Adipose-Derived Stem Cells in Reinforced Collagen Gel: A Comparison between Two Approaches to Differentiation towards Smooth Muscle Cells

. 2023 Mar 16 ; 24 (6) : . [epub] 20230316

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36982766

Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.

Zobrazit více v PubMed

World Health Organisation Cardiovascular Diseases (CVDs) [(accessed on 8 March 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

Moore M.J., Tan R.P., Yang N., Rnjak-Kovacina J., Wise S.G. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol. 2022;40:693–707. doi: 10.1016/j.tibtech.2021.11.003. PubMed DOI

Ebert N., McGinnis M., Johnson W., Kuhn E.M., Mitchell M.E., Tweddell J.S., Woods R.K. Comparison of Patch Materials for Pulmonary Artery Reconstruction. Semin. Thorac. Cardiovasc. Surg. 2021;33:459–465. doi: 10.1053/j.semtcvs.2020.09.011. PubMed DOI PMC

Zhang F., Xie Y., Celik H., Akkus O., Bernacki S.H., King M.W. Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels. Biofabrication. 2019;11:035020. doi: 10.1088/1758-5090/ab15ce. PubMed DOI PMC

Yao Y., Wang J., Cui Y., Xu R., Wang Z., Zhang J., Wang K., Li Y., Zhao Q., Kong D. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialisation. Acta Biomater. 2014;10:2739–2749. doi: 10.1016/j.actbio.2014.02.042. PubMed DOI

Alexandre N., Amorim I., Caseiro A.R., Pereira T., Alvites R., Rema A., Goncalves A., Valadares G., Costa E., Santos-Silva A., et al. Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. Int. J. Pharm. 2017;523:515–530. doi: 10.1016/j.ijpharm.2017.02.043. PubMed DOI

Babrnakova J., Pavlinakova V., Brtnikova J., Sedlacek P., Prosecka E., Rampichova M., Filova E., Hearnden V., Vojtova L. Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterisation, in vitro and ex ovo evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;100:236–246. doi: 10.1016/j.msec.2019.02.092. PubMed DOI

Cho S.W., Park H.J., Ryu J.H., Kim S.H., Kim Y.H., Choi C.Y., Lee M.J., Kim J.S., Jang I.S., Kim D.I., et al. Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularised tissue matrices. Biomaterials. 2005;26:1915–1924. doi: 10.1016/j.biomaterials.2004.06.018. PubMed DOI

Zhao Y., Zhang S., Zhou J., Wang J., Zhen M., Liu Y., Chen J., Qi Z. The development of a tissue-engineered artery using decellularised scaffold and autologous ovine mesenchymal stem cells. Biomaterials. 2010;31:296–307. doi: 10.1016/j.biomaterials.2009.09.049. PubMed DOI

Malladi S., Miranda-Nieves D., Leng L., Grainger S.J., Tarabanis C., Nesmith A.P., Kosaraju R., Haller C.A., Parker K.K., Chaikof E.L., et al. Continuous Formation of Ultrathin, Strong Collagen Sheets with Tunable Anisotropy and Compaction. ACS Biomater. Sci. Eng. 2020;6:4236–4246. doi: 10.1021/acsbiomaterials.0c00321. PubMed DOI PMC

Patil V.A., Masters K.S. Engineered Collagen Matrices. Bioengineering. 2020;7:163. doi: 10.3390/bioengineering7040163. PubMed DOI PMC

Aras O., Kazanci M. Production of collagen micro- and nanofibers for potential drug-carrier systems. J. Enzym. Inhib. Med. Chem. 2015;30:1013–1016. doi: 10.3109/14756366.2014.976567. PubMed DOI

Ju Y.M., Ahn H., Arenas-Herrera J., Kim C., Abolbashari M., Atala A., Yoo J.J., Lee S.J. Electrospun vascular scaffold for cellularised small diameter blood vessels: A preclinical large animal study. Acta Biomater. 2017;59:58–67. doi: 10.1016/j.actbio.2017.06.027. PubMed DOI

Meghezi S., Seifu D.G., Bono N., Unsworth L., Mequanint K., Mantovani D. Engineering 3D Cellularised Collagen Gels for Vascular Tissue Regeneration. J. Vis. Exp. 2015;100:e52812. doi: 10.3791/52812. PubMed DOI PMC

Kumar V.A., Caves J.M., Haller C.A., Dai E., Liu L., Grainger S., Chaikof E.L. Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomater. 2013;9:8067–8074. doi: 10.1016/j.actbio.2013.05.024. PubMed DOI PMC

Matsuhashi A., Nam K., Kimura T., Kishida A. Fabrication of fibrillised collagen microspheres with the microstructure resembling an extracellular matrix. Soft Matter. 2015;11:2844–2851. doi: 10.1039/C4SM01982B. PubMed DOI

Hu Y., Dan W., Xiong S., Kang Y., Dhinakar A., Wu J., Gu Z. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold. Acta Biomater. 2017;47:135–148. doi: 10.1016/j.actbio.2016.10.017. PubMed DOI

Dewle A., Rakshasmare P., Srivastava A. A Polycaprolactone (PCL)-Supported Electrocompacted Aligned Collagen Type-I Patch for Annulus Fibrosus Repair and Regeneration. ACS Appl. Bio Mater. 2021;4:1238–1251. doi: 10.1021/acsabm.0c01084. PubMed DOI

Leite F.G., Marana J.F., de Sá L.F.T., Alves de Almeida T.F.R., do Carmo H.R.P., Chaud M.V., Grotto D., Silveira-Filho L.D.M. Effects of a collagen hyaluronic acid silk-fibroin patch with the electroconductive element polyaniline on left ventricular remodelling in an infarct heart model. J. Biomed. Mater. Res. B Appl. Biomater. 2022;110:1651–1666. doi: 10.1002/jbm.b.35026. PubMed DOI

Goel H., Gupta N., Santhiya D., Dey N., Bohidar H.B., Bhattacharya A. Bioactivity reinforced surface patch bound collagen-pectin hydrogel. Int. J. Biol. Macromol. 2021;174:240–253. doi: 10.1016/j.ijbiomac.2021.01.166. PubMed DOI

Wertheimer S., Sharabi M., Shelah O., Lesman A., Haj-Ali R. Bio-composites reinforced with unique coral collagen fibers: Towards biomimetic-based small diameter vascular grafts. J. Mech. Behav. Biomed. 2021;119:104526. doi: 10.1016/j.jmbbm.2021.104526. PubMed DOI

Zheng X., Chen Y., Dan N., Li Z., Dan W. Anti-calcification potential of collagen based biological patch crosslinked by epoxidised polysaccharide. Int. J. Biol. Macromol. 2022;209:1695–1702. doi: 10.1016/j.ijbiomac.2022.04.117. PubMed DOI

Hong H., Kim J., Cho H., Park S.M., Jeon M., Kim H.K., Kim D.S. Ultra-stiff compressed collagen for corneal perforation patch graft realised by in situ photochemical crosslinking. Biofabrication. 2020;12:045030. doi: 10.1088/1758-5090/abb52a. PubMed DOI

Yan M., An X., Duan S., Jiang Z., Liu X., Zhao X., Li Y. A comparative study on cross-linking of fibrillar gel prepared by tilapia collagen and hyaluronic acid with EDC/NHS and genipin. Int. J. Biol. Macromol. 2022;213:639–650. doi: 10.1016/j.ijbiomac.2022.06.006. PubMed DOI

Orban J.M., Wilson L.B., Kofroth J.A., El-Kurdi M.S., Maul T.M., Vorp D.A. Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. A. 2004;68:756–762. doi: 10.1002/jbm.a.20110. PubMed DOI

Adamiak K., Sionkowska A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020;161:550–560. doi: 10.1016/j.ijbiomac.2020.06.075. PubMed DOI

Maarof M., Mh Busra M.F., Lokanathan Y., Bt Hj Idrus R., Rajab N.F., Chowdhury S.R. Safety and efficacy of dermal fibroblast conditioned medium (DFCM) fortified collagen hydrogel as acellular 3D skin patch. Drug Deliv. Transl. Res. 2019;9:144–161. doi: 10.1007/s13346-018-00612-z. PubMed DOI

Filova E., Steinerova M., Travnickova M., Knitlova J., Musilkova J., Eckhardt A., Hadraba D., Matejka R., Prazak S., Stepanovska J., et al. Accelerated in vitro recellularisation of decellularised porcine pericardium for cardiovascular grafts. Biomed. Mater. 2021;16:025024. doi: 10.1088/1748-605X/abbdbd. PubMed DOI

Sun B., Chen B., Zhao Y., Sun W., Chen K., Zhang J., Wei Z., Xiao Z., Dai J. Crosslinking heparin to collagen scaffolds for the delivery of human platelet-derived growth factor. J. Biomed. Mater. Res. B Appl. Biomater. 2009;91:366–372. doi: 10.1002/jbm.b.31411. PubMed DOI

Miyagi Y., Chiu L.L., Cimini M., Weisel R.D., Radisic M., Li R.K. Biodegradable collagen patch with covalently immobilised VEGF for myocardial repair. Biomaterials. 2011;32:1280–1290. doi: 10.1016/j.biomaterials.2010.10.007. PubMed DOI

Chiu L.L., Radisic M. Scaffolds with covalently immobilised VEGF and Angiopoietin-1 for vascularisation of engineered tissues. Biomaterials. 2010;31:226–241. doi: 10.1016/j.biomaterials.2009.09.039. PubMed DOI

Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI

Yang L., Geng Z., Nickel T., Johnson C., Gao L., Dutton J., Hou C., Zhang J. Differentiation of Human Induced-Pluripotent Stem Cells into Smooth-Muscle Cells: Two Novel Protocols. PLoS ONE. 2016;11:e0147155. doi: 10.1371/journal.pone.0147155. PubMed DOI PMC

Yogi A., Rukhlova M., Charlebois C., Tian G., Stanimirovic D.B., Moreno M.J. Differentiation of Adipose-Derived Stem Cells into Vascular Smooth Muscle Cells for Tissue Engineering Applications. Biomedicines. 2021;9:797. doi: 10.3390/biomedicines9070797. PubMed DOI PMC

Walters B., Turner P.A., Rolauffs B., Hart M.L., Stegemann J.P. Controlled Growth Factor Delivery and Cyclic Stretch Induces a Smooth Muscle Cell-like Phenotype in Adipose-Derived Stem Cells. Cells. 2021;10:3123. doi: 10.3390/cells10113123. PubMed DOI PMC

Astori G., Amati E., Bambi F., Bernardi M., Chieregato K., Schafer R., Sella S., Rodeghiero F. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: Present and future. Stem Cell Res. Ther. 2016;7:93. doi: 10.1186/s13287-016-0352-x. PubMed DOI PMC

Park J.W., Hwang S.R., Yoon I.S. Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules. 2017;22:1259. doi: 10.3390/molecules22081259. PubMed DOI PMC

Elcin A.E., Parmaksiz M., Dogan A., Seker S., Durkut S., Dalva K., Elcin Y.M. Differential gene expression profiling of human adipose stem cells differentiating into smooth muscle-like cells by TGFbeta1/BMP4. Exp. Cell Res. 2017;352:207–217. doi: 10.1016/j.yexcr.2017.02.006. PubMed DOI

Nalinanon S., Benjakul S., Kishimura H., Osako K. Type I collagen from the skin of ornate threadfin bream (Nemipterus hexodon): Characteristics and effect of pepsin hydrolysis. Food Chem. 2011;125:500–507. doi: 10.1016/j.foodchem.2010.09.040. DOI

Veeruraj A., Arumugam M., Ajithkumar T., Balasubramanian T. Isolation and characterisation of collagen from the outer skin of squid (Doryteuthis singhalensis) Food Hydrocoll. 2015;43:708–716. doi: 10.1016/j.foodhyd.2014.07.025. DOI

Payne K.J., Veis A. Fourier-Transform Ir Spectroscopy of Collagen and Gelatin Solutions—Deconvolution of the Amide I-Band for Conformational Studies. Biopolymers. 1988;27:1749–1760. doi: 10.1002/bip.360271105. PubMed DOI

Jackson M., Choo L.P., Watson P.H., Halliday W.C., Mantsch H.H. Beware of Connective-Tissue Proteins—Assignment and Implications of Collagen Absorptions in Infrared-Spectra of Human Tissues. BBA-Mol. Basis Dis. 1995;1270:1–6. doi: 10.1016/0925-4439(94)00056-V. PubMed DOI

Rabotyagova E.S., Cebe P., Kaplan D.L. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C. 2008;28:1420–1429. doi: 10.1016/j.msec.2008.03.012. PubMed DOI PMC

Abdollahi M., Rezaei M., Jafarpour A., Undeland I. Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach. Food Chem. 2018;242:568–578. doi: 10.1016/j.foodchem.2017.09.045. PubMed DOI

Koprivova B., Lisnenko M., Solarska-Sciuk K., Prochazkova R., Novotny V., Mullerova J., Mikes P., Jencova V. Large-scale electrospinning of poly (vinylalcohol) nanofibers incorporated with platelet-derived growth factors. Express Polym. Lett. 2020;14:987–1000. doi: 10.3144/expresspolymlett.2020.80. DOI

Serpooshan V., Zhao M.M., Metzler S.A., Wei K., Shah P.B., Wang A., Mahmoudi M., Malkovskiy A.V., Rajadas J., Butte M.J., et al. The effect of bioengineered acellular collagen patch on cardiac remodelling and ventricular function post myocardial infarction. Biomaterials. 2013;34:9048–9055. doi: 10.1016/j.biomaterials.2013.08.017. PubMed DOI PMC

Zhu Y.K., Umino T., Liu X.D., Wang H.J., Romberger D.J., Spurzem J.R., Rennard S.I. Contraction of fibroblast-containing collagen gels: Initial collagen concentration regulates the degree of contraction and cell survival. Vitr. Cell. Dev.-Anim. 2001;37:10–16. doi: 10.1290/1071-2690(2001)037<0010:COFCCG>2.0.CO;2. PubMed DOI

Nashchekina Y.A., Yudintceva N.M., Nikonov P.O., Ivanova E.A., Smagina L.V., Voronkina I.V. Effect of Concentration of Collagen Gel on Functional Activity of Bone Marrow Mesenchymal Stromal Cells. Bull. Exp. Biol. Med. 2017;163:123–128. doi: 10.1007/s10517-017-3751-9. PubMed DOI

Bacakova M., Pajorova J., Broz A., Hadraba D., Lopot F., Zavadakova A., Vistejnova L., Beno M., Kostic I., Jencova V., et al. A two-layer skin construct consisting of a collagen hydrogel reinforced by a fibrin-coated polylactide nanofibrous membrane. Int. J. Nanomed. 2019;14:5033–5050. doi: 10.2147/IJN.S200782. PubMed DOI PMC

Velez D.O., Tsui B., Goshia T., Chute C.L., Han A., Carter H., Fraley S.I. 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat. Commun. 2017;8:1651. doi: 10.1038/s41467-017-01556-7. PubMed DOI PMC

Valero C., Amaveda H., Mora M., Garcia-Aznar J.M. Combined experimental and computational characterisation of crosslinked collagen-based hydrogels. PLoS ONE. 2018;13:e0195820. doi: 10.1371/journal.pone.0195820. PubMed DOI PMC

Williams C., Xie A.W., Emani S., Yamato M., Okano T., Emani S.M., Wong J.Y. A Comparison of Human Smooth Muscle and Mesenchymal Stem Cells as Potential Cell Sources for Tissue-Engineered Vascular Patches. Tissue Eng. Part A. 2012;18:986–998. doi: 10.1089/ten.tea.2011.0172. PubMed DOI

Jeon E.S., Moon H.J., Lee M.J., Song H.Y., Kim Y.M., Bae Y.C., Jung J.S., Kim J.H. Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. J. Cell Sci. 2006;119:4994–5005. doi: 10.1242/jcs.03281. PubMed DOI

Li X., Xie X.Y., Lian W.S., Shi R.F., Han S.L., Zhang H.J., Lu L.G., Li M.Q. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularisation in a diabetic foot ulcer rat model. Exp. Mol. Med. 2018;50:1–14. doi: 10.1038/s12276-018-0058-5. PubMed DOI PMC

Morikawa M., Derynck R., Miyazono K. TGF-beta and the TGF-beta Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016;8:a021873. doi: 10.1101/cshperspect.a021873. PubMed DOI PMC

Goumans M.J., Valdimarsdottir G., Itoh S., Rosendahl A., Sideras P., ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 2002;21:1743–1753. doi: 10.1093/emboj/21.7.1743. PubMed DOI PMC

Peshavariya H.M., Chan E.C., Liu G.S., Jiang F., Dusting G.J. Transforming growth factor-beta 1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. J. Cell. Mol. Med. 2014;18:1172–1183. doi: 10.1111/jcmm.12263. PubMed DOI PMC

Suzuki Y., Montagne K., Nishihara A., Watabe T., Miyazono K. BMPs promote proliferation and migration of endothelial cells via stimulation of VEGF-A/VEGFR2 and Angiopoietin-1/Tie2 signalling. J. Biochem. 2008;143:199–206. doi: 10.1093/jb/mvm215. PubMed DOI

Li Q., Kou X.T., Qin X.L., Li Z.S., Li J.Y., Chen C. BMP-4 impedes endothelial cell migration in neointimal hyperplasia via FoXO-3 specific modulation of reactive oxygen species. Atherosclerosis. 2022;351:9–17. doi: 10.1016/j.atherosclerosis.2022.05.004. PubMed DOI

Tiaka E.K., Papanas N., Manolakis A.C., Georgiadis G.S. Epidermal growth factor in the treatment of diabetic foot ulcers: An update. Perspect. Vasc. Surg. Endovasc. Ther. 2012;24:37–44. doi: 10.1177/1531003512442093. PubMed DOI

Lu Q.B., Wan M.Y., Wang P.Y., Zhang C.X., Xu D.Y., Liao X., Sun H.J. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFkappaB/mTOR/P70S6K signaling cascade. Redox Biol. 2018;14:656–668. doi: 10.1016/j.redox.2017.11.012. PubMed DOI PMC

Gianni-Barrera R., Butschkau A., Uccelli A., Certelli A., Valente P., Bartolomeo M., Groppa E., Burger M.G., Hlushchuk R., Heberer M., et al. PDGF-BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF-induced endothelial proliferation. Angiogenesis. 2018;21:883–900. doi: 10.1007/s10456-018-9634-5. PubMed DOI PMC

Filova E., Blanquer A., Knitlova J., Plencner M., Jencova V., Koprivova B., Lisnenko M., Kostakova E.K., Prochazkova R., Bacakova L. The Effect of the Controlled Release of Platelet Lysate from PVA Nanomats on Keratinocytes, Endothelial Cells and Fibroblasts. Nanomaterials. 2021;11:995. doi: 10.3390/nano11040995. PubMed DOI PMC

Li C.Y., Wu X.Y., Tong J.B., Yang X.X., Zhao J.L., Zheng Q.F., Zhao G.B., Ma Z.J. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res. Ther. 2015;6:55. doi: 10.1186/s13287-015-0066-5. PubMed DOI PMC

Cowper M., Frazier T., Wu X., Curley J.L., Ma M.H., Mohiuddin O.A., Dietrich M., McCarthy M., Bukowska J., Gimble J.M. Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells. 2019;8:724. doi: 10.3390/cells8070724. PubMed DOI PMC

Camasao D.B., Pezzoli D., Loy C., Kumra H., Levesque L., Reinhardt D.P., Candiani G., Mantovani D. Increasing Cell Seeding Density Improves Elastin Expression and Mechanical Properties in Collagen Gel-Based Scaffolds Cellularised with Smooth Muscle Cells. Biotechnol. J. 2019;14:e1700768. doi: 10.1002/biot.201700768. PubMed DOI

Yamashiro Y., Thang B.Q., Shin S.J., Lino C.A., Nakamura T., Kim J., Sugiyama K., Tokunaga C., Sakamoto H., Osaka M., et al. Role of Thrombospondin-1 in Mechanotransduction and Development of Thoracic Aortic Aneurysm in Mouse and Humans. Circ. Res. 2018;123:660–672. doi: 10.1161/CIRCRESAHA.118.313105. PubMed DOI PMC

Nikoloudaki G., Snider P., Simmons O., Conway S.J., Hamilton D.W. Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing. Matrix Biol. 2020;94:31–56. doi: 10.1016/j.matbio.2020.07.002. PubMed DOI PMC

Shapland C., Hsuan J.J., Totty N.F., Lawson D. Purification and Properties of Transgelin—A Transformation and Shape Change Sensitive Actin-Gelling Protein. J. Cell Biol. 1993;121:1065–1073. doi: 10.1083/jcb.121.5.1065. PubMed DOI PMC

Sanz-Fraile H., Amoros S., Mendizabal I., Galvez-Monton C., Prat-Vidal C., Bayes-Genis A., Navajas D., Farre R., Otero J. Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture. Tissue Eng. Part A. 2020;26:358–370. doi: 10.1089/ten.tea.2019.0199. PubMed DOI

Filova E., Rampichova M., Litvinec A., Drzik M., Mickova A., Buzgo M., Kost'akova E., Martinova L., Usvald D., Prosecka E., et al. A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int. J. Pharm. 2013;447:139–149. doi: 10.1016/j.ijpharm.2013.02.056. PubMed DOI

de Jonge P., Simaioforidis V., Geutjes P., Oosterwijk E., Feitz W. Ureteral reconstruction with reinforced collagen scaffolds in a porcine model. J. Tissue Eng. Regen. Med. 2016;12:80–88. doi: 10.1002/term.2366. PubMed DOI

Syedain Z.H., Tranquillo R.T. TGF-beta 1 diminishes collagen production during long-term cyclic stretching of engineered connective tissue: Implication of decreased ERK signaling. J. Biomech. 2011;44:848–855. doi: 10.1016/j.jbiomech.2010.12.007. PubMed DOI PMC

Bono N., Meghezi S., Soncini M., Piola M., Mantovani D., Fiore G.B. A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models. Ann. Biomed. Eng. 2017;45:1496–1510. doi: 10.1007/s10439-017-1813-9. PubMed DOI

Suchy T., Supova M., Klapkova E., Adamkova V., Zavora J., Zaloudkova M., Ryglova S., Ballay R., Denk F., Pokorny M., et al. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure. Eur. J. Pharm. Sci. 2017;100:219–229. doi: 10.1016/j.ejps.2017.01.032. PubMed DOI

Braun M., Ryglova S., Suchy T. Determination of glycosaminoglycans in biological matrices using a simple and sensitive reversed-phase HPLC method with fluorescent detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021;1173:122626. doi: 10.1016/j.jchromb.2021.122626. PubMed DOI

Stepanovska J., Otahal M., Hanzalek K., Supova M., Matejka R. pH Modification of High-Concentrated Collagen Bioinks as a Factor Affecting Cell Viability, Mechanical Properties, and Printability. Gels. 2021;7:252. doi: 10.3390/gels7040252. PubMed DOI PMC

Estes B.T., Diekman B.O., Gimble J.M., Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 2010;5:1294–1311. doi: 10.1038/nprot.2010.81. PubMed DOI PMC

Travnickova M., Pajorova J., Zarubova J., Krocilova N., Molitor M., Bacakova L. The Influence of Negative Pressure and of the Harvesting Site on the Characteristics of Human Adipose Tissue-Derived Stromal Cells from Lipoaspirates. Stem Cells Int. 2020;2020:1016231. doi: 10.1155/2020/1016231. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Vascular Damage and Repair - Are Small-Diameter Vascular Grafts Still the "Holy Grail" of Tissue Engineering?

. 2024 May 31 ; 73 (Suppl 1) : S335-S363. [epub] 20240531

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace