Cyclodextrin-Polypyrrole Coatings of Scaffolds for Tissue Engineering

. 2019 Mar 11 ; 11 (3) : . [epub] 20190311

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30960443

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843 Ministerstvo Školství, Mládeže a Tělovýchovy
16-02316Y Grantová Agentura České Republiky

Polypyrrole is one of the most investigated conductive polymers used for tissue engineering applications because of its advantageous properties and the ability to promote different cell types' adhesion and proliferation. Together with β-cyclodextrin, which is capable of accommodating helpful biomolecules in its cavity, it would make a perfect couple for use as a scaffold for tissue engineering. Such scaffolds were prepared by the polymerisation of 6-(pyrrol-3-yl)hexanoic acid on polycaprolactone microfibres with subsequent attachment of β-cyclodextrin on the polypyrrole layer. The materials were deeply characterised by several physical and spectroscopic techniques. Testing of the cyclodextrin enriched composite scaffold revealed its better performance in in vitro experiments compared with pristine polycaprolactone or polypyrrole covered polycaprolactone scaffolds.

Zobrazit více v PubMed

Liu M., Zeng X., Ma C., Yi H., Ali Z., Mou X., Li S., Deng Y., He N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014. doi: 10.1038/boneres.2017.14. PubMed DOI PMC

Place E.S., Evans N.D., Stevens M.M. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009;8:457–470. doi: 10.1038/nmat2441. PubMed DOI

Huang Z.-B., Yin G.-F., Liao X.-M., Gu J.-W. Conducting polypyrrole in tissue engineering applications. Front. Mater. Sci. 2014;8:39–45. doi: 10.1007/s11706-014-0238-8. DOI

Guo B., Ma P.X. Conducting Polymers for Tissue Engineering. Biomacromolecules. 2018;19:1764–1782. doi: 10.1021/acs.biomac.8b00276. PubMed DOI PMC

Balint R., Cassidy N.J., Cartmell S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10:2341–2353. doi: 10.1016/j.actbio.2014.02.015. PubMed DOI

Wang X.D., Gu X.S., Yuan C.W., Chen S.J., Zhang P.Y., Zhang T.Y., Yao J., Chen F., Chen G. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J. Biomed. Mater. Res. A. 2004;68:411–422. doi: 10.1002/jbm.a.20065. PubMed DOI

Alvarez-Lorenzo C., García-González C.A., Concheiro A. Cyclodextrins as versatile building blocks for regenerative medicine. J. Control. Release. 2017;268:269–281. doi: 10.1016/j.jconrel.2017.10.038. PubMed DOI

Venuti V., Rossi B., Mele A., Melone L., Punta C., Majolino D., Masciovecchio C., Caldera F., Trotta F. Tuning structural parameters for the optimization of drug delivery performance of cyclodextrin-based nanosponges. Exp. Opin. Drug Deliv. 2017;14:331–340. doi: 10.1080/17425247.2016.1215301. PubMed DOI

Garcia-Rio L., Otero-Espinar F.J., Luzardo-Alvarez A., Blanco-Mendez J. Cyclodextrin Based Rotaxanes, Polyrotaxanes and Polypseudorotaxanes and their Biomedical Applications. Curr. Top. Med. Chem. 2014;14:478–493. doi: 10.2174/1568026613666131219123910. PubMed DOI

Ma X., Zhou N., Zhang T., Guo Z., Hu W., Zhu C., Ma D., Gu N. In situ formation of multiple stimuli-responsive poly[(methyl vinyl ether)-alt-(maleic acid)]-based supramolecular hydrogels by inclusion complexation between cyclodextrin and azobenzene. RSC Adv. 2016;6:13129–13136. doi: 10.1039/C5RA22541H. DOI

Yi W.-J., Li L.-J., He H., Hao Z., Liu B., Chao Z.-S., Shen Y. Synthesis of poly(L-lactide)/beta-cyclodextrin/citrate network modified hydroxyapatite and its biomedical properties. New J. Chem. 2018;42:14729–14732. doi: 10.1039/C8NJ01194J. DOI

Grier W.K., Tiffany A.S., Ramsey M.D., Harley B.A.C. Incorporating beta-cyclodextrin into collagen scaffolds to sequester growth factors and modulate mesenchymal stem cell activity. Acta Biomater. 2018;76:116–125. doi: 10.1016/j.actbio.2018.06.033. PubMed DOI PMC

Deluzio T.G.B., Penev K.I., Mequanint K. Cyclodextrin Inclusion Complexes as Potential Oxygen Delivery Vehicles in Tissue Engineering. J. Biomater. Tissue Eng. 2014;4:957–966. doi: 10.1166/jbt.2014.1267. DOI

Majumdar S., Wang X., Sommerfeld S.D., Chae J.J., Athanasopoulou E.-N., Shores L.S., Duan X., Amzel L.M., Stellacci F., Schein O., et al. Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants. Adv. Funct. Mater. 2018;28:1804076. doi: 10.1002/adfm.201804076. PubMed DOI PMC

Lee J.B., Kim J.E., Balikov D.A., Bae M.S., Heo D.N., Lee D., Rim H.J., Lee D.-W., Sung H.-J., Kwon I.K. Poly(l-Lactic Acid)/Gelatin Fibrous Scaffold Loaded with Simvastatin/Beta-Cyclodextrin-Modified Hydroxyapatite Inclusion Complex for Bone Tissue Regeneration. Macromol. Biosci. 2016;16:1027–1038. doi: 10.1002/mabi.201500450. PubMed DOI

Lee J.B., Kim J.E., Bae M.S., Park S.A., Balikov D.A., Sung H., Jeon H.B., Park H.K., Um S.H., Lee K.S., et al. Development of Poly(epsilon-Caprolactone) Scaffold Loaded with Simvastatin and Beta-Cyclodextrin Modified Hydroxyapatite Inclusion Complex for Bone Tissue Engineering. Polymers. 2016;8:49. doi: 10.3390/polym8020049. PubMed DOI PMC

Prabaharan M., Jayakumar R. Chitosan-graft-beta-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. Int. J. Biol. Macromol. 2009;44:320–325. doi: 10.1016/j.ijbiomac.2009.01.005. PubMed DOI

Lukášek J., Řezanková M., Stibor I., Řezanka M. Synthesis of cyclodextrin–pyrrole conjugates possessing tuneable carbon linkers. J. Incl. Phenom. Macrocycl. Chem. 2018;92:339–346. doi: 10.1007/s10847-018-0854-5. DOI

Siegel J., Lyutakov O., Rybka V., Kolska Z., Svorcik V. Properties of gold nanostructures sputtered on glass. Nanoscale Res. Lett. 2011;6:96. doi: 10.1186/1556-276X-6-96. PubMed DOI PMC

Martinek M., Swar S., Zajicova V., Volesky L., Blazkova L., Mullerova J., Stuchlik M., Rezanka M., Stibor I. Pre-treatment of polyethylene terephthalate by Grignard reagents for high quality polypyrrole coatings and for altering the hydrophobicity. Chem. Pap. 2017;71:2403–2415. doi: 10.1007/s11696-017-0235-3. DOI

Rapi S., Bocchi V., Gardini G.P. Conducting polypyrrole by chemical synthesis in water. Synth. Met. 1988;24:217–221. doi: 10.1016/0379-6779(88)90259-7. DOI

Lee J.Y., Kim D.Y., Kim C.Y. Synthesis of soluble polypyrrole of the doped state in organic solvents. Synth. Met. 1995;74:103–106. doi: 10.1016/0379-6779(95)03359-9. DOI

Tada K., Satake K., Onoda M. In Situ Polymerization of Polypyrrole in Alcohols: Controlling Deposition Rate and Electrical Conductivity. Jpn. J. Appl. Phys. 2002;41:6586. doi: 10.1143/JJAP.41.6586. DOI

Papp C., Steinrueck H.-P. In situ high-resolution X-ray photoelectron spectroscopy—Fundamental insights in surface reactions. Surf. Sci. Rep. 2013;68:446–487. doi: 10.1016/j.surfrep.2013.10.003. DOI

Tabaciarova J., Micusik M., Fedorko P., Omastova M. Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polym. Degrad. Stab. 2015;120:392–401. doi: 10.1016/j.polymdegradstab.2015.07.021. DOI

Hamouma O., Oukil D., Omastova M., Chehimi M.M. Flexible paper@carbon nanotube@polypyrrole composites: The combined pivotal roles of diazonium chemistry and sonochemical polymerization. Colloids Surf. Physicochem. Eng. Asp. 2018;538:350–360. doi: 10.1016/j.colsurfa.2017.11.007. DOI

Strnadová K., Stanislav L., Krabicová I., Sabol F., Lukášek J., Řezanka M., Lukáš D., Jenčová V. Drawn aligned polymer microfibres for tissue engineering. J. Ind. Text. 2019 doi: 10.1177/1528083718825318. in press. DOI

Řezanka M. Monosubstituted Cyclodextrins as Precursors for Further Use. Eur. J. Org. Chem. 2016;2016:5322–5334. doi: 10.1002/ejoc.201600693. PubMed DOI

Řezanka M. Synthesis of substituted cyclodextrins. Environ. Chem. Lett. 2019 doi: 10.1007/s10311-018-0779-7. in press. DOI

Walkey C.D., Chan W.C.W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012;41:2780–2799. doi: 10.1039/C1CS15233E. PubMed DOI

Louie S.M., Tilton R.D., Lowry G.V. Critical review: Impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials. Environ. Sci.-Nano. 2016;3:283–310. doi: 10.1039/C5EN00104H. DOI

Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI

Anand G., Sharma S., Dutta A.K., Kumar S.K., Belfort G. Conformational Transitions of Adsorbed Proteins on Surfaces of Varying Polarity. Langmuir. 2010;26:10803–10811. doi: 10.1021/la1006132. PubMed DOI

Benesch J., Hungerford G., Suhling K., Tregidgo C., Mano J.F., Reis R.L. Fluorescence probe techniques to monitor protein adsorption-induced conformation changes on biodegradable polymers. J. Colloid Interface Sci. 2007;312:193–200. doi: 10.1016/j.jcis.2007.03.016. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...