Vascular Damage and Repair - Are Small-Diameter Vascular Grafts Still the "Holy Grail" of Tissue Engineering?

. 2024 May 31 ; 73 (Suppl 1) : S335-S363. [epub] 20240531

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38836460

Cardiovascular diseases are the most important cause of morbidity and mortality in the civilized world. Stenosis or occlusion of blood vessels leads not only to events that are directly life-threatening, such as myocardial infarction or stroke, but also to a significant reduction in quality of life, for example in lower limb ischemia as a consequence of metabolic diseases. The first synthetic polymeric vascular replacements were used clinically in the early 1950s. However, they proved to be suitable only for larger-diameter vessels, where the blood flow prevents the attachment of platelets, pro-inflammatory cells and smooth muscle cells on their inner surface, whereas in smaller-diameter grafts (6 mm or less), these phenomena lead to stenosis and failure of the graft. Moreover, these polymeric vascular replacements, like biological grafts (decellularized or devitalized), are cell-free, i.e. there are no reconstructed physiological layers of the blood vessel wall, i.e. an inner layer of endothelial cells to prevent thrombosis, a middle layer of smooth muscle cells to perform the contractile function, and an outer layer to provide innervation and vascularization of the vessel wall. Vascular substitutes with these cellular components can be constructed by tissue engineering methods. However, it has to be admitted that even about 70 years after the first polymeric vascular prostheses were implanted into human patients, there are still no functional small-diameter vascular grafts on the market. The damage to small-diameter blood vessels has to be addressed by endovascular approaches or by autologous vascular substitutes, which leads to some skepticism about the potential of tissue engineering. However, new possibilities of this approach lie in the use of modern technologies such as 3D bioprinting and/or electrospinning in combination with stem cells and pre-vascularization of tissue-engineered vascular grafts. In this endeavor, sex-related differences in the removal of degradable biomaterials by the cells and in the behavior of stem cells and pre-differentiated vascular cells need to be taken into account. Key words: Blood vessel prosthesis, Regenerative medicine, Stem cells, Footprint-free iPSCs, sr-RNA, Dynamic bioreactor, Sex-related differences.

Zobrazit více v PubMed

Gupta S, Khanal S, Bhavnani N, Mathias A, Lallo J, Kiriakou A, Ferrell J, Raman P. Sex-specific differences in atherosclerosis, thrombospondin-1, and smooth muscle cell differentiation in metabolic syndrome versus non-metabolic syndrome mice. Front Cardiovasc Med. 2022;9:1020006. doi: 10.3389/fcvm.2022.1020006. PubMed DOI PMC

World Health Organization. Cardiovascular diseases (CVDs) Jun 11, 2021. [accessed December 10, 2023]. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

OECD. European Observatory on Health Systems and Policies. Czechia: Country Health Profile 2021 OECD; 2021. [accessed December 10, 2023]. https://health.ec.europa.eu/system/files/2021-12/2021_chp_cs_english.pdf .

Robert J. Sex differences in vascular endothelial cells. Atherosclerosis. 2023;384:117278. doi: 10.1016/j.atherosclerosis.2023.117278. PubMed DOI

Bacakova L, Travnickova M, Filova E, Matějka R, Stepanovska J, Musilkova J, Zarubova J, Molitor M. The role of vascular smooth muscle cells in the physiology and pathophysiology of blood vessels. In: Sakuma K, editor. Muscle Cell and Tissue - Current Status of Research Field. IntechOpen; London, United Kingdom: 2018. pp. 229–256. DOI

Loukotová J, Bacáková L, Zicha J, Kunes J. The influence of angiotensin II on sex-dependent proliferation of aortic VSMC isolated from SHR. Physiol Res. 1998;47:501–505. PubMed

Ely DL, Falvo J, Dunphy G, Caplea A, Salisbury R, Turner M. The spontaneously hypertensive rat Y chromosome produces an early testosterone rise in normotensive rats. J Hypertens. 1994;12:769–774. doi: 10.1097/00004872-199407000-00007. PubMed DOI

Ely D, Caplea A, Dunphy G, Daneshvar H, Turner M, Milsted A, Takiyyuddin M. Spontaneously hypertensive rat Y chromosome increases indexes of sympathetic nervous system activity. Hypertension. 1997;29:613–618. doi: 10.1161/01.HYP.29.2.613. PubMed DOI

Ueda K, Lu Q, Baur W, Aronovitz MJ, Karas RH. Rapid estrogen receptor signaling mediates estrogen-induced inhibition of vascular smooth muscle cell proliferation. Arterioscler Thromb Vasc Biol. 2013;33:1837–1843. doi: 10.1161/ATVBAHA.112.300752. PubMed DOI PMC

Hogg ME, Vavra AK, Banerjee MN, Martinez J, Jiang Q, Keefer LK, Chambon P, Kibbe MR. The role of estrogen receptor α and β in regulating vascular smooth muscle cell proliferation is based on sex. J Surg Res. 2012;173:e1–e10. doi: 10.1016/j.jss.2011.09.021. PubMed DOI PMC

Sivritas D, Becher MU, Ebrahimian T, Arfa O, Rapp S, Bohner A, Mueller CF, Umemura T, Wassmann S, Nickenig G, Wassmann K. Antiproliferative effect of estrogen in vascular smooth muscle cells is mediated by Kruppel-like factor-4 and manganese superoxide dismutase. Basic Res Cardiol. 2011;106:563–575. doi: 10.1007/s00395-011-0174-z. PubMed DOI

Benditt EP, Benditt JM. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci USA. 1973;70:1753–1756. doi: 10.1073/pnas.70.6.1753. PubMed DOI PMC

Pearson TA, Kramer EC, Solez K, Heptinstall RH. The human atherosclerotic plaque. Am J Pathol. 1977;86:657–664. PubMed PMC

Benditt EP, Barrett T, McDougall JK. Viruses in the etiology of atherosclerosis. Proc Natl Acad Sci USA. 1983;80:6386–6389. doi: 10.1073/pnas.80.20.6386. PubMed DOI PMC

Bacakova L, Mares V. Cell kinetics of aortic smooth muscle cells in long-term cultures prepared from rats raised under conventional and spf conditions. Physiol Res. 1995;44:389–398. PubMed

Schwartz CJ, Valente AJ, Sprague EA, Kelley JL, Suenram CA, Rozek MM. Atherosclerosis as an inflammatory process: The roles of the monocyte-macrophage a. Ann N Y Acad Sci. 1985;454:115–120. doi: 10.1111/j.1749-6632.1985.tb11849.x. PubMed DOI

Takahashi K, Takeya M, Sakashita N. Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Med Electron Microsc. 2002;35:179–203. doi: 10.1007/s007950200023. PubMed DOI

Mensah EA, Daneshtalab N, Tabrizchi R. Differential biomechanics in resistance arteries of male compared with female Dahl hypertensive rats. J Hypertens. 2022;40:596–605. doi: 10.1097/HJH.0000000000003053. PubMed DOI PMC

Sakkers TR, Mokry M, Civelek M, Erdmann J, Pasterkamp G, Diez Benavente E, den Ruijter HM. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis. 2023;384:117279. doi: 10.1016/j.atherosclerosis.2023.117279. PubMed DOI

Hartman RJG, Owsiany K, Ma L, Koplev S, Hao K, Slenders L, Civelek M, Mokry M, Kovacic JC, Pasterkamp G, Owens G, Björkegren JLM, den Ruijter HM. Sex-stratified gene regulatory networks reveal female key driver genes of atherosclerosis involved in smooth muscle cell phenotype switching. Circulation. 2021;143:713–726. doi: 10.1161/CIRCULATIONAHA.120.051231. PubMed DOI PMC

Vogt BJ, Peters DK, Anseth KS, Aguado BA. Inflammatory serum factors from aortic valve stenosis patients modulate sex differences in valvular myofibroblast activation and osteoblast-like differentiation. Biomater Sci. 2022;10:6341–6353. https://doi.org/10.1039/D2BM00844K, https://doi.org/10.1039/D2BM90082C. PubMed DOI PMC

Chlupáč J, Filová E, Bačáková L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res. 2009:S119–S140. doi: 10.33549/physiolres.931918. PubMed DOI

Chlupac J, Matejka R, Konarik M, Novotny R, Simunkova Z, Mrazova I, Fabian O, Zapletal M, Pulda Z, Lipensky JF, Stepanovska J, Hanzalek K, Broz A, Novak T, Lodererova A, Voska L, Adla T, Fronek J, Rozkot M, Forostyak S, Kneppo P, Bacakova L, Pirk J. Vascular remodeling of clinically used patches and decellularized pericardial matrices recellularized with autologous or allogeneic cells in a porcine carotid artery model. Int J Mol Sci. 2022;23:3310. doi: 10.3390/ijms23063310. PubMed DOI PMC

Zilla P, Deutsch M, Bezuidenhout D, Davies NH, Pennel T. Progressive reinvention or destination lost? Half a century of cardiovascular tissue engineering. Front Cardiovasc Med. 2020;7:159. doi: 10.3389/fcvm.2020.00159. PubMed DOI PMC

Voorhees AB, Jaretzki A, Blakemore AH. The use of tubes constructed from vinyon "n" cloth in bridging arterial defects a preliminary report. Ann Surg. 1952;135:332–336. doi: 10.1097/00000658-195203000-00006. PubMed DOI PMC

Blakemore AH, Voorhers AB. The use of tubes constructed from vinyon "N" cloth in bridging arterial defects-experimental and clinical. Ann Surg. 1954;140:324–334. doi: 10.1097/00000658-195409000-00008. PubMed DOI PMC

Gaudino M, Bakaeen FG, Benedetto U, Di Franco A, Fremes S, Glineur D, Girardi LN, Grau J, Puskas JD, Ruel M, Tam DY, Taggart DP, Antoniades C, Patrono C, Schwann TA, Tatoulis J, Tranbaugh RF. Arterial grafts for coronary bypass: a critical review after the publication of art and radial. Circulation. 2019;140:1273–1284. doi: 10.1161/CIRCULATIONAHA.119.041096. PubMed DOI

Ghandakly EC, Tipton AE, Bakaeen FG. Pathophysiology and management of saphenous vein graft disease. Expert Rev Cardiovasc. 2023;21:565–572. doi: 10.1080/14779072.2023.2233420. PubMed DOI

Kim Y, Jung JH, Hwang D, Yun W-S, Huh S, Kim H-K. Below-knee prosthetic bypass is a viable option for limb salvage in patients with extensive femoropopliteal occlusive disease. Vasc Specialist Int. 2023;39:16. doi: 10.5758/vsi.230028. PubMed DOI PMC

Bram R, Almadidy Z, Souter J, Roskova I, Charbel FT. Vertebral artery to middle cerebral artery bypass for flow augmentation. Oper Neurosurg. 2023 doi: 10.1227/ons.0000000000000942. PubMed DOI

Kakisis JD, Liapis CD, Breuer C, Sumpio BE. Artificial blood vessel: the holy grail of peripheral vascular surgery. J Vasc Surg. 2005;41:349–354. doi: 10.1016/j.jvs.2004.12.026. PubMed DOI

Eghbalzadeh K, Guschlbauer M, Weber C, Wacker MT, Reinhardt S, Djordjevic I, Sabashnikov A, Maul A, Sterner-Kock A, Wahlers TCW, Scherner M, Wippermann J. Experimental studies for small diameter grafts in an in vivo sheep model-techniques and pitfalls. Thorac Cardiovasc Surg. 2021;69:649–659. doi: 10.1055/s-0039-1687887. PubMed DOI

Olausson M, Kuna VK, Travnikova G, Bäckdahl H, Patil PB, Saalman R, Borg H, Jeppsson A, Sumitran-Holgersson S. In vivo application of tissue-engineered veins using autologous peripheral whole blood: a proof of concept study. EBioMedicine. 2014;1:72–79. doi: 10.1016/j.ebiom.2014.09.001. PubMed DOI PMC

Fronek J, Chlupac J. Transplantation surgery department at IKEM hospital, Prague, Czech Republic: increasing volume and improving outcomes through innovative clinical strategies and technical approaches. Transplantation. 2023;107:2285–2289. doi: 10.1097/TP.0000000000004633. PubMed DOI

Chen S, Wang J, Jia F, Shen Z, Zhang W, Wang Y, Ren K, Fu G, Ji J. Bioinspired NO release coating enhances endothelial cells and inhibits smooth muscle cells. J Mater Chem B. 2022;10:2454–2462. doi: 10.1039/D1TB01828K. PubMed DOI

Filova E, Parizek M, Olsovska J, Kamenik Z, Brynda E, Riedel T, Vandrovcova M, Lisa V, Machova L, Skalsky I, Szarszoi O, Suchy T, Bacakova L. Perivascular sirolimus-delivery system. Int J Pharm Sci. 2011;404:94–101. doi: 10.1016/j.ijpharm.2010.11.005. PubMed DOI

Skalský I, Filová E, Szárszoi O, Pařízek M, Lytvynets A, Malušková J, Lodererová A, Brynda E, Lisá V, Burdíková Z, Čapek M, Pirk J, Bačáková L. A periadventitial sirolimus-releasing mesh decreased intimal hyperplasia in a rabbit model. Physiol Res. 2011;60:585–588. doi: 10.33549/physiolres.932106. PubMed DOI

Skalský I, Szárszoi O, Filová E, Pařízek M, Lytvynets A, Malušková J, Lodererová A, Brynda E, Lisá V, Burdíková Z, Čapek M, Pirk J, Bačáková L. A perivascular system releasing sirolimus prevented intimal hyperplasia in a rabbit model in a medium-term study. Int J Pharm Sci. 2012;427:311–319. doi: 10.1016/j.ijpharm.2012.02.023. PubMed DOI

Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–400. doi: 10.1126/science.2934816. PubMed DOI

Herring M, Gardner A, Glover J. Seeding human arterial prostheses with mechanically derived endothelium. J Vasc Surg. 1984;1:279–289. https://doi.org/10.1016/0741-5214(84)90059-4, https://doi.org/10.1067/mva.1984.avs0010279. PubMed DOI

Shin'oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344:532–533. doi: 10.1056/NEJM200102153440717. PubMed DOI

L'Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med. 2007;357:1451–1453. doi: 10.1056/NEJMc071536. PubMed DOI

Wystrychowski W, McAllister TN, Zagalski K, Dusserre N, Cierpka L, L' Heureux N. First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access. J Vasc Surg. 2014;60:1353–1357. doi: 10.1016/j.jvs.2013.08.018. PubMed DOI

Kato N, Yamagishi M, Kanda K, Miyazaki T, Maeda Y, Yamanami M, Watanabe T, Yaku H. First successful clinical application of the in vivo tissue-engineered autologous vascular graft. Ann Thorac Surg. 2016;102:1387–1390. doi: 10.1016/j.athoracsur.2016.06.095. PubMed DOI

Gutowski P, Gage SM, Guziewicz M, Ilzecki M, Kazimierczak A, Kirkton RD, Niklason LE, Pilgrim A, Prichard HL, Przywara S, Samad R, Tente B, Turek J, Witkiewicz W, Zapotoczny N, Zubilewicz T, Lawson JH. Arterial reconstruction with human bioengineered acellular blood vessels in patients with peripheral arterial disease. J Vasc Surg. 2020;72:1247–1258. doi: 10.1016/j.jvs.2019.11.056. PubMed DOI

Gutowski P, Guziewicz M, Ilzecki M, Kazimierczak A, Lawson JH, Prichard HL, Przywara S, Samad R, Tente W, Turek J, Witkiewicz W, Zapotoczny N, Zubilewicz T, Niklason LE. Six-year outcomes of a phase II study of human-tissue engineered blood vessels for peripheral arterial bypass. JVS-Vascular Science. 2023;4:100092. doi: 10.1016/j.jvssci.2022.11.001. PubMed DOI PMC

Laube HR, Duwe J, Rutsch W, Konertz W. Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J Thorac Cardiovasc Surg. 2000;120:134–141. doi: 10.1067/mtc.2000.106327. PubMed DOI

Lamm P, Juchem G, Milz S, Schuffenhauer M, Reichart B. Autologous endothelialized vein allograft: a solution in the search for small-caliber grafts in coronary artery bypass graft operations. Circulation. 2001;104:I108–I114. doi: 10.1161/hc37t1.094527. PubMed DOI

Deutsch M, Eberl T, Fischlein T, Meinhart J, Minar E, Puschmann R, Schmid P, Zilla P. In vitro endothelialization of ePTFE vascular prostheses in clinical use: preliminary results] Vasa Suppl. 1990;30:219–220. PubMed

Zilla P, Deutsch M, Meinhart J, Puschmann R, Eberl T, Minar E, Dudczak R, Lugmaier H, Schmidt P, Noszian I, Fischlein T. Clinical in vitro endothelialization of femoropopliteal bypass grafts: An actuarial follow-up over three years. J Vasc Surg. 1994;19:540–548. doi: 10.1016/S0741-5214(94)70083-4. PubMed DOI

Meinhart J, Deutsch M, Zilla P. Eight years of clinical endothelial cell transplantation. Closing the gap between prosthetic grafts and vein grafts. ASAIO J. 1997;43:M515–521. doi: 10.1097/00002480-199709000-00034. PubMed DOI

Deutsch M, Meinhart J, Zilla P, Howanietz N, Gorlitzer M, Froeschl A, Stuempflen A, Bezuidenhout D, Grabenwoeger M. Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts. J Vasc Surg. 2009;49:352–362. doi: 10.1016/j.jvs.2008.08.101. PubMed DOI

Shin'oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg. 2005;129:1330–1338. doi: 10.1016/j.jtcvs.2004.12.047. PubMed DOI

Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, Shinoka T. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Sur. 2010;139:431–436.e1. doi: 10.1016/j.jtcvs.2009.09.057. PubMed DOI

Sugiura T, Matsumura G, Miyamoto S, Miyachi H, Breuer CK, Shinoka T. Tissue-engineered vascular grafts in children with congenital heart disease: Intermediate term follow-up. J Thorac Cardiovasc Surg. 2018;30:175–179. doi: 10.1053/j.semtcvs.2018.02.002. PubMed DOI PMC

Bockeria LA, Svanidze O, Kim A, Shatalov K, Makarenko V, Cox M, Carrel T. Total cavopulmonary connection with a new bioabsorbable vascular graft: First clinical experience. J Thorac Cardiovasc Surg. 2017;153:1542–1550. doi: 10.1016/j.jtcvs.2016.11.071. PubMed DOI

Bockeria L, Carrel T, Lemaire A, Makarenko V, Kim A, Shatalov K, Cox M, Svanidze O. Total cavopulmonary connection with a new restorative vascular graft: results at 2 years. J Thorac Dis. 2020;12:4168–4173. doi: 10.21037/jtd-19-739. PubMed DOI PMC

Teebken Puschmann, Rohde Burgwitz, Winkler Pichlmaier, Weidemann Haverich. Human iliac vein replacement with a tissue-engineered graft. Vasa. 2009;38:60–65. doi: 10.1024/0301-1526.38.1.60. PubMed DOI

Olausson M, Patil PB, Kuna VK, Chougule P, Hernandez N, Methe K, Kullberg-Lindh C, Borg H, Ejnell H, Sumitran-Holgersson S. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. The Lancet. 2012;380:230–237. doi: 10.1016/S0140-6736(12)60633-3. PubMed DOI

McAllister TN, Maruszewski M, Garrido SA, Wystrychowski W, Dusserre N, Marini A, Zagalski K, Fiorillo A, Avila H, Manglano X, Antonelli J, Kocher A, Zembala M, Cierpka L, de la Fuente LM, L' Heureux N. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. The Lancet. 2009;373:1440–1446. doi: 10.1016/S0140-6736(09)60248-8. PubMed DOI

Peck M, Dusserre N, McAllister TN, L' Heureux N. Tissue engineering by self-assembly. Materials Today. 2011;14:218–224. doi: 10.1016/S1369-7021(11)70117-1. DOI

Lawson JH, Glickman MH, Ilzecki M, Jakimowicz T, Jaroszynski A, Peden EK, Pilgrim AJ, Prichard HL, Guziewicz M, Przywara S, Szmidt J, Turek J, Witkiewicz W, Zapotoczny N, Zubilewicz T, Niklason LE. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. The Lancet. 2016;387:2026–2034. doi: 10.1016/S0140-6736(16)00557-2. PubMed DOI PMC

Kirkton RD, Santiago-Maysonet M, Lawson JH, Tente WE, Dahl SLM, Niklason LE, Prichard HL. Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci Transl Med. 2019;11:eaau6934. doi: 10.1126/scitranslmed.aau6934. PubMed DOI PMC

Jakimowicz T, Przywara S, Turek J, Pilgrim A, Macech M, Zapotoczny N, Zubilewicz T, Lawson JH, Niklason LE. Five year outcomes in patients with end stage renal disease who received a bioengineered human acellular vessel for dialysis access. EJVES Vascular Forum. 2022;54:58–63. doi: 10.1016/j.ejvsvf.2022.01.003. PubMed DOI PMC

Nakayama Y, Kaneko Y, Okumura N, Tatsumi E. Long-term follow up of first-in-human study in bypass of stenosis av shunt by an autologous in-body-tissue-engineered (biotube) vascular graft. Eur Heart J. 2018:39. doi: 10.1093/eurheartj/ehy565.P2664. PubMed DOI

Nakayama Y, Kaneko Y, Okumura N, Terazawa T. Initial 3-year results of first human use of an in-body tissue-engineered autologous "Biotube" vascular graft for hemodialysis. J Vasc Access. 2020;21:110–115. doi: 10.1177/1129729819852550. PubMed DOI

Higashita R, Miyazaki M, Oi M, Ishikawa N. First-in-human results of an in-body tissue architecture-induced tissue-engineered vascular graft "Biotube" for application in distal bypass for chronic limb-threatening ischemia. J Vasc Surg Cases. 2022;8:488–493. doi: 10.1016/j.jvscit.2022.07.007. PubMed DOI PMC

Carrabba M, Madeddu P. Current strategies for the manufacture of small size tissue engineering vascular grafts. Front Bioeng Biotechnol. 2018;6:41. doi: 10.3389/fbioe.2018.00041. PubMed DOI PMC

Boccafoschi F, Botta M, Fusaro L, Copes F, Ramella M, Cannas M. Decellularized biological matrices: an interesting approach for cardiovascular tissue repair and regeneration. J Tissue Eng Regen Med. 2017;11:1648–1657. doi: 10.1002/term.2103. PubMed DOI

Bergmeister H, Podesser BK. Preclinical in vivo assessment of tissue engineered vascular grafts and selection of appropriate animal models. In: Walpoth BH, Bergmeister H, Bowlin GL, Kong D, Rotmans JI, Zilla P, editors. Tissue-Engineered Vascular Grafts. Springer International Publishing; Cham: 2020. pp. 63–93. DOI

Yang Y, Lei D, Zou H, Huang S, Yang Q, Li S, Qing F-L, Ye X, You Z, Zhao Q. Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia. Acta Biomater. 2019;97:321–332. doi: 10.1016/j.actbio.2019.06.037. PubMed DOI

Shi J, Teng Y, Li D, He J, Midgley AC, Guo X, Wang X, Yang X, Wang S, Feng Y, Lv Q, Hou S. Biomimetic tri-layered small-diameter vascular grafts with decellularized extracellular matrix promoting vascular regeneration and inhibiting thrombosis with the salidroside. Materials Today Bio. 2023;21:100709. doi: 10.1016/j.mtbio.2023.100709. PubMed DOI PMC

Cai Z, Tan Z, Tian R, Chen X, Miao P, Yao C, Wang C, Yu Z, Gu Y. Acellular vascular scaffolds preloaded with heparin and hepatocyte growth factor for small-diameter vascular grafts might inhibit intimal hyperplasia. Cell Transplant. 2022;31:096368972211345. doi: 10.1177/09636897221134541. PubMed DOI PMC

Xie X, Wu Q, Liu Y, Chen C, Chen Z, Xie C, Song M, Jiang Z, Qi X, Liu S, Tang Z, Wu Z. Vascular endothelial growth factor attenuates neointimal hyperplasia of decellularized small-diameter vascular grafts by modulating the local inflammatory response. Front Bioeng Biotechnol. 2022;10:1066266. doi: 10.3389/fbioe.2022.1066266. PubMed DOI PMC

Gou K, Hu J-J, Baek S. Mechanical characterization of human umbilical arteries by thick-walled models: Enhanced vascular compliance by removing an abluminal lining. J Mech Behav Biomed Mater. 2023;142:105811. doi: 10.1016/j.jmbbm.2023.105811. PubMed DOI

Wong V, Gada S, Singh M, Merna N. The development of small-caliber vascular grafts using human umbilical artery: an evaluation of methods. Tissue Eng Part C Methods. 2023;29:1–10. doi: 10.1089/ten.tec.2022.0144. PubMed DOI

Tardalkar KR, Marsale TB, Bhamare NC, Kshersagar JR, Patil JK, Adnaik A, Joshi MG. Heparin coated decellularized xenogeneic small diameter vascular conduit for vascular repair with early luminal reendothelialization. Cell Tissue Bank. 2023;24:449–469. doi: 10.1007/s10561-022-10046-0. PubMed DOI

Falkner F, Mayer SA, Thomas B, Zimmermann SO, Walter S, Heimel P, Thiele W, Sleeman JP, Bigdeli AK, Kiss H, Podesser BK, Kneser U, Bergmeister H, Schneider KH. Acellular human placenta small-diameter vessels as a favorable source of super-microsurgical vascular replacements: a proof of concept. Bioengineering. 2023;10:337. doi: 10.3390/bioengineering10030337. PubMed DOI PMC

Wang B, Wang X, Kenneth A, Drena A, Pacheco A, Kalvin L, Ibrahim E-S, Rossi PJ, Thatcher K, Lincoln J. Developing small-diameter vascular grafts with human amniotic membrane: long-term evaluation of transplantation outcomes in a small animal model. Biofabrication. 2023;15:025004. doi: 10.1088/1758-5090/acb1da. PubMed DOI

Gorbenko N, Rinaldi G, Sanchez A, Merna N. Small-caliber vascular grafts engineered from decellularized leaves and cross-linked gelatin. Tissue Eng Part A. 2023;29:397–409. doi: 10.1089/ten.tea.2022.0223. PubMed DOI PMC

Wang H, Xiao Y, Fang Z, Zhang Y, Yang L, Zhao C, Meng Z, Liu Y, Li C, Han Q, Feng Z. Fabrication and performance evaluation of PLCL-hCOLIII small-diameter vascular grafts crosslinked with procyanidins. Int J Biol Macromol. 2023;251:126293. doi: 10.1016/j.ijbiomac.2023.126293. PubMed DOI

Filová E, Staňková L, Eckhardt A, Svobodová J, Musílková J, Pala J, Hadraba D, Brynda E, Koňařík M, Pirk J, Bačáková L. Modification of human pericardium by chemical crosslinking. Physiol Res. 2020;69:49–59. doi: 10.33549/physiolres.934335. PubMed DOI PMC

Guo J, Huang J, Lei S, Wan D, Liang B, Yan H, Liu Y, Feng Y, Yang S, He J, Kong D, Shi J, Wang S. Construction of rapid extracellular matrix-deposited small-diameter vascular grafts induced by hypoxia in a bioreactor. ACS Biomater Sci Eng. 2023;9:844–855. doi: 10.1021/acsbiomaterials.2c00809. PubMed DOI

Huyan Y, Chang Y, Song J. Application of homograft valved conduit in cardiac surgery. Front Cardiovasc Med. 2021;8:740871. doi: 10.3389/fcvm.2021.740871. PubMed DOI PMC

Sievers H-H, Stierle U, Schmidtke C, Bechtel M. Decellularized pulmonary homograft (SynerGraft) for reconstruction of the right ventricular outflow tract: first clinical experience. Zeitschrift für Kardiologie. 2003;92:53–59. doi: 10.1007/s00392-003-0883-x. PubMed DOI

Filova E, Steinerova M, Travnickova M, Knitlova J, Musilkova J, Eckhardt A, Hadraba D, Matejka R, Prazak S, Stepanovska J, Kucerova J, Riedel T, Brynda E, Lodererova A, Honsova E, Pirk J, Konarik M, Bacakova L. Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts. Biomed Mater. 2021;16:025024. doi: 10.1088/1748-605X/abbdbd. PubMed DOI

Straka F, Schornik D, Masin J, Filova E, Mirejovsky T, Burdikova Z, Svindrych Z, Chlup H, Horny L, Vesely J, Pirk J, Bacakova L. A new approach to heart valve tissue engineering based on modifying autologous human pericardium by 3D cellular mechanotransduction. J Biomater Tissue Eng. 2017;7:527–543. doi: 10.1166/jbt.2017.1598. DOI

Straka F, Schornik D, Masin J, Filova E, Mirejovsky T, Burdikova Z, Svindrych Z, Chlup H, Horny L, Daniel M, Machac J, Skibová J, Pirk J, Bacakova L. A human pericardium biopolymeric scaffold for autologous heart valve tissue engineering: cellular and extracellular matrix structure and biomechanical properties in comparison with a normal aortic heart valve. J Biomat Sci-Polym E. 2018;29:599–634. doi: 10.1080/09205063.2018.1429732. PubMed DOI

Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, Kasalkova NS, Svorcik V, Kolska Z, Motarjemi H, Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI

Garzon I, Chato-Astrain J, Campos F, Fernandez-Valades R, Sanchez-Montesinos I, Campos A, Alaminos M, D' Souza RN, Martin-Piedra MA. Expanded differentiation capability of human Wharton's jelly stem cells toward pluripotency: a systematic review. Tissue Eng Part B Rev. 2020;26:301–312. doi: 10.1089/ten.teb.2019.0257. PubMed DOI

Matějka R, Koňařík M, Štěpanovská J, Lipenský J, Chlupáč J, Turek D, Pražák Š, Brož A, Šimůnková Z, Mrázová I, Forostyak S, Kneppo P, Rosina J, Bačáková L, Pirk J. Bioreactor processed stromal cell seeding and cultivation on decellularized pericardium patches for cardiovascular use. Appl Sci. 2020;10:5473. doi: 10.3390/app10165473. DOI

Bacakova L, Travnickova M, Filova E, Matejka R, Stepanovska J, Musilkova J, Zarubova J, Molitor M. Vascular smooth muscle cells (VSMCs) in blood vessel tissue engineering: the use of differentiated cells or stem cells as VSMC precursors. In: Sakuma K, editor. Muscle Cell and Tissue - Current Status of Research Field. IntechOpen; 2018. DOI

MedMedia. Relatus Med. Erster Bypass mit gezüchteten Zellen von Wiener Ärzten implantiert. Oct 25, 2020. [accessed April 19, 2024]. https://www.medmedia.at/relatus-med/erster-bypass-mit-gezuechteten-zellen-von-wiener-aerzten-implantiert/

Bordenave L, Fernandez P, Rémy-Zolghadri M, Villars S, Daculsi R, Midy D. In vitro endothelialized ePTFE prostheses: clinical update 20 years after the first realization. Clin Hemorheol Microcirc. 2005;33:227–234. PubMed

Rademacher A, Paulitschke M, Meyer R, Hetzer R. Endothelialization of PTFE vascular grafts under flow induces significant cell changes. Int J Artif Organs. 2001;24:235–242. doi: 10.1177/039139880102400412. PubMed DOI

Alaminos M, Pérez-Köhler B, Garzón I, García-Honduvilla N, Romero B, Campos A, Buján J. Transdifferentiation potentiality of human wharton's jelly stem cells towards vascular endothelial cells. J Cell Physiol. 2010;223:640–647. doi: 10.1002/jcp.22062. PubMed DOI

Boonkaew B, Suwanpitak S, Pattanapanyasat K, Sermsathanasawadi N, Wattanapanitch M. Efficient generation of endothelial cells from induced pluripotent stem cells derived from a patient with peripheral arterial disease. Cell Tissue Res. 2022;388:89–104. doi: 10.1007/s00441-022-03576-2. PubMed DOI

Fan X, Cyganek L, Nitschke K, Uhlig S, Nuhn P, Bieback K, Duerschmied D, El-Battrawy I, Zhou X, Akin I. Functional characterization of human induced pluripotent stem cell-derived endothelial cells. Int J Mol Sci. 2022;23:8507. doi: 10.3390/ijms23158507. PubMed DOI PMC

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI

Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920. doi: 10.1126/science.1151526. PubMed DOI

Steinle H, Weber M, Behring A, Mau-Holzmann U, von Ohle C, Popov A-F, Schlensak C, Wendel HP, Avci-Adali M. Reprogramming of urine-derived renal epithelial cells into ipscs using srrna and consecutive differentiation into beating cardiomyocytes. Mol Ther Nucleic Acids. 2019;17:907–921. doi: 10.1016/j.omtn.2019.07.016. PubMed DOI PMC

Weber M, Fech A, Jäger L, Steinle H, Bühler L, Perl RM, Martirosian P, Mehling R, Sonanini D, Aicher WK, Nikolaou K, Schlensak C, Enderle MD, Wendel HP, Linzenbold W, Avci-Adali M. Hydrojet-based delivery of footprint-free iPSC-derived cardiomyocytes into porcine myocardium. Sci Rep. 2020;10:16787. doi: 10.1038/s41598-020-73693-x. PubMed DOI PMC

Weber J, Weber M, Feile A, Schlensak C, Avci-Adali M. Development of an in vitro blood vessel model using autologous endothelial cells generated from footprint-free hipscs to analyze interactions of the endothelium with blood cell components and vascular implants. Cells. 2023;12:1217. doi: 10.3390/cells12091217. PubMed DOI PMC

Zhang M, Fukushima Y, Nozaki K, Nakanishi H, Deng J, Wakabayashi N, Itaka K. Enhancement of bone regeneration by coadministration of angiogenic and osteogenic factors using messenger RNA. Inflamm Regener. 2023;43:32. doi: 10.1186/s41232-023-00285-3. PubMed DOI PMC

Tremblay P-L, Hudon V, Berthod F, Germain L, Auger FA. Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant. 2005;5:1002–1010. doi: 10.1111/j.1600-6143.2005.00790.x. PubMed DOI

Phua QH, Han HA, Soh B-S. Translational stem cell therapy: vascularized skin grafts in skin repair and regeneration. J Transl Med. 2021;19:83. doi: 10.1186/s12967-021-02752-2. PubMed DOI PMC

Florey HW, Greer SJ, Kiser J, Poole JC, Telander R, Werthessen NT. The development of the pseudointima lining fabric grafts of the aorta. Br J Exp Pathol. 1962;43:655–660. PubMed PMC

Hirschi KK, Rohovsky SA, D'Amore PA. Cell-cell interactions in vessel assembly: a model for the fundamentals of vascular remodelling. Transpl Immunol. 1997;5:177–178. doi: 10.1016/S0966-3274(97)80034-2. PubMed DOI

Filova E, Supova M, Eckhardt A, Vrbacky M, Blanquer A, Travnickova M, Knitlova J, Suchy T, Ryglova S, Braun M, Burdikova Z, Schätz M, Jencova V, Lisnenko M, Behalek L, Prochazkova R, Sedlacek R, Kubasova K, Bacakova L. Adipose-derived stem cells in reinforced collagen gel: a comparison between two approaches to differentiation towards smooth muscle cells. Int J Mol Sci. 2023;24:5692. doi: 10.3390/ijms24065692. PubMed DOI PMC

Li S, Zhao F, Tang Y, Zhang Y, Rong H, Liu L, Gao R, Liu X, Huangfu Y, Bai Y, Feng Z, Guo Z, Dong A, Wang W, Kong D, Huang P. Bioinspired, anticoagulative, 19 f mri-visualizable bilayer hydrogel tubes as high patency small-diameter vascular grafts. Small. 2023;19:2302621. doi: 10.1002/smll.202302621. PubMed DOI

Moura D, Pereira AT, Ferreira HP, Barrias CC, Magalhães FD, Bergmeister H, Gonçalves IC. Poly(2-hydroxyethyl methacrylate) hydrogels containing graphene-based materials for blood-contacting applications: From soft inert to strong degradable material. Acta Biomater. 2023;164:253–268. doi: 10.1016/j.actbio.2023.04.031. PubMed DOI

Fallon ME, Le HH, Bates NM, Yao Y, Yim EKF, Hinds MT, Anderson DEJ. Hemocompatibility of micropatterned biomaterial surfaces is dependent on topographical feature size. Front Physiol. 2022;13:983187. doi: 10.3389/fphys.2022.983187. PubMed DOI PMC

Yao Y, Zaw AM, Anderson DEJ, Jeong Y, Kunihiro J, Hinds MT, Yim EKF. Fucoidan and topography modification improved in situ endothelialization on acellular synthetic vascular grafts. Bioact Mater. 2023;22:535–550. doi: 10.1016/j.bioactmat.2022.10.011. PubMed DOI PMC

Jin Q, Yu C, Xu L, Zhang G, Ju J, Hou R. Combined light-cured and sacrificial hydrogels for fabrication of small-diameter bionic vessels by 3D bioprinting. Technol Health Care. 2023;31:1203–1213. doi: 10.3233/THC-220393. PubMed DOI

Tu C, Zhang Y, Xiao Y, Xing Y, Jiao Y, Geng X, Zhang A, Ye L, Gu Y, Feng Z. Hydrogel-complexed small-diameter vascular graft loaded with tissue-specific vascular extracellular matrix components used for tissue engineering. Biomater Adv. 2022;142:213138. doi: 10.1016/j.bioadv.2022.213138. PubMed DOI

Yang GH, Kang D, An S, Ryu JY, Lee K, Kim JS, Song M-Y, Kim Y-S, Kwon S-M, Jung W-K, Jeong W, Jeon H. Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications. Biomater Res. 2022;26:73. doi: 10.1186/s40824-022-00321-2. PubMed DOI PMC

Stepanovska J, Supova M, Hanzalek K, Broz A, Matejka R. Collagen bioinks for bioprinting: a systematic review of hydrogel properties, bioprinting parameters, protocols, and bioprinted structure characteristics. Biomedicines. 2021;9:1137. doi: 10.3390/biomedicines9091137. PubMed DOI PMC

Xu H, Liu Z, Wei Y, Hu Y, Zhao L, Wang L, Liang Z, Lian X, Chen W, Wang J, Yu Z, Ma X, Huang D. Complexation-induced resolution enhancement pleiotropic small diameter vascular constructs with superior antibacterial and angiogenesis properties. Adv Healthcare Materials. 2023;12:2301809. doi: 10.1002/adhm.202301809. PubMed DOI

Alasvand N, Behnamghader A, Milan PB, Simorgh S, Mobasheri A, Mozafari M. Tissue-engineered small-diameter vascular grafts containing novel copper-doped bioactive glass biomaterials to promote angiogenic activity and endothelial regeneration. Materials Today Bio. 2023;20:100647. doi: 10.1016/j.mtbio.2023.100647. PubMed DOI PMC

Fukunishi T, Best CA, Sugiura T, Opfermann J, Ong CS, Shinoka T, Breuer CK, Krieger A, Johnson J, Hibino N. Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. J Thorac Cardiovasc Surg. 2017;153:924–932. doi: 10.1016/j.jtcvs.2016.10.066. PubMed DOI PMC

Atari M, Saroukhani A, Manshaei M, Bateni P, Zargar Kharazi A, Vatankhah E, Haghjooy Javanmard S. Preclinical in vivo assessment of a cell-free multi-layered scaffold prepared by 3D printing and electrospinning for small-diameter blood vessel tissue engineering in a canine model. Biomater Sci. 2023;11:6871–6880. doi: 10.1039/D3BM00642E. PubMed DOI

Hu Q, Shen Z, Zhang H, Liu S, Feng R, Feng J, Ramalingam M. Designed and fabrication of triple-layered vascular scaffold with microchannels. J Biomat Sci-Polym E. 2021;32:714–734. doi: 10.1080/09205063.2020.1864083. PubMed DOI

Huang Z, Zhang Y, Liu R, Li Y, Rafique M, Midgley AC, Wan Y, Yan H, Si J, Wang T, Chen C, Wang P, Shafiq M, Li J, Zhao L, Kong D, Wang K. Cobalt loaded electrospun poly(ε-caprolactone) grafts promote antibacterial activity and vascular regeneration in a diabetic rat model. Biomaterials. 2022;291:121901. doi: 10.1016/j.biomaterials.2022.121901. PubMed DOI

Yan H, Cheng Q, Si J, Wang S, Wan Y, Kong X, Wang T, Zheng W, Rafique M, Li X, He J, Midgley AC, Zhu Y, Wang K, Kong D. Functionalization of in vivo tissue-engineered living biotubes enhance patency and endothelization without the requirement of systemic anticoagulant administration. Bioact Mater. 2023;26:292–305. doi: 10.1016/j.bioactmat.2023.03.003. PubMed DOI PMC

Miceli GC, Palumbo FS, Bonomo FP, Zingales M, Licciardi M. Polybutylene succinate processing and evaluation as a micro fibrous graft for tissue engineering applications. Polymers. 2022;14:4486. doi: 10.3390/polym14214486. PubMed DOI PMC

Yi B, Zhou B, Song Z, Yu L, Wang W, Liu W. Step-wise CAG@PLys@PDA-Cu2+ modification on micropatterned nanofibers for programmed endothelial healing. Bioact Mater. 2023;25:657–676. doi: 10.1016/j.bioactmat.2022.07.010. PubMed DOI PMC

Rosalia M, Grisoli P, Dorati R, Chiesa E, Pisani S, Bruni G, Genta I, Conti B. Influence of electrospun fibre secondary morphology on antibiotic release kinetic and its impact on antimicrobic efficacy. Int J Mol Sci. 2023;24:12108. doi: 10.3390/ijms241512108. PubMed DOI PMC

Obiweluozor FO, Kayumov M, Kwak Y, Cho H-J, Park C-H, Park J, Jeong Y-J, Lee D-W, Kim D-W, Jeong I-S. Rapid remodeling observed at mid-term in-vivo study of a smart reinforced acellular vascular graft implanted on a rat model. J Biol Eng. 2023;17:1. doi: 10.1186/s13036-022-00313-9. PubMed DOI PMC

Zizhou R, Khoshmanesh K, Wang X, Houshyar S. Fabrication of nanocomposites with high elasticity and strength for the load-bearing layer of small-diameter vascular grafts. ACS Appl Mater Interfaces. 2023;15:35411–35421. doi: 10.1021/acsami.3c02397. PubMed DOI

Łopianiak I, Rzempołuch W, Civelek M, Cicha I, Ciach T, Butruk-Raszeja BA. Multilayered blow-spun vascular prostheses with luminal surfaces in Nano/Micro range: the influence on endothelial cell and platelet adhesion. J Biol Eng. 2023;17:20. doi: 10.1186/s13036-023-00337-9. PubMed DOI PMC

Rohringer S, Grasl C, Ehrmann K, Hager P, Hahn C, Specht SJ, Walter I, Schneider KH, Zopf LM, Baudis S, Liska R, Schima H, Podesser BK, Bergmeister H. Biodegradable, self-reinforcing vascular grafts for in situ tissue engineering approaches. Adv Healthcare Materials. 2023;12:2300520. doi: 10.1002/adhm.202300520. PubMed DOI

Jia W, Liu L, Li M, Zhou Y, Zhou H, Weng H, Gu G, Xiao M, Chen Z. Construction of enzyme-laden vascular scaffolds based on hyaluronic acid oligosaccharides-modified collagen nanofibers for antithrombosis and in-situ endothelialization of tissue-engineered blood vessels. Acta Biomater. 2022;153:287–298. doi: 10.1016/j.actbio.2022.09.041. PubMed DOI

Lu X, Zou H, Liao X, Xiong Y, Hu X, Cao J, Pan J, Li C, Zheng Y. Construction of PCL-collagen@PCL@PCL-gelatin three-layer small diameter artificial vascular grafts by electrospinning. Biomed Mater. 2023;18:015008. doi: 10.1088/1748-605X/aca269. PubMed DOI

Wang Z, Mithieux SM, Vindin H, Wang Y, Zhang M, Liu L, Zbinden J, Blum KM, Yi T, Matsuzaki Y, Oveissi F, Akdemir R, Lockley KM, Zhang L, Ma K, Guan J, Waterhouse A, Pham NTH, Hawkett BS, Shinoka T, Breuer CK, Weiss AS. Rapid regeneration of a neoartery with elastic lamellae. Advanced Materials. 2022;34:2205614. https://doi.org/10.1002/adma.202270323, https://doi.org/10.1002/adma.202205614. PubMed DOI

Wang Z, Zhang M, Liu L, Mithieux SM, Weiss AS. Polyglycerol sebacate-based elastomeric materials for arterial regeneration. J Biomedical Materials Res. 2023:jbm.a.37583. doi: 10.1002/jbm.a.37583. PubMed DOI

Sultana T, Fahad MAA, Park M, Kwon SH, Lee B-T. Physicochemical, in vitro and in vivo evaluation of VEGF loaded PCL-mpeg and PDGF loaded PCL-chitosan dual layered vascular grafts. J Biomed Mater Res B Appl Biomater. 2024;112:e35325. doi: 10.1002/jbm.b.35325. PubMed DOI

Settembrini A, Buongiovanni G, Settembrini P, Alessandrino A, Freddi G, Vettor G, Martelli E. In-vivo evaluation of silk fibroin small-diameter vascular grafts: state of art of preclinical studies and animal models. Front Surg. 2023;10:1090565. doi: 10.3389/fsurg.2023.1090565. PubMed DOI PMC

Zhou S-Y, Li L, Xie E, Li M-X, Cao J-H, Yang X-B, Wu D-Y. Small-diameter PCL/PU vascular graft modified with heparin-aspirin compound for preventing the occurrence of acute thrombosis. Int J Biol Macromol. 2023;249:126058. doi: 10.1016/j.ijbiomac.2023.126058. PubMed DOI

Alkazemi H, Huang T, Mail M, Lokmic-Tomkins Z, Heath DE, O'Connor AJ. Spontaneous orthogonal alignment of smooth muscle cells and endothelial cells captures native blood vessel morphology in tissue-engineered vascular grafts. ACS Appl Mater Interfaces. 2023;15:34631–34641. doi: 10.1021/acsami.3c08511. PubMed DOI

Li G, Yang T, Liu Y, Su H, Liu W, Fang D, Jin L, Jin F, Xu T, Duan C. The proteins derived from platelet-rich plasma improve the endothelialization and vascularization of small diameter vascular grafts. Int J Biol Macromol. 2023;225:574–587. doi: 10.1016/j.ijbiomac.2022.11.116. PubMed DOI

Tang Y, Yin L, Gao S, Long X, Du Z, Zhou Y, Zhao S, Cao Y, Pan S. A small-diameter vascular graft immobilized peptides for capturing endothelial colony-forming cells. Front Bioeng Biotechnol. 2023;11:1154986. doi: 10.3389/fbioe.2023.1154986. PubMed DOI PMC

Su H, Liu W, Li X, Li G, Guo S, Liu C, Yang T, Ou C, Liu J, Li Y, Wei C, Huang Q, Xu T, Duan C. Cellular energy supply for promoting vascular remodeling of small-diameter vascular grafts: a preliminary study of a new strategy for vascular graft development. Biomater Sci. 2023;11:3197–3213. doi: 10.1039/D2BM01338J. PubMed DOI

Changizi S, Sameti M, Bazemore GL, Chen H, Bashur CA. Epsin mimetic upi peptide delivery strategies to improve endothelization of vascular grafts. Macromol Biosci. 2023;23:2300073. doi: 10.1002/mabi.202300073. PubMed DOI

Kabirian F, Baatsen P, Smet M, Shavandi A, Mela P, Heying R. Carbon nanotubes as a nitric oxide nano-reservoir improved the controlled release profile in 3D printed biodegradable vascular grafts. Sci Rep. 2023;13:4662. doi: 10.1038/s41598-023-31619-3. PubMed DOI PMC

Cheng C, Li H, Liu J, Wu L, Fang Z, Xu G. Mcp-1-loaded poly( L -lactide-co-caprolactone) fibrous films modulate macrophage polarization toward an anti-inflammatory phenotype and improve angiogenesis. ACS Biomater Sci Eng. 2023;9:4356–4367. doi: 10.1021/acsbiomaterials.3c00476. PubMed DOI

Zhang C, Cha R, Wang C, Chen X, Li Z, Xie Q, Jia L, Sun Y, Hu Z, Zhang L, Zhou F, Zhang Y, Jiang X. Red blood cell membrane-functionalized Nanofibrous tubes for small-diameter vascular grafts. Biomaterials. 2023;297:122124. doi: 10.1016/j.biomaterials.2023.122124. PubMed DOI

Li S, Yang L, Zhao Z, Wang J, Lv H, Yang X. Fabrication of mechanical skeleton of small-diameter vascular grafts via rolling on water surface. Biomed Mater. 2023;18:035002. doi: 10.1088/1748-605X/acb89a. PubMed DOI

Natsume K, Nakamura J, Sato K, Ohtsuki C, Sugawara-Narutaki A. Biological properties of self-assembled nanofibers of elastin-like block polypeptides for tissue-engineered vascular grafts: platelet inhibition, endothelial cell activation and smooth muscle cell maintenance. Regen Biomater. 2023;10:rbac111. doi: 10.1093/rb/rbac111. PubMed DOI PMC

Xu W, Yao M, He M, Chen S, Lu Q. Precise preparation of a multilayer tubular cell sheet with well-aligned cells in different layers to simulate native arteries. ACS Appl Mater Interfaces. 2023;15:19966–19975. doi: 10.1021/acsami.3c00471. PubMed DOI

Ding K, Yu X, Wang D, Wang X, Li Q. Small diameter expanded polytetrafluoroethylene vascular graft with differentiated inner and outer biomacromolecules for collaborative endothelialization, anti-thrombogenicity and anti-inflammation. Colloids Surf B Biointerfaces. 2023;229:113449. doi: 10.1016/j.colsurfb.2023.113449. PubMed DOI

Zhang Q, Duncan S, Szulc DA, De Mestral C, Kutryk MJ. Development of a universal, oriented antibody immobilization method to functionalize vascular prostheses for enhanced endothelialization for potential clinical application. J Biol Eng. 2023;17:37. doi: 10.1186/s13036-023-00356-6. PubMed DOI PMC

Miao C, Wang L, Shang Y, Du M, Yang J, Yuan J. Tannic acid-assisted immobilization of copper(ii), carboxybetaine, and argatroban on poly(ethylene terephthalate) mats for synergistic improvement of blood compatibility and endothelialization. Langmuir. 2022;38:15683–15693. doi: 10.1021/acs.langmuir.2c02508. PubMed DOI

Špaček M, Chlup H, Mitáš P, Veselý J, Lambert L, Mlček M, Krajíček M, Lindner J, Grus T. Three-layer collagen-based vascular graft designed for low-flow peripheral vascular reconstructions. J Appl Biomed. 2019;17:52–52. doi: 10.32725/jab.2019.002. PubMed DOI

Grus T, Lambert L, Mlcek M, Chlup H, Honsova E, Spacek M, Burgetova A, Lindner J. In vivo evaluation of short-term performance of new three-layer collagen-based vascular graft designed for low-flow peripheral vascular reconstructions. Biomed Res Int. 2018;2018:1–7. doi: 10.1155/2018/3519596. PubMed DOI PMC

Lambert L, Novakova M, Lukac P, Cechova D, Sukenikova L, Hrdy J, Mlcek M, Chlup H, Suchy T, Grus T. Evaluation of the immunogenicity of a vascular graft covered with collagen derived from the european carp (cyprinus carpio) and bovine collagen. Biomed Res Int. 2019;2019:1–8. doi: 10.1155/2019/5301405. PubMed DOI PMC

Mitas P, Grus T, Lambert L, Mlcek M, Chlup H, Honsova E, Dohnalova M, Suchy T, Burgetova A, Lindner J, Spacek M. The influence of purification of carp collagen used in a novel composite graft with sandwich construction of the wall on its biological properties and graft patency rates. Physiol Res. 2019;68:603–610. doi: 10.33549/physiolres.934117. PubMed DOI

Grus T, Chlup H, Mlček M, Beran M. Czech patent. Industrial Property Office of the Czech Republic, Registration Number: CZ308556B6. Application number: CZ2017427A, Registennred: 26.7.2017, Granted: 19.10.2020; Kompozitní cévní náhrada a způsob její výroby (Composite vascular replacement and the method of its production)

Chlupáč J, Filová E, Riedel T, Houska M, Brynda E, Remy-Zolghadri M, Bareille R, Fernandez P, Daculsi R, Bourget C, Bordenave L, Bačáková L. Attachment of human endothelial cells to polyester vascular grafts: pre-coating with adhesive protein assemblies and resistance to short-term shear stress. Physiol Res. 2014;63:167–177. doi: 10.33549/physiolres.932577. PubMed DOI

Blum KM, Roby LC, Zbinden JC, Chang Y-C, Mirhaidari GJM, Reinhardt JW, Yi T, Barker JC, Breuer CK. Sex and Tamoxifen confound murine experimental studies in cardiovascular tissue engineering. Sci Rep. 2021;11:8037. doi: 10.1038/s41598-021-87006-3. PubMed DOI PMC

Li Y, Wen Y, Green M, Cabral EK, Wani P, Zhang F, Wei Y, Baer TM, Chen B. Cell sex affects extracellular matrix protein expression and proliferation of smooth muscle progenitor cells derived from human pluripotent stem cells. Stem Cell Res Ther. 2017;8:156. doi: 10.1186/s13287-017-0606-2. PubMed DOI PMC

Randolph LN, Bao X, Oddo M, Lian XL. Sex-dependent VEGF expression underlies variations in human pluripotent stem cell to endothelial progenitor differentiation. Sci Rep. 2019;9:16696. doi: 10.1038/s41598-019-53054-z. PubMed DOI PMC

Gammill HS, Lin C, Hubel CA. Endothelial progenitor cells and preeclampsia. Front Biosci. 2007;12:2383. doi: 10.2741/2240. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...