMed DOI
Losi P., Barsotti M.C., Foffa I., Buscemi M., De Almeida C.V., Fabbri M., Gabbriellini S., Nocchi F., Ursino S., Urciuoli P., et al. In vitro human cord blood platelet lysate characterisation with potential application in wound healing. Int. Wound J. 2020;17:65–72. doi: 10.1111/iwj.13233. PubMed DOI PMC
Robson M.C. The role of growth factors in the healing of chronic wounds. Wound Repair Regen. 1997;5:12–17. doi: 10.1046/j.1524-475X.1997.50106.x. PubMed DOI
Nardini M., Perteghella S., Mastracci L., Grillo F., Marrubini G., Bari E., Formica M., Gentili C., Cancedda R., Torre M.L., et al. Growth factors delivery system for skin regeneration: An advanced wound dressing. Pharmaceutics. 2020;12:120. doi: 10.3390/pharmaceutics12020120. PubMed DOI PMC
Lai H.-J., Kuan C.-H., Wu H.-C., Tsai J.-C., Chen T.-M., Hsieh D.-J., Wang T.-W. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater. 2014;10:4156–4166. doi: 10.1016/j.actbio.2014.05.001. PubMed DOI
Chong D.L.W., Trinder S., Labelle M., Rodriguez-Justo M., Hughes S., Holmes A.M., Scotton C.J., Porter J.C. Platelet-derived transforming growth factor-β1 promotes keratinocyte proliferation in cutaneous wound healing. J. Tissue Eng. Regen. Med. 2020;14:645–649. doi: 10.1002/term.3022. PubMed DOI PMC
Barrientos S., Stojadinovic O., Golinko M.S., Brem H., Tomic-Canic M. PERSPECTIVE ARTICLE: Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585–601. doi: 10.1111/j.1524-475X.2008.00410.x. PubMed DOI
Martin P. Wound healing—Aiming for perfect skin regeneration. Science. 1997;276:75–81. doi: 10.1126/science.276.5309.75. PubMed DOI
Borzini P., Mazzucco L. Platelet gels and releasates. Curr. Opin. Hematol. 2005;12:473–479. doi: 10.1097/01.moh.0000177831.70657.e8. PubMed DOI
Tenci M., Rossi S., Bonferoni M.C., Sandri G., Boselli C., Di Lorenzo A., Daglia M., Icaro Cornaglia A., Gioglio L., Perotti C., et al. Particulate systems based on pectin/chitosan association for the delivery of manuka honey components and platelet lysate in chronic skin ulcers. Int. J. Pharm. 2016;509:59–70. doi: 10.1016/j.ijpharm.2016.05.035. PubMed DOI
Ranzato E., Patrone M., Mazzucco L., Burlando B. Platelet lysate stimulates wound repair of HaCaT keratinocytes. Br. J. Dermatol. 2008;159:537–545. doi: 10.1111/j.1365-2133.2008.08699.x. PubMed DOI
Baik S.Y., Lim Y.A., Kang S.J., Ahn S.H., Lee W.G., Kim C.H. Effects of platelet lysate preparations on the proliferation of hacat cells. Ann. Lab. Med. 2014;34:43–50. doi: 10.3343/alm.2014.34.1.43. PubMed DOI PMC
Pedram Rad Z., Mokhtari J., Abbasi M. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering. Int. J. Biol. Macromol. 2019;135:530–543. doi: 10.1016/j.ijbiomac.2019.05.204. PubMed DOI
Ahmed S.M., Ahmed H., Tian C., Tu Q., Guo Y., Wang J. Whey protein concentrate doped electrospun poly(epsilon-caprolactone) fibers for antibiotic release improvement. Colloids Surf. B Biointerfaces. 2016;143:371–381. doi: 10.1016/j.colsurfb.2016.03.059. PubMed DOI
Mikes P., Horakova J., Saman A., Vejsadova L., Topham P., Punyodom W., Dumklang M., Jencova V. Comparison and characterization of different polyester nano/micro fibres for use in tissue engineering applications. J. Ind. Text. 2021;50:870–890. doi: 10.1177/1528083719848155. DOI
Horakova J., Mikes P., Saman A., Jencova V., Klapstova A., Svarcova T., Ackermann M., Novotny V., Suchy T., Lukas D. The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C. 2018;92:132–142. doi: 10.1016/j.msec.2018.06.041. PubMed DOI
Riedel T., Brynda E., Dyr J.E., Houska M. Controlled preparation of thin fibrin films immobilized at solid surfaces. J. Biomed. Mater. Res. Part A. 2009;88:437–447. doi: 10.1002/jbm.a.31755. PubMed DOI
Riedelová-Reicheltová Z., Brynda E., Riedel T. Fibrin Nanostructures for Biomedical Applications. Physiol. Res. 2016:S263–S272. doi: 10.33549/physiolres.933428. PubMed DOI
Jackson M., Mantsch H.H. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. Biol. 1995;30:95–120. doi: 10.3109/10409239509085140. PubMed DOI
Jing X., Mi H.-Y., Peng J., Peng X.-F., Turng L.-S. Electrospun aligned poly(propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds. Carbohydr. Polym. 2015;117:941–949. doi: 10.1016/j.carbpol.2014.10.025. PubMed DOI
Szewczyk P., Ura D., Metwally S., Knapczyk-Korczak J., Gajek M., Marzec M., Bernasik A., Stachewicz U. Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes. Polymers. 2018;11:34. doi: 10.3390/polym11010034. PubMed DOI PMC
Horakova J., Mikes P., Saman A., Svarcova T., Jencova V., Suchy T., Heczkova B., Jakubkova S., Jirousova J., Prochazkova R. Comprehensive assessment of electrospun scaffolds hemocompatibility. Mater. Sci. Eng. C. 2018;82:330–335. doi: 10.1016/j.msec.2017.05.011. PubMed DOI
Lukášek J., Hauzerová Š., Havlíčková K., Strnadová K., Mašek K., Stuchlík M., Stibor I., Jenčová V., Řezanka M. Cyclodextrin-Polypyrrole Coatings of Scaffolds for Tissue Engineering. Polymers. 2019;11:459. doi: 10.3390/polym11030459. PubMed DOI PMC
Sovkova V., Vocetkova K., Rampichova M., Mickova A., Buzgo M., Lukasova V., Dankova J., Filova E., Necas A., Amler E. Platelet lysate as a serum replacement for skin cell culture on biomimetic PCL nanofibers. Platelets. 2018;29:395–405. doi: 10.1080/09537104.2017.1316838. PubMed DOI
Zamani M., Yaghoubi Y., Movassaghpour A., Shakouri K., Mehdizadeh A., Pishgahi A., Yousefi M. Novel therapeutic approaches in utilizing platelet lysate in regenerative medicine: Are we ready for clinical use? J. Cell. Physiol. 2019:1–15. doi: 10.1002/jcp.28496. PubMed DOI
Mosesson M.W. Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 2005;3:1894–1904. doi: 10.1111/j.1538-7836.2005.01365.x. PubMed DOI
Safari M., Ghahari L., Babak Hoss M.D. Effects of Epidermal Growth Factor, Platelet Derived Growth Factor and Growth Hormone on Cultured Rat Keratinocytes Cells in vitro. Pak. J. Biol. Sci. 2014;17:931–936. doi: 10.3923/pjbs.2014.931.936. PubMed DOI
Pluemsakunthai W., Kuroda S., Shimokawa H., Kasugai S. A basic analysis of platelet-rich fibrin: Distribution and release of platelet-derived growth factor-BB. Inflamm. Regen. 2013;33:164–172. doi: 10.2492/inflammregen.33.164. DOI
Reinartz J., Batrla R., Boukamp P., Fusenig N., Kramer M.D. Binding and Activation of Plasminogen at the Surface of Human Keratinocytes. Exp. Cell Res. 1993;208:197–208. doi: 10.1006/excr.1993.1238. PubMed DOI
Klicova M., Klapstova A., Chvojka J., Koprivova B., Jencova V., Horakova J. Novel double-layered planar scaffold combining electrospun PCL fibers and PVA hydrogels with high shape integrity and water stability. Mater. Lett. 2020;263:127281. doi: 10.1016/j.matlet.2019.127281. DOI
Schuhladen K., Raghu S.N.V., Liverani L., Neščáková Z., Boccaccini A.R. Production of a novel poly(ɛ-caprolactone)-methylcellulose electrospun wound dressing by incorporating bioactive glass and Manuka honey. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020:1–13. doi: 10.1002/jbm.b.34690. PubMed DOI
Lorden E.R., Miller K.J., Bashirov L., Ibrahim M.M., Hammett E., Jung Y., Medina M.A., Rastegarpour A., Selim M.A., Leong K.W., et al. Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold. Biomaterials. 2015;43:61–70. doi: 10.1016/j.biomaterials.2014.12.003. PubMed DOI
Pal P., Dadhich P., Srivas P.K., Das B., Maulik D., Dhara S. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management. Biomater. Sci. 2017;5:1786–1799. doi: 10.1039/C7BM00174F. PubMed DOI
Croisier F., Atanasova G., Poumay Y., Jérôme C. Polysaccharide-Coated PCL Nanofibers for Wound Dressing Applications. Adv. Healthc. Mater. 2014;3:2032–2039. doi: 10.1002/adhm.201400380. PubMed DOI
Filová E., Brynda E., Riedel T., Bacáková L., Chlupác J., Lisá V., Houska M., Dyr J.E. Vascular endothelial cells on two-and three-dimensional fibrin assemblies for biomaterial coatings. J. Biomed. Mater. Res. A. 2009;90:55–69. doi: 10.1002/jbm.a.32065. PubMed DOI
Filová E., Suchý T., Sucharda Z., Supová M., Zaloudková M., Balík K., Lisá V., Slouf M., Bačáková L. Support for the initial attachment, growth and differentiation of MG-63 cells: A comparison between nano-size hydroxyapatite and micro-size hydroxyapatite in composites. Int. J. Nanomed. 2014;9:3687–3706. doi: 10.2147/IJN.S56661. PubMed DOI PMC
Pajorova J., Bacakova M., Musilkova J., Broz A., Hadraba D., Lopot F., Bacakova L. Morphology of a fibrin nanocoating influences dermal fibroblast behavior. Int. J. Nanomed. 2018;13:3367–3380. doi: 10.2147/IJN.S162644. PubMed DOI PMC
Barsotti M.C., Losi P., Briganti E., Sanguinetti E., Magera A., Al Kayal T., Feriani R., Di Stefano R., Soldani G. Effect of platelet lysate on human cells involved in different phases of wound healing. PLoS ONE. 2013;8:e84753. doi: 10.1371/journal.pone.0084753. PubMed DOI PMC
Schoop V.M., Fusenig N.E., Mirancea N. Epidermal Organization and Differentiation of HaCaT Keratinocytes in Organotypic Coculture with Human Dermal Fibroblasts. J. Invest. Dermatol. 2003;112:343–353. doi: 10.1046/j.1523-1747.1999.00524.x. PubMed DOI
Tan J., Zhao C., Zhou J., Duan K., Wang J., Lu X., Weng J., Feng B. Co-culturing epidermal keratinocytes and dermal fibroblasts on nano-structured titanium surfaces. Mater. Sci. Eng. C. 2017;78:288–295. doi: 10.1016/j.msec.2017.04.036. PubMed DOI
Werner S., Krieg T., Smola H. Keratinocyte-fibroblast interactions in wound healing. J. Invest. Dermatol. 2007;127:998–1008. doi: 10.1038/sj.jid.5700786. PubMed DOI
Baltazar T., Merola J., Catarino C., Xie C.B., Kirkiles-Smith N.C., Lee V., Hotta S., Dai G., Xu X., Ferreira F.C., et al. Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. Tissue Eng. Part A. 2019:1–29. doi: 10.1089/ten.tea.2019.0201. PubMed DOI PMC
Castaño O., Pérez-Amodio S., Navarro-Requena C., Mateos-Timoneda M.Á., Engel E. Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv. Drug Deliv. Rev. 2018;129:95–117. doi: 10.1016/j.addr.2018.03.012. PubMed DOI
Feliciani C., Gupta A.K., Sauder D.N. Keratinocytes and cytokine/growth factors. Crit. Rev. Oral Biol. Med. 1996;7:300–318. doi: 10.1177/10454411960070040101. PubMed DOI
Zhang X., Yin M., Zhang L.J. Keratin 6, 16 and 17-Critical Barrier Alarmin Molecules in Skin Wounds and Psoriasis. Cells. 2019;8:807. doi: 10.3390/cells8080807. PubMed DOI PMC
Stankova L., Musilkova J., Broz A., Potocky S., Kromka A., Kozak H., Izak T., Artemenko A., Stranska D., Bacakova L. Alterations to the adhesion, growth and osteogenic differentiation of human osteoblast-like cells on nanofibrous polylactide scaffolds with diamond nanoparticles. Diam. Relat. Mater. 2019;97:107421. doi: 10.1016/j.diamond.2019.05.007. DOI
Sakariassen K.S., Bolhuis P.A., Sixma J.J. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII–Von Willebrand factor bound to the subendothelium. Nature. 1979;279:636–638. doi: 10.1038/279636a0. PubMed DOI
Romaldini A., Ulivi V., Nardini M., Mastrogiacomo M., Cancedda R., Descalzi F. Platelet Lysate Inhibits NF-κB Activation and Induces Proliferation and an Alert State in Quiescent Human Umbilical Vein Endothelial Cells Retaining Their Differentiation Capability. Cells. 2019;8:331. doi: 10.3390/cells8040331. PubMed DOI PMC
Cui T., Kirsner R.S., Li J. Advances in Wound Care. Mary Ann Liebert, Inc.; New Rochelle, NY, USA: 2010. Angiogenesis in Chronic Wounds; pp. 347–352.