Adipose-Derived Stem Cells in Reinforced Collagen Gel: A Comparison between Two Approaches to Differentiation towards Smooth Muscle Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36982766
PubMed Central
PMC10058441
DOI
10.3390/ijms24065692
PII: ijms24065692
Knihovny.cz E-zdroje
- Klíčová slova
- adipose tissue-derived stem cells, collagen particles, endothelial cells, extracellular matrix, gel reinforcement, remodelling, stem cells differentiation, tissue engineering, vascular patches,
- MeSH
- buněčná diferenciace MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- extracelulární matrix - proteiny metabolismus MeSH
- gely metabolismus MeSH
- kmenové buňky metabolismus MeSH
- kolagen * metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- myocyty hladké svaloviny metabolismus MeSH
- prasata MeSH
- tkáňové inženýrství metody MeSH
- tuková tkáň * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- extracelulární matrix - proteiny MeSH
- gely MeSH
- kolagen * MeSH
Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.
Zobrazit více v PubMed
World Health Organisation Cardiovascular Diseases (CVDs) [(accessed on 8 March 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Moore M.J., Tan R.P., Yang N., Rnjak-Kovacina J., Wise S.G. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol. 2022;40:693–707. doi: 10.1016/j.tibtech.2021.11.003. PubMed DOI
Ebert N., McGinnis M., Johnson W., Kuhn E.M., Mitchell M.E., Tweddell J.S., Woods R.K. Comparison of Patch Materials for Pulmonary Artery Reconstruction. Semin. Thorac. Cardiovasc. Surg. 2021;33:459–465. doi: 10.1053/j.semtcvs.2020.09.011. PubMed DOI PMC
Zhang F., Xie Y., Celik H., Akkus O., Bernacki S.H., King M.W. Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels. Biofabrication. 2019;11:035020. doi: 10.1088/1758-5090/ab15ce. PubMed DOI PMC
Yao Y., Wang J., Cui Y., Xu R., Wang Z., Zhang J., Wang K., Li Y., Zhao Q., Kong D. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialisation. Acta Biomater. 2014;10:2739–2749. doi: 10.1016/j.actbio.2014.02.042. PubMed DOI
Alexandre N., Amorim I., Caseiro A.R., Pereira T., Alvites R., Rema A., Goncalves A., Valadares G., Costa E., Santos-Silva A., et al. Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. Int. J. Pharm. 2017;523:515–530. doi: 10.1016/j.ijpharm.2017.02.043. PubMed DOI
Babrnakova J., Pavlinakova V., Brtnikova J., Sedlacek P., Prosecka E., Rampichova M., Filova E., Hearnden V., Vojtova L. Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterisation, in vitro and ex ovo evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;100:236–246. doi: 10.1016/j.msec.2019.02.092. PubMed DOI
Cho S.W., Park H.J., Ryu J.H., Kim S.H., Kim Y.H., Choi C.Y., Lee M.J., Kim J.S., Jang I.S., Kim D.I., et al. Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularised tissue matrices. Biomaterials. 2005;26:1915–1924. doi: 10.1016/j.biomaterials.2004.06.018. PubMed DOI
Zhao Y., Zhang S., Zhou J., Wang J., Zhen M., Liu Y., Chen J., Qi Z. The development of a tissue-engineered artery using decellularised scaffold and autologous ovine mesenchymal stem cells. Biomaterials. 2010;31:296–307. doi: 10.1016/j.biomaterials.2009.09.049. PubMed DOI
Malladi S., Miranda-Nieves D., Leng L., Grainger S.J., Tarabanis C., Nesmith A.P., Kosaraju R., Haller C.A., Parker K.K., Chaikof E.L., et al. Continuous Formation of Ultrathin, Strong Collagen Sheets with Tunable Anisotropy and Compaction. ACS Biomater. Sci. Eng. 2020;6:4236–4246. doi: 10.1021/acsbiomaterials.0c00321. PubMed DOI PMC
Patil V.A., Masters K.S. Engineered Collagen Matrices. Bioengineering. 2020;7:163. doi: 10.3390/bioengineering7040163. PubMed DOI PMC
Aras O., Kazanci M. Production of collagen micro- and nanofibers for potential drug-carrier systems. J. Enzym. Inhib. Med. Chem. 2015;30:1013–1016. doi: 10.3109/14756366.2014.976567. PubMed DOI
Ju Y.M., Ahn H., Arenas-Herrera J., Kim C., Abolbashari M., Atala A., Yoo J.J., Lee S.J. Electrospun vascular scaffold for cellularised small diameter blood vessels: A preclinical large animal study. Acta Biomater. 2017;59:58–67. doi: 10.1016/j.actbio.2017.06.027. PubMed DOI
Meghezi S., Seifu D.G., Bono N., Unsworth L., Mequanint K., Mantovani D. Engineering 3D Cellularised Collagen Gels for Vascular Tissue Regeneration. J. Vis. Exp. 2015;100:e52812. doi: 10.3791/52812. PubMed DOI PMC
Kumar V.A., Caves J.M., Haller C.A., Dai E., Liu L., Grainger S., Chaikof E.L. Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomater. 2013;9:8067–8074. doi: 10.1016/j.actbio.2013.05.024. PubMed DOI PMC
Matsuhashi A., Nam K., Kimura T., Kishida A. Fabrication of fibrillised collagen microspheres with the microstructure resembling an extracellular matrix. Soft Matter. 2015;11:2844–2851. doi: 10.1039/C4SM01982B. PubMed DOI
Hu Y., Dan W., Xiong S., Kang Y., Dhinakar A., Wu J., Gu Z. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold. Acta Biomater. 2017;47:135–148. doi: 10.1016/j.actbio.2016.10.017. PubMed DOI
Dewle A., Rakshasmare P., Srivastava A. A Polycaprolactone (PCL)-Supported Electrocompacted Aligned Collagen Type-I Patch for Annulus Fibrosus Repair and Regeneration. ACS Appl. Bio Mater. 2021;4:1238–1251. doi: 10.1021/acsabm.0c01084. PubMed DOI
Leite F.G., Marana J.F., de Sá L.F.T., Alves de Almeida T.F.R., do Carmo H.R.P., Chaud M.V., Grotto D., Silveira-Filho L.D.M. Effects of a collagen hyaluronic acid silk-fibroin patch with the electroconductive element polyaniline on left ventricular remodelling in an infarct heart model. J. Biomed. Mater. Res. B Appl. Biomater. 2022;110:1651–1666. doi: 10.1002/jbm.b.35026. PubMed DOI
Goel H., Gupta N., Santhiya D., Dey N., Bohidar H.B., Bhattacharya A. Bioactivity reinforced surface patch bound collagen-pectin hydrogel. Int. J. Biol. Macromol. 2021;174:240–253. doi: 10.1016/j.ijbiomac.2021.01.166. PubMed DOI
Wertheimer S., Sharabi M., Shelah O., Lesman A., Haj-Ali R. Bio-composites reinforced with unique coral collagen fibers: Towards biomimetic-based small diameter vascular grafts. J. Mech. Behav. Biomed. 2021;119:104526. doi: 10.1016/j.jmbbm.2021.104526. PubMed DOI
Zheng X., Chen Y., Dan N., Li Z., Dan W. Anti-calcification potential of collagen based biological patch crosslinked by epoxidised polysaccharide. Int. J. Biol. Macromol. 2022;209:1695–1702. doi: 10.1016/j.ijbiomac.2022.04.117. PubMed DOI
Hong H., Kim J., Cho H., Park S.M., Jeon M., Kim H.K., Kim D.S. Ultra-stiff compressed collagen for corneal perforation patch graft realised by in situ photochemical crosslinking. Biofabrication. 2020;12:045030. doi: 10.1088/1758-5090/abb52a. PubMed DOI
Yan M., An X., Duan S., Jiang Z., Liu X., Zhao X., Li Y. A comparative study on cross-linking of fibrillar gel prepared by tilapia collagen and hyaluronic acid with EDC/NHS and genipin. Int. J. Biol. Macromol. 2022;213:639–650. doi: 10.1016/j.ijbiomac.2022.06.006. PubMed DOI
Orban J.M., Wilson L.B., Kofroth J.A., El-Kurdi M.S., Maul T.M., Vorp D.A. Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. A. 2004;68:756–762. doi: 10.1002/jbm.a.20110. PubMed DOI
Adamiak K., Sionkowska A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020;161:550–560. doi: 10.1016/j.ijbiomac.2020.06.075. PubMed DOI
Maarof M., Mh Busra M.F., Lokanathan Y., Bt Hj Idrus R., Rajab N.F., Chowdhury S.R. Safety and efficacy of dermal fibroblast conditioned medium (DFCM) fortified collagen hydrogel as acellular 3D skin patch. Drug Deliv. Transl. Res. 2019;9:144–161. doi: 10.1007/s13346-018-00612-z. PubMed DOI
Filova E., Steinerova M., Travnickova M., Knitlova J., Musilkova J., Eckhardt A., Hadraba D., Matejka R., Prazak S., Stepanovska J., et al. Accelerated in vitro recellularisation of decellularised porcine pericardium for cardiovascular grafts. Biomed. Mater. 2021;16:025024. doi: 10.1088/1748-605X/abbdbd. PubMed DOI
Sun B., Chen B., Zhao Y., Sun W., Chen K., Zhang J., Wei Z., Xiao Z., Dai J. Crosslinking heparin to collagen scaffolds for the delivery of human platelet-derived growth factor. J. Biomed. Mater. Res. B Appl. Biomater. 2009;91:366–372. doi: 10.1002/jbm.b.31411. PubMed DOI
Miyagi Y., Chiu L.L., Cimini M., Weisel R.D., Radisic M., Li R.K. Biodegradable collagen patch with covalently immobilised VEGF for myocardial repair. Biomaterials. 2011;32:1280–1290. doi: 10.1016/j.biomaterials.2010.10.007. PubMed DOI
Chiu L.L., Radisic M. Scaffolds with covalently immobilised VEGF and Angiopoietin-1 for vascularisation of engineered tissues. Biomaterials. 2010;31:226–241. doi: 10.1016/j.biomaterials.2009.09.039. PubMed DOI
Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI
Yang L., Geng Z., Nickel T., Johnson C., Gao L., Dutton J., Hou C., Zhang J. Differentiation of Human Induced-Pluripotent Stem Cells into Smooth-Muscle Cells: Two Novel Protocols. PLoS ONE. 2016;11:e0147155. doi: 10.1371/journal.pone.0147155. PubMed DOI PMC
Yogi A., Rukhlova M., Charlebois C., Tian G., Stanimirovic D.B., Moreno M.J. Differentiation of Adipose-Derived Stem Cells into Vascular Smooth Muscle Cells for Tissue Engineering Applications. Biomedicines. 2021;9:797. doi: 10.3390/biomedicines9070797. PubMed DOI PMC
Walters B., Turner P.A., Rolauffs B., Hart M.L., Stegemann J.P. Controlled Growth Factor Delivery and Cyclic Stretch Induces a Smooth Muscle Cell-like Phenotype in Adipose-Derived Stem Cells. Cells. 2021;10:3123. doi: 10.3390/cells10113123. PubMed DOI PMC
Astori G., Amati E., Bambi F., Bernardi M., Chieregato K., Schafer R., Sella S., Rodeghiero F. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: Present and future. Stem Cell Res. Ther. 2016;7:93. doi: 10.1186/s13287-016-0352-x. PubMed DOI PMC
Park J.W., Hwang S.R., Yoon I.S. Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules. 2017;22:1259. doi: 10.3390/molecules22081259. PubMed DOI PMC
Elcin A.E., Parmaksiz M., Dogan A., Seker S., Durkut S., Dalva K., Elcin Y.M. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFbeta1/BMP4. Exp. Cell Res. 2017;352:207–217. doi: 10.1016/j.yexcr.2017.02.006. PubMed DOI
Nalinanon S., Benjakul S., Kishimura H., Osako K. Type I collagen from the skin of ornate threadfin bream (Nemipterus hexodon): Characteristics and effect of pepsin hydrolysis. Food Chem. 2011;125:500–507. doi: 10.1016/j.foodchem.2010.09.040. DOI
Veeruraj A., Arumugam M., Ajithkumar T., Balasubramanian T. Isolation and characterisation of collagen from the outer skin of squid (Doryteuthis singhalensis) Food Hydrocoll. 2015;43:708–716. doi: 10.1016/j.foodhyd.2014.07.025. DOI
Payne K.J., Veis A. Fourier-Transform Ir Spectroscopy of Collagen and Gelatin Solutions—Deconvolution of the Amide I-Band for Conformational Studies. Biopolymers. 1988;27:1749–1760. doi: 10.1002/bip.360271105. PubMed DOI
Jackson M., Choo L.P., Watson P.H., Halliday W.C., Mantsch H.H. Beware of Connective-Tissue Proteins—Assignment and Implications of Collagen Absorptions in Infrared-Spectra of Human Tissues. BBA-Mol. Basis Dis. 1995;1270:1–6. doi: 10.1016/0925-4439(94)00056-V. PubMed DOI
Rabotyagova E.S., Cebe P., Kaplan D.L. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C. 2008;28:1420–1429. doi: 10.1016/j.msec.2008.03.012. PubMed DOI PMC
Abdollahi M., Rezaei M., Jafarpour A., Undeland I. Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach. Food Chem. 2018;242:568–578. doi: 10.1016/j.foodchem.2017.09.045. PubMed DOI
Koprivova B., Lisnenko M., Solarska-Sciuk K., Prochazkova R., Novotny V., Mullerova J., Mikes P., Jencova V. Large-scale electrospinning of poly (vinylalcohol) nanofibers incorporated with platelet-derived growth factors. Express Polym. Lett. 2020;14:987–1000. doi: 10.3144/expresspolymlett.2020.80. DOI
Serpooshan V., Zhao M.M., Metzler S.A., Wei K., Shah P.B., Wang A., Mahmoudi M., Malkovskiy A.V., Rajadas J., Butte M.J., et al. The effect of bioengineered acellular collagen patch on cardiac remodelling and ventricular function post myocardial infarction. Biomaterials. 2013;34:9048–9055. doi: 10.1016/j.biomaterials.2013.08.017. PubMed DOI PMC
Zhu Y.K., Umino T., Liu X.D., Wang H.J., Romberger D.J., Spurzem J.R., Rennard S.I. Contraction of fibroblast-containing collagen gels: Initial collagen concentration regulates the degree of contraction and cell survival. Vitr. Cell. Dev.-Anim. 2001;37:10–16. doi: 10.1290/1071-2690(2001)037<0010:COFCCG>2.0.CO;2. PubMed DOI
Nashchekina Y.A., Yudintceva N.M., Nikonov P.O., Ivanova E.A., Smagina L.V., Voronkina I.V. Effect of Concentration of Collagen Gel on Functional Activity of Bone Marrow Mesenchymal Stromal Cells. Bull. Exp. Biol. Med. 2017;163:123–128. doi: 10.1007/s10517-017-3751-9. PubMed DOI
Bacakova M., Pajorova J., Broz A., Hadraba D., Lopot F., Zavadakova A., Vistejnova L., Beno M., Kostic I., Jencova V., et al. A two-layer skin construct consisting of a collagen hydrogel reinforced by a fibrin-coated polylactide nanofibrous membrane. Int. J. Nanomed. 2019;14:5033–5050. doi: 10.2147/IJN.S200782. PubMed DOI PMC
Velez D.O., Tsui B., Goshia T., Chute C.L., Han A., Carter H., Fraley S.I. 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat. Commun. 2017;8:1651. doi: 10.1038/s41467-017-01556-7. PubMed DOI PMC
Valero C., Amaveda H., Mora M., Garcia-Aznar J.M. Combined experimental and computational characterisation of crosslinked collagen-based hydrogels. PLoS ONE. 2018;13:e0195820. doi: 10.1371/journal.pone.0195820. PubMed DOI PMC
Williams C., Xie A.W., Emani S., Yamato M., Okano T., Emani S.M., Wong J.Y. A Comparison of Human Smooth Muscle and Mesenchymal Stem Cells as Potential Cell Sources for Tissue-Engineered Vascular Patches. Tissue Eng. Part A. 2012;18:986–998. doi: 10.1089/ten.tea.2011.0172. PubMed DOI
Jeon E.S., Moon H.J., Lee M.J., Song H.Y., Kim Y.M., Bae Y.C., Jung J.S., Kim J.H. Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. J. Cell Sci. 2006;119:4994–5005. doi: 10.1242/jcs.03281. PubMed DOI
Li X., Xie X.Y., Lian W.S., Shi R.F., Han S.L., Zhang H.J., Lu L.G., Li M.Q. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularisation in a diabetic foot ulcer rat model. Exp. Mol. Med. 2018;50:1–14. doi: 10.1038/s12276-018-0058-5. PubMed DOI PMC
Morikawa M., Derynck R., Miyazono K. TGF-beta and the TGF-beta Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016;8:a021873. doi: 10.1101/cshperspect.a021873. PubMed DOI PMC
Goumans M.J., Valdimarsdottir G., Itoh S., Rosendahl A., Sideras P., ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 2002;21:1743–1753. doi: 10.1093/emboj/21.7.1743. PubMed DOI PMC
Peshavariya H.M., Chan E.C., Liu G.S., Jiang F., Dusting G.J. Transforming growth factor-beta 1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. J. Cell. Mol. Med. 2014;18:1172–1183. doi: 10.1111/jcmm.12263. PubMed DOI PMC
Suzuki Y., Montagne K., Nishihara A., Watabe T., Miyazono K. BMPs promote proliferation and migration of endothelial cells via stimulation of VEGF-A/VEGFR2 and Angiopoietin-1/Tie2 signalling. J. Biochem. 2008;143:199–206. doi: 10.1093/jb/mvm215. PubMed DOI
Li Q., Kou X.T., Qin X.L., Li Z.S., Li J.Y., Chen C. BMP-4 impedes endothelial cell migration in neointimal hyperplasia via FoXO-3 specific modulation of reactive oxygen species. Atherosclerosis. 2022;351:9–17. doi: 10.1016/j.atherosclerosis.2022.05.004. PubMed DOI
Tiaka E.K., Papanas N., Manolakis A.C., Georgiadis G.S. Epidermal growth factor in the treatment of diabetic foot ulcers: An update. Perspect. Vasc. Surg. Endovasc. Ther. 2012;24:37–44. doi: 10.1177/1531003512442093. PubMed DOI
Lu Q.B., Wan M.Y., Wang P.Y., Zhang C.X., Xu D.Y., Liao X., Sun H.J. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFkappaB/mTOR/P70S6K signaling cascade. Redox Biol. 2018;14:656–668. doi: 10.1016/j.redox.2017.11.012. PubMed DOI PMC
Gianni-Barrera R., Butschkau A., Uccelli A., Certelli A., Valente P., Bartolomeo M., Groppa E., Burger M.G., Hlushchuk R., Heberer M., et al. PDGF-BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF-induced endothelial proliferation. Angiogenesis. 2018;21:883–900. doi: 10.1007/s10456-018-9634-5. PubMed DOI PMC
Filova E., Blanquer A., Knitlova J., Plencner M., Jencova V., Koprivova B., Lisnenko M., Kostakova E.K., Prochazkova R., Bacakova L. The Effect of the Controlled Release of Platelet Lysate from PVA Nanomats on Keratinocytes, Endothelial Cells and Fibroblasts. Nanomaterials. 2021;11:995. doi: 10.3390/nano11040995. PubMed DOI PMC
Li C.Y., Wu X.Y., Tong J.B., Yang X.X., Zhao J.L., Zheng Q.F., Zhao G.B., Ma Z.J. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res. Ther. 2015;6:55. doi: 10.1186/s13287-015-0066-5. PubMed DOI PMC
Cowper M., Frazier T., Wu X., Curley J.L., Ma M.H., Mohiuddin O.A., Dietrich M., McCarthy M., Bukowska J., Gimble J.M. Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells. 2019;8:724. doi: 10.3390/cells8070724. PubMed DOI PMC
Camasao D.B., Pezzoli D., Loy C., Kumra H., Levesque L., Reinhardt D.P., Candiani G., Mantovani D. Increasing Cell Seeding Density Improves Elastin Expression and Mechanical Properties in Collagen Gel-Based Scaffolds Cellularised with Smooth Muscle Cells. Biotechnol. J. 2019;14:e1700768. doi: 10.1002/biot.201700768. PubMed DOI
Yamashiro Y., Thang B.Q., Shin S.J., Lino C.A., Nakamura T., Kim J., Sugiyama K., Tokunaga C., Sakamoto H., Osaka M., et al. Role of Thrombospondin-1 in Mechanotransduction and Development of Thoracic Aortic Aneurysm in Mouse and Humans. Circ. Res. 2018;123:660–672. doi: 10.1161/CIRCRESAHA.118.313105. PubMed DOI PMC
Nikoloudaki G., Snider P., Simmons O., Conway S.J., Hamilton D.W. Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing. Matrix Biol. 2020;94:31–56. doi: 10.1016/j.matbio.2020.07.002. PubMed DOI PMC
Shapland C., Hsuan J.J., Totty N.F., Lawson D. Purification and Properties of Transgelin—A Transformation and Shape Change Sensitive Actin-Gelling Protein. J. Cell Biol. 1993;121:1065–1073. doi: 10.1083/jcb.121.5.1065. PubMed DOI PMC
Sanz-Fraile H., Amoros S., Mendizabal I., Galvez-Monton C., Prat-Vidal C., Bayes-Genis A., Navajas D., Farre R., Otero J. Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture. Tissue Eng. Part A. 2020;26:358–370. doi: 10.1089/ten.tea.2019.0199. PubMed DOI
Filova E., Rampichova M., Litvinec A., Drzik M., Mickova A., Buzgo M., Kost'akova E., Martinova L., Usvald D., Prosecka E., et al. A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int. J. Pharm. 2013;447:139–149. doi: 10.1016/j.ijpharm.2013.02.056. PubMed DOI
de Jonge P., Simaioforidis V., Geutjes P., Oosterwijk E., Feitz W. Ureteral reconstruction with reinforced collagen scaffolds in a porcine model. J. Tissue Eng. Regen. Med. 2016;12:80–88. doi: 10.1002/term.2366. PubMed DOI
Syedain Z.H., Tranquillo R.T. TGF-beta 1 diminishes collagen production during long-term cyclic stretching of engineered connective tissue: Implication of decreased ERK signaling. J. Biomech. 2011;44:848–855. doi: 10.1016/j.jbiomech.2010.12.007. PubMed DOI PMC
Bono N., Meghezi S., Soncini M., Piola M., Mantovani D., Fiore G.B. A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models. Ann. Biomed. Eng. 2017;45:1496–1510. doi: 10.1007/s10439-017-1813-9. PubMed DOI
Suchy T., Supova M., Klapkova E., Adamkova V., Zavora J., Zaloudkova M., Ryglova S., Ballay R., Denk F., Pokorny M., et al. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure. Eur. J. Pharm. Sci. 2017;100:219–229. doi: 10.1016/j.ejps.2017.01.032. PubMed DOI
Braun M., Ryglova S., Suchy T. Determination of glycosaminoglycans in biological matrices using a simple and sensitive reversed-phase HPLC method with fluorescent detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021;1173:122626. doi: 10.1016/j.jchromb.2021.122626. PubMed DOI
Stepanovska J., Otahal M., Hanzalek K., Supova M., Matejka R. pH Modification of High-Concentrated Collagen Bioinks as a Factor Affecting Cell Viability, Mechanical Properties, and Printability. Gels. 2021;7:252. doi: 10.3390/gels7040252. PubMed DOI PMC
Estes B.T., Diekman B.O., Gimble J.M., Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 2010;5:1294–1311. doi: 10.1038/nprot.2010.81. PubMed DOI PMC
Travnickova M., Pajorova J., Zarubova J., Krocilova N., Molitor M., Bacakova L. The Influence of Negative Pressure and of the Harvesting Site on the Characteristics of Human Adipose Tissue-Derived Stromal Cells from Lipoaspirates. Stem Cells Int. 2020;2020:1016231. doi: 10.1155/2020/1016231. PubMed DOI PMC