Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NV19-02-00068
Ministerstvo Zdravotnictví Ceské Republiky
SGS20/201/OHK4/3T/17
České Vysoké Učení Technické v Praze
PubMed
34572322
PubMed Central
PMC8468019
DOI
10.3390/biomedicines9091137
PII: biomedicines9091137
Knihovny.cz E-zdroje
- Klíčová slova
- bioink, bioprinting, bioprinting parameters, collagen, hydrogel, hydrogel properties,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Bioprinting is a modern tool suitable for creating cell scaffolds and tissue or organ carriers from polymers that mimic tissue properties and create a natural environment for cell development. A wide range of polymers, both natural and synthetic, are used, including extracellular matrix and collagen-based polymers. Bioprinting technologies, based on syringe deposition or laser technologies, are optimal tools for creating precise constructs precisely from the combination of collagen hydrogel and cells. This review describes the different stages of bioprinting, from the extraction of collagen hydrogels and bioink preparation, over the parameters of the printing itself, to the final testing of the constructs. This study mainly focuses on the use of physically crosslinked high-concentrated collagen hydrogels, which represents the optimal way to create a biocompatible 3D construct with sufficient stiffness. The cell viability in these gels is mainly influenced by the composition of the bioink and the parameters of the bioprinting process itself (temperature, pressure, cell density, etc.). In addition, a detailed table is included that lists the bioprinting parameters and composition of custom bioinks from current studies focusing on printing collagen gels without the addition of other polymers. Last but not least, our work also tries to refute the often-mentioned fact that highly concentrated collagen hydrogel is not suitable for 3D bioprinting and cell growth and development.
Zobrazit více v PubMed
Silva L.P. 3D and 4D Printing in Biomedical Applications. Wiley; New York, NY, USA: 2019. Current Trends and Challenges in Biofabrication Using Biomaterials and Nanomaterials: Future Perspectives for 3D/4D Bioprinting; pp. 373–421. DOI
Moldovan F. Recent Trends in Bioprinting. Procedia Manuf. 2019;32:95–101. doi: 10.1016/j.promfg.2019.02.188. DOI
Hospodiuk M., Dey M., Sosnoski D., Ozbolat I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017;35:217–239. doi: 10.1016/j.biotechadv.2016.12.006. PubMed DOI
Arslan-Yildiz A., Assal R.E., Chen P., Guven S., Inci F., Demirci U. Towards artificial tissue models: Past, present, and future of 3D bioprinting. Biofabrication. 2016;8:014103. doi: 10.1088/1758-5090/8/1/014103. PubMed DOI
Gungor-Ozkerim P.S., Inci I., Zhang Y.S., Khademhosseini A., Dokmeci M.R. Bioinks for 3D bioprinting: An overview. Biomater. Sci. 2018;6:915–946. doi: 10.1039/C7BM00765E. PubMed DOI PMC
Panwar A., Tan L.P. Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting. Molecules. 2016;21:685. doi: 10.3390/molecules21060685. PubMed DOI PMC
Furth M.E., Atala A., Van Dyke M.E. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials. 2007;28:5068–5073. doi: 10.1016/j.biomaterials.2007.07.042. PubMed DOI
Lee H.J., Kim Y.B., Ahn S.H., Lee J.S., Jang C.H., Yoon H., Chun W., Kim G.H. A New Approach for Fabricating Collagen/ECM-Based Bioinks Using Preosteoblasts and Human Adipose Stem Cells. Adv. Healthc. Mater. 2015;4:1359–1368. doi: 10.1002/adhm.201500193. PubMed DOI
Ouellette R.J., Rawn J.D. 28—Synthetic Polymers. In: Ouellette R.J., Rawn J.D., editors. Organic Chemistry Study Guide. Elsevier; Boston, MA, USA: 2015. pp. 587–601. DOI
Abelardo E. 7—Synthetic material bioinks. In: Thomas D.J., Jessop Z.M., Whitaker I.S., editors. 3D Bioprinting for Reconstructive Surgery. Woodhead Publishing; Cambridge, MA, USA: 2018. pp. 137–144. DOI
Pati F., Jang J., Ha D.H., Won Kim S., Rhie J.W., Shim J.H., Kim D.H., Cho D.W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 2014;5:3935. doi: 10.1038/ncomms4935. PubMed DOI PMC
Malda J., Visser J., Melchels F.P., Jüngst T., Hennink W.E., Dhert W.J., Groll J., Hutmacher D.W. 25th anniversary article: Engineering hydrogels for biofabrication. Adv. Mat. 2013;25:5011–5028. doi: 10.1002/adma.201302042. PubMed DOI
Lee C.H., Singla A., Lee Y. Biomedical applications of collagen. Int. J. Pharm. 2001;221:1–22. doi: 10.1016/S0378-5173(01)00691-3. PubMed DOI
Roth E.A., Xu T., Das M., Gregory C., Hickman J.J., Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25:3707–3715. doi: 10.1016/j.biomaterials.2003.10.052. PubMed DOI
Hinton T.J., Jallerat Q., Palchesko R.N., Park J.H., Grodzicki M.S., Shue H.-J., Ramadan M.H., Hudson A.R., Feinberg A.W. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 2015;1:1500758. doi: 10.1126/sciadv.1500758. PubMed DOI PMC
Xu F., Moon S., Emre A.E., Lien C., Turali E.S., Demirci U. Cell bioprinting as a potential high-throughput method for fabricating Cell-Based Biosensors (CBBs); Proceedings of the IEEE Sensors; Christchurch, New Zealand. 25–28 October 2009; pp. 387–391.
Lee W., Debasitis J.C., Lee V.K., Lee J.-H., Fischer K., Edminster K., Park J.-K., Yoo S.-S. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30:1587–1595. doi: 10.1016/j.biomaterials.2008.12.009. PubMed DOI
Wu Z., Su X., Xu Y., Kong B., Sun W., Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci. Rep. 2016;6:24474. doi: 10.1038/srep24474. PubMed DOI PMC
Inzana J.A., Olvera D., Fuller S.M., Kelly J.P., Graeve O.A., Schwarz E.M., Kates S.L., Awad H.A. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35:4026–4034. doi: 10.1016/j.biomaterials.2014.01.064. PubMed DOI PMC
Xu T., Gregory C.A., Molnar P., Cui X., Jalota S., Bhaduri S.B., Boland T. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27:3580–3588. doi: 10.1016/j.biomaterials.2006.01.048. PubMed DOI
Lee V., Singh G., Trasatti J.P., Bjornsson C., Xu X., Tran T.N., Yoo S.-S., Dai G., Karande P. Design and Fabrication of Human Skin by Three-Dimensional Bioprinting. Tissue Eng. Part. C Methods. 2013;20:473–484. doi: 10.1089/ten.tec.2013.0335. PubMed DOI PMC
Chang C.C., Boland E.D., Williams S.K., Hoying J.B. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2011;98:160–170. doi: 10.1002/jbm.b.31831. PubMed DOI PMC
Lynn A.K., Yannas I.V., Bonfield W. Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2004;71:343–354. doi: 10.1002/jbm.b.30096. PubMed DOI
Nöth U., Rackwitz L., Heymer A., Weber M., Baumann B., Steinert A., Schütze N., Jakob F., Eulert J. Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J. Biomed. Mater. Res. A. 2007;83:626–635. doi: 10.1002/jbm.a.31254. PubMed DOI
Helary C., Bataille I., Abed A., Illoul C., Anglo A., Louedec L., Letourneur D., Meddahi-Pellé A., Giraud-Guille M.M. Concentrated collagen hydrogels as dermal substitutes. Biomaterials. 2010;31:481–490. doi: 10.1016/j.biomaterials.2009.09.073. PubMed DOI
Yeleswarapu S., Chameettachal S., Bera A., Pati F. Tissue-Specific Bioink from Xenogeneic Sources for 3D Bioprinting of Tissue Constructs. IntechOpen; London, UK: 2019.
Gaudet I.D., Shreiber D.I. Characterization of methacrylated type-I collagen as a dynamic, photoactive hydrogel. Biointerphases. 2012;7:25. doi: 10.1007/s13758-012-0025-y. PubMed DOI PMC
Thayer P., Martinez H., Gatenholm E. History and Trends of 3D Bioprinting. In: Crook J.M., editor. 3D Bioprinting: Principles and Protocols. Springer; New York, NY, USA: 2020. pp. 3–18. PubMed DOI
Ricard-Blum S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011;3:a004978. doi: 10.1101/cshperspect.a004978. PubMed DOI PMC
Matsuo N., Tanaka S., Yoshioka H., Koch M., Gordon M.K., Ramirez F. Collagen XXIV (Col24a1) gene expression is a specific marker of osteoblast differentiation and bone formation. Connect. Tissue Res. 2008;49:68–75. doi: 10.1080/03008200801913502. PubMed DOI
Sorushanova A., Delgado L.M., Wu Z., Shologu N., Kshirsagar A., Raghunath R., Mullen A.M., Bayon Y., Pandit A., Raghunath M., et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv. Mat. 2019;31:e1801651. doi: 10.1002/adma.201801651. PubMed DOI
Gelse K., Pöschl E., Aigner T. Collagens—Structure, function, and biosynthesis. Adv. Drug Del. Rev. 2003;55:1531–1546. doi: 10.1016/j.addr.2003.08.002. PubMed DOI
Bhagwat P.K., Dandge P.B. Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatal. Agric. Biotechnol. 2016;7:234–240. doi: 10.1016/j.bcab.2016.06.010. DOI
Alexander B., Daulton T.L., Genin G.M., Lipner J., Pasteris J.D., Wopenka B., Thomopoulos S. The nanometre-scale physiology of bone: Steric modelling and scanning transmission electron microscopy of collagen–mineral structure. J. R. Soc. Interface. 2012;9:1774–1786. doi: 10.1098/rsif.2011.0880. PubMed DOI PMC
Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC
Gaar J., Naffa R., Brimble M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org. Chem. Front. 2020;7:2789–2814. doi: 10.1039/D0QO00624F. DOI
Snedeker J.G., Gautieri A. The role of collagen crosslinks in ageing and diabetes—The good, the bad, and the ugly. Muscles Ligaments Tendons J. 2014;4:303–308. doi: 10.32098/mltj.03.2014.07. PubMed DOI PMC
Eyre D.R., Weis M., Rai J. Analyses of lysine aldehyde cross-linking in collagen reveal that the mature cross-link histidinohydroxylysinonorleucine is an artifact. J. Biol. Chem. 2019;294:6578–6590. doi: 10.1074/jbc.RA118.007202. PubMed DOI PMC
Paschalis E.P., Verdelis K., Doty S.B., Boskey A.L., Mendelsohn R., Yamauchi M. Spectroscopic characterization of collagen cross-links in bone. J. Bone Mineral. Res. 2001;16:1821–1828. doi: 10.1359/jbmr.2001.16.10.1821. PubMed DOI
Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. Online. 2019;18:24. doi: 10.1186/s12938-019-0647-0. PubMed DOI PMC
Naffa R., Maidment C., Ahn M., Ingham B., Hinkley S., Norris G. Molecular and structural insights into skin collagen reveals several factors that influence its architecture. Int. J. Biol. Macromol. 2019;128:509–520. doi: 10.1016/j.ijbiomac.2019.01.151. PubMed DOI
Yamauchi M., Sricholpech M. Lysine post-translational modifications of collagen. Essays Biochem. 2012;52:113–133. doi: 10.1042/bse0520113. PubMed DOI PMC
Gerriets J.E., Curwin S.L., Last J.A. Tendon hypertrophy is associated with increased hydroxylation of nonhelical lysine residues at two specific cross-linking sites in type I collagen. J. Biol. Chem. 1993;268:25553–25560. doi: 10.1016/S0021-9258(19)74427-5. PubMed DOI
Rajan N., Habermehl J., Coté M.F., Doillon C.J., Mantovani D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc. 2006;1:2753–2758. doi: 10.1038/nprot.2006.430. PubMed DOI
Bhattacharjee A., Bansal M. Collagen structure: The Madras triple helix and the current scenario. IUBMB Life. 2005;57:161–172. doi: 10.1080/15216540500090710. PubMed DOI
Schmidt M.M., Dornelles R.C.P., Mello R.O., Kubota E.H., Mazutti M.A., Kempka A.P., Demiate I.M. Collagen extraction process. Int. Food Res. J. 2016;23:913–922.
Liu D., Wei G., Li T., Hu J., Lu N., Regenstein J.M., Zhou P. Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin. Food Chem. 2015;172:836–843. doi: 10.1016/j.foodchem.2014.09.147. PubMed DOI
Regenstein J.M., Zhou P. 13—Collagen and gelatin from marine by-products. In: Shahidi F., editor. Maximising the Value of Marine By-Products. Woodhead Publishing; Cambridge, MA, USA: 2007. pp. 279–303. DOI
Fratzl P. Collagen: Structure and Mechanics, an Introduction. In: Fratzl P., editor. Collagen: Structure and Mechanics. Springer; Boston, MA, USA: 2008. pp. 1–13. DOI
Li Y., Asadi A., Monroe M.R., Douglas E.P. pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding. Mater. Sci. Eng. C Mater. Biol. Appl. 2009;29:1643–1649. doi: 10.1016/j.msec.2009.01.001. DOI
Gómez-Guillén M.C., Giménez B., López-Caballero M.E., Montero M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25:1813–1827. doi: 10.1016/j.foodhyd.2011.02.007. DOI
Ruszczak Z., Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv. Drug Del. Rev. 2003;55:1679–1698. doi: 10.1016/j.addr.2003.08.007. PubMed DOI
Rýglová Š., Braun M., Suchý T. Collagen and Its Modifications—Crucial Aspects with Concern to Its Processing and Analysis. Macromol. Mater. Eng. 2017;302:1600460. doi: 10.1002/mame.201600460. DOI
Rhee S., Puetzer J.L., Mason B.N., Reinhart-King C.A., Bonassar L.J. 3D Bioprinting of Spatially Heterogeneous Collagen Constructs for Cartilage Tissue Engineering. ACS Biomater. Sci. Eng. 2016;2:1800–1805. doi: 10.1021/acsbiomaterials.6b00288. PubMed DOI
Tian Z., Wu K., Liu W., Shen L., Li G. Two-dimensional infrared spectroscopic study on the thermally induced structural changes of glutaraldehyde-crosslinked collagen. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015;140:356–363. doi: 10.1016/j.saa.2015.01.003. PubMed DOI
Włodarczyk-Biegun M.K., Del Campo A. 3D bioprinting of structural proteins. Biomaterials. 2017;134:180–201. doi: 10.1016/j.biomaterials.2017.04.019. PubMed DOI
Gaudet C., Marganski W.A., Kim S., Brown C.T., Gunderia V., Dembo M., Wong J.Y. Influence of Type I Collagen Surface Density on Fibroblast Spreading, Motility, and Contractility. Biophys. J. 2003;85:3329–3335. doi: 10.1016/S0006-3495(03)74752-3. PubMed DOI PMC
Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014;32:773–785. doi: 10.1038/nbt.2958. PubMed DOI
Khatiwala C., Law R., Shepherd B., Dorfman S., Csete M. 3D cell bioprinting for regenerative medicine research and therapies. Gene Ther. Regul. 2012;7:1230004. doi: 10.1142/S1568558611000301. DOI
Melchels F.P.W., Blokzijl M.M., Levato R., Peiffer Q.C., Ruijter M.D., Hennink W.E., Vermonden T., Malda J. Hydrogel-based reinforcement of 3D bioprinted constructs. Biofabrication. 2016;8:035004. doi: 10.1088/1758-5090/8/3/035004. PubMed DOI PMC
Li H., Tan C., Li L. Review of 3D printable hydrogels and constructs. Mater. Des. 2018;159:20–38. doi: 10.1016/j.matdes.2018.08.023. DOI
Osidak E.O., Karalkin P.A., Osidak M.S., Parfenov V.A., Sivogrivov D.E., Pereira F., Gryadunova A.A., Koudan E.V., Khesuani Y.D., Кasyanov V.A., et al. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J. Mater. Sci. Mater. Med. 2019;30:31. doi: 10.1007/s10856-019-6233-y. PubMed DOI
Diamantides N., Wang L., Pruiksma T., Siemiatkoski J., Dugopolski C., Shortkroff S., Kennedy S., Bonassar L.J. Correlating rheological properties and printability of collagen bioinks: The effects of riboflavin photocrosslinking and pH. Biofabrication. 2017;9:034102. doi: 10.1088/1758-5090/aa780f. PubMed DOI
Lai G., Li Y., Li G. Effect of concentration and temperature on the rheological behavior of collagen solution. Int. J. Biol. Macromol. 2008;42:285–291. doi: 10.1016/j.ijbiomac.2007.12.010. PubMed DOI
Duan L., Li J., Li C., Li G. Effects of NaCl on the rheological behavior of collagen solution. Korea-Aust. Rheol. J. 2013;25:137–144. doi: 10.1007/s13367-013-0014-9. DOI
Gr T.S.P., Zaman N.T., Alamelu B., Dhamankar V., Chu C., Perotta E., Kadiyala I. Mechanical Characterization of Extracellular Matrix Hydrogels: Comparison of Properties Measured by Rheometer and Texture Analyzer. Asian J. Pharm. Technol. Innov. 2018;6:6–21.
Choudhury D., Anand S., Naing M.W. The Arrival of Commercial Bioprinters—Towards 3D Bioprinting Revolution! Int. J. Bioprint. 2018;4:139. doi: 10.18063/ijb.v4i2.139. PubMed DOI PMC
Derby B., Reis N. Inkjet Printing of Highly Loaded Particulate Suspensions. MRS Bull. 2003;28:815–818. doi: 10.1557/mrs2003.230. DOI
Hölzl K., Lin S., Tytgat L., Van Vlierberghe S., Gu L., Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8:032002. doi: 10.1088/1758-5090/8/3/032002. PubMed DOI
He Y., Yang F., Zhao H., Gao Q., Xia B., Fu J. Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 2016;6:29977. doi: 10.1038/srep29977. PubMed DOI PMC
Chang R., Nam J., Sun W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part. A. 2008;14:41–48. doi: 10.1089/ten.a.2007.0004. PubMed DOI
Galie P.A., Nguyen D.H., Choi C.K., Cohen D.M., Janmey P.A., Chen C.S. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl. Acad. Sci. USA. 2014;111:7968–7973. doi: 10.1073/pnas.1310842111. PubMed DOI PMC
Chien S. Effects of disturbed flow on endothelial cells. Ann. Biomed. Eng. 2008;36:554–562. doi: 10.1007/s10439-007-9426-3. PubMed DOI PMC
Potter C.M., Lao K.H., Zeng L., Xu Q. Role of biomechanical forces in stem cell vascular lineage differentiation. Arterioscler. Thromb. Vasc. Biol. 2014;34:2184–2190. doi: 10.1161/ATVBAHA.114.303423. PubMed DOI
Ng W.L., Lee J.M., Yeong W.Y., Win Naing M. Microvalve-based bioprinting—Process, bio-inks and applications. Biomater. Sci. 2017;5:632–647. doi: 10.1039/C6BM00861E. PubMed DOI
Lee W., Lee V., Polio S., Keegan P., Lee J.-H., Fischer K., Park J.-K., Yoo S.-S. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol. Bioeng. 2010;105:1178–1186. doi: 10.1002/bit.22613. PubMed DOI
Smith C.M., Christian J.J., Warren W.L., Williams S.K. Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng. 2007;13:373–383. doi: 10.1089/ten.2006.0101. PubMed DOI
Smith C.M., Stone A.L., Parkhill R.L., Stewart R.L., Simpkins M.W., Kachurin A.M., Warren W.L., Williams S.K. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 2004;10:1566–1576. doi: 10.1089/ten.2004.10.1566. PubMed DOI
Allevi Follow This Guide for Cell Mixing and Bioink Loading. [(accessed on 21 June 2017)]. Available online: https://www.allevi3d.com/cell-mixing-bioink-loading/
Sciences C.L. Bioprinting Protocol: Cellink Bioink. [(accessed on 20 May 2021)]. Available online: https://www.cellink.com/wp-content/uploads/2019/03/Bioprinting-Protocol-CELLINK-Bioink_14-Jun-2021.pdf.
Ibidi Collagen Type I, Rat Tail, 5 mg/mL Protocol. [(accessed on 21 June 2017)]. Available online: https://ibidi.com/img/cms/products/cells_reagents/R_5020X_CollagenI/IN_5020X_CollagenI_05mg.pdf.
Matejka R., Konarik M., Stepanovska J., Lipensky J., Chlupac J., Turek D., Prazak I., Broz A., Simunkova Z., Mrazova I., et al. Bioreactor Processed Stromal Cell Seeding and Cultivation on Decellularized Pericardium Patches for Cardiovascular Use. Appl. Sci. 2020;10:5473. doi: 10.3390/app10165473. DOI
Liu C.Z., Xia Z.D., Han Z.W., Hulley P.A., Triffitt J.T., Czernuszka J.T. Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2008;85:519–528. doi: 10.1002/jbm.b.30975. PubMed DOI
Marques C.F., Diogo G.S., Pina S., Oliveira J.M., Silva T.H., Reis R.L. Collagen-based bioinks for hard tissue engineering applications: A comprehensive review. J. Mater. Sci. Mater. Med. 2019;30:32. doi: 10.1007/s10856-019-6234-x. PubMed DOI
Lee J.M., Suen S.K.Q., Ng W.L., Ma W.C., Yeong W.Y. Bioprinting of Collagen: Considerations, Potentials, and Applications. Macromol. Biosci. 2020;21:2000280. doi: 10.1002/mabi.202000280. PubMed DOI
Hacioglu A., Yilmazer H., Ustundag C. 3D Printing for Tissue Engineering Applications. J. Polytech. 2018;42:624–638. doi: 10.2339/politeknik.389596. DOI
Diamantides N., Dugopolski C., Blahut E., Kennedy S., Bonassar L.J. High density cell seeding affects the rheology and printability of collagen bioinks. Biofabrication. 2019;11:045016. doi: 10.1088/1758-5090/ab3524. PubMed DOI
Kang D., Ahn G., Kim D., Kang H.-W., Yun S., Yun W.-S., Shim J.-H., Jin S. Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication. Biofabrication. 2018;10:035008. doi: 10.1088/1758-5090/aac70b. PubMed DOI
Moncal K.K., Ozbolat V., Datta P., Heo D.N., Ozbolat I.T. Thermally-controlled extrusion-based bioprinting of collagen. J. Mater. Sci. Mater. Med. 2019;30:55. doi: 10.1007/s10856-019-6258-2. PubMed DOI
Yeo M.G., Kim G.H. A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink. Biofabrication. 2017;9:025004. doi: 10.1088/1758-5090/aa6997. PubMed DOI
Lee J., Yeo M., Kim W., Koo Y., Kim G.H. Development of a tannic acid cross-linking process for obtaining 3D porous cell-laden collagen structure. Int. J. Biol. Macromol. 2018;110:497–503. doi: 10.1016/j.ijbiomac.2017.10.105. PubMed DOI
Yoon H., Lee J.-S., Yim H., Kim G., Chun W. Development of cell-laden 3D scaffolds for efficient engineered skin substitutes by collagen gelation. RSC Adv. 2016;6:21439–21447. doi: 10.1039/C5RA19532B. DOI
Yeo M., Lee J.-S., Chun W., Kim G.H. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core–Sheath Structures for Tissue Engineering. Biomacromolecules. 2016;17:1365–1375. doi: 10.1021/acs.biomac.5b01764. PubMed DOI
Kim Y.B., Lee H., Kim G.H. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process. ACS Appl. Mater. Interfaces. 2016;8:32230–32240. doi: 10.1021/acsami.6b11669. PubMed DOI
Baltazar T., Merola J., Catarino C., Xie C.B., Kirkiles-Smith N.C., Lee V., Hotta S., Dai G., Xu X., Ferreira F.C., et al. Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. Tissue Eng. Part. A. 2020;26:227–238. doi: 10.1089/ten.tea.2019.0201. PubMed DOI PMC
Duarte Campos D.F., Blaeser A., Korsten A., Neuss S., Jäkel J., Vogt M., Fischer H. The Stiffness and Structure of Three-Dimensional Printed Hydrogels Direct the Differentiation of Mesenchymal Stromal Cells toward Adipogenic and Osteogenic Lineages. Tissue Eng. Part. A. 2014;21:740–756. doi: 10.1089/ten.tea.2014.0231. PubMed DOI
Ren X., Wang F., Chen C., Gong X., Yin L., Yang L. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet. Disord. 2016;17:301. doi: 10.1186/s12891-016-1130-8. PubMed DOI PMC
Wilson W.C., Jr., Boland T. Cell and organ printing 1: Protein and cell printers. Anat. Rec. 2003;272:491–496. doi: 10.1002/ar.a.10057. PubMed DOI
Park T.-M., Kang D., Jang I., Yun W.-S., Shim J.-H., Jeong Y.H., Kwak J.-Y., Yoon S., Jin S. Fabrication of In Vitro Cancer Microtissue Array on Fibroblast-Layered Nanofibrous Membrane by Inkjet Printing. Int. J. Mol. Sci. 2017;18:2348. doi: 10.3390/ijms18112348. PubMed DOI PMC
Park J.Y., Choi J.-C., Shim J.-H., Lee J.-S., Park H., Kim S.W., Doh J., Cho D.-W. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication. 2014;6:035004. doi: 10.1088/1758-5082/6/3/035004. PubMed DOI
Murphy S.V., Skardal A., Atala A. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A. 2013;101:272–284. doi: 10.1002/jbm.a.34326. PubMed DOI
Duarte Campos D.F., Rohde M., Ross M., Anvari P., Blaeser A., Vogt M., Panfil C., Yam G.H.-F., Mehta J.S., Fischer H., et al. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes. J. Biomed. Mater. Res. A. 2019;107:1945–1953. doi: 10.1002/jbm.a.36702. PubMed DOI
Lee W., Pinckney J., Lee V., Lee J.-H., Fischer K., Polio S., Park J.-K., Yoo S.-S. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport. 2009;20:798–803. doi: 10.1097/WNR.0b013e32832b8be4. PubMed DOI
Moon S., Hasan S.K., Song Y.S., Xu F., Keles H.O., Manzur F., Mikkilineni S., Hong J.W., Nagatomi J., Haeggstrom E., et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part. C Methods. 2010;16:157–166. doi: 10.1089/ten.tec.2009.0179. PubMed DOI PMC
Benning L., Gutzweiler L., Tröndle K., Riba J., Zengerle R., Koltay P., Zimmermann S., Stark G.B., Finkenzeller G. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. J. Biomed. Mater. Res. A. 2017;105:3231–3241. doi: 10.1002/jbm.a.36179. PubMed DOI
Benning L., Gutzweiler L., Tröndle K., Riba J., Zengerle R., Koltay P., Zimmermann S., Stark G.B., Finkenzeller G. Assessment of hydrogels for bioprinting of endothelial cells. J. Biomed. Mater. Res. A. 2018;106:935–947. doi: 10.1002/jbm.a.36291. PubMed DOI
Reid J.A., Palmer X.-L., Mollica P.A., Northam N., Sachs P.C., Bruno R.D. A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Sci. Rep. 2019;9:7466. doi: 10.1038/s41598-019-43922-z. PubMed DOI PMC
Xu F., Emre A.E., Turali E.S., Hasan S.K., Moon S., Nagatomi J., Khademhosseini A., Demirci U. Cell proliferation in bioprinted cell-laden collagen droplets; Proceedings of the 2009 IEEE 35th Annual Northeast Bioengineering Conference; Cambridge, MA, USA. 3–5 April 2009; pp. 1–2.
Michael S., Sorg H., Peck C.-T., Koch L., Deiwick A., Chichkov B., Vogt P.M., Reimers K. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE. 2013;8:e57741. doi: 10.1371/journal.pone.0057741. PubMed DOI PMC
Koch L., Deiwick A., Schlie S., Michael S., Gruene M., Coger V., Zychlinski D., Schambach A., Reimers K., Vogt P.M., et al. Skin tissue generation by laser cell printing. Biotechnol. Bioeng. 2012;109:1855–1863. doi: 10.1002/bit.24455. PubMed DOI
Keriquel V., Oliveira H., Rémy M., Ziane S., Delmond S., Rousseau B., Rey S., Catros S., Amédée J., Guillemot F., et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci. Rep. 2017;7:1778. doi: 10.1038/s41598-017-01914-x. PubMed DOI PMC
Sorkio A., Koch L., Koivusalo L., Deiwick A., Miettinen S., Chichkov B., Skottman H. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171:57–71. doi: 10.1016/j.biomaterials.2018.04.034. PubMed DOI
Bourget J.-M., Kérourédan O., Medina M., Rémy M., Thébaud N.B., Bareille R., Chassande O., Amédée J., Catros S., Devillard R. Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration. BioMed Res. Int. 2016;2016:3569843. doi: 10.1155/2016/3569843. PubMed DOI PMC
Kérourédan O., Bourget J.-M., Rémy M., Crauste-Manciet S., Kalisky J., Catros S., Thébaud N.B., Devillard R. Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting. J. Mater. Sci. Mater. Med. 2019;30:28. doi: 10.1007/s10856-019-6230-1. PubMed DOI
Kérourédan O., Hakobyan D., Rémy M., Ziane S., Dusserre N., Fricain J.-C., Delmond S., Thébaud N.B., Devillard R. In situ prevascularization designed by laser-assisted bioprinting: Effect on bone regeneration. Biofabrication. 2019;11:045002. doi: 10.1088/1758-5090/ab2620. PubMed DOI
Yoon S., Park J.A., Lee H.-R., Yoon W.H., Hwang D.S., Jung S. Inkjet–Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures. Adv. Healthc. Mater. 2018;7:1800050. doi: 10.1002/adhm.201800050. PubMed DOI
Mandrycky C., Wang Z., Kim K., Kim D.H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 2016;34:422–434. doi: 10.1016/j.biotechadv.2015.12.011. PubMed DOI PMC
Foyt D.A., Norman M.D.A., Yu T.T.L., Gentleman E. Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine. Adv. Healthc. Mater. 2018;7:e1700939. doi: 10.1002/adhm.201700939. PubMed DOI PMC
Khalil S., Nam J., Sun W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp. J. 2005;11:9–17. doi: 10.1108/13552540510573347. DOI
Dababneh A.B., Ozbolat I.T. Bioprinting Technology: A Current State-of-the-Art Review. J. Manuf. Sci. Eng. 2014;136:061016. doi: 10.1115/1.4028512. DOI
Vozzi G., Previti A., De Rossi D., Ahluwalia A. Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng. 2002;8:1089–1098. doi: 10.1089/107632702320934182. PubMed DOI
Suntornnond R., Tan E.Y.S., An J., Chua C.K. A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks. Materials. 2016;9:756. doi: 10.3390/ma9090756. PubMed DOI PMC
Ozbolat I.T., Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321–343. doi: 10.1016/j.biomaterials.2015.10.076. PubMed DOI
Boland T., Mironov V., Gutowska A., Roth E.A., Markwald R.R. Cell and organ printing 2: Fusion of cell aggregates in three-dimensional gels. Anat. Rec. 2003;272:497–502. doi: 10.1002/ar.a.10059. PubMed DOI
Chung J.H.Y., Naficy S., Yue Z., Kapsa R., Quigley A., Moulton S.E., Wallace G.G. Bio-ink properties and printability for extrusion printing living cells. Biomater. Sci. 2013;1:763–773. doi: 10.1039/c3bm00012e. PubMed DOI
Levato R., Visser J., Planell J.A., Engel E., Malda J., Mateos-Timoneda M.A. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication. 2014;6:035020. doi: 10.1088/1758-5082/6/3/035020. PubMed DOI
Angelopoulos I., Allenby M.C., Lim M., Zamorano M. Engineering inkjet bioprinting processes toward translational therapies. Biotechnol. Bioeng. 2020;117:272–284. doi: 10.1002/bit.27176. PubMed DOI
Calvert P. Inkjet printing for materials and devices. Chem. Mater. 2001;13:3299–3305. doi: 10.1021/cm0101632. DOI
Gao G., Yonezawa T., Hubbell K., Dai G., Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol. J. 2015;10:1568–1577. doi: 10.1002/biot.201400635. PubMed DOI
Xu T., Jin J., Gregory C., Hickman J.J., Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93–99. doi: 10.1016/j.biomaterials.2004.04.011. PubMed DOI
Cui X., Boland T., D’Lima D.D., Lotz M.K. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat. Drug Deliv. Formul. 2012;6:149–155. doi: 10.2174/187221112800672949. PubMed DOI PMC
Chahal D., Ahmadi A., Cheung K.C. Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions. Biotechnol. Bioeng. 2012;109:2932–2940. doi: 10.1002/bit.24562. PubMed DOI
Puhlev I., Guo N., Brown D.R., Levine F. Desiccation tolerance in human cells. Cryobiology. 2001;42:207–217. doi: 10.1006/cryo.2001.2324. PubMed DOI
Guillotin B., Souquet A., Catros S., Duocastella M., Pippenger B., Bellance S., Bareille R., Rémy M., Bordenave L., Amédée J., et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31:7250–7256. doi: 10.1016/j.biomaterials.2010.05.055. PubMed DOI
Schiele N.R., Corr D.T., Huang Y., Raof N.A., Xie Y., Chrisey D.B. Laser-based direct-write techniques for cell printing. Biofabrication. 2010;2:032001. doi: 10.1088/1758-5082/2/3/032001. PubMed DOI PMC
Guillemot F., Guillotin B., Fontaine A., Ali M., Catros S., Kériquel V., Fricain J.C., Rémy M., Bareille R., Amédée-Vilamitjana J. Laser-assisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bull. 2011;36:1015–1019. doi: 10.1557/mrs.2011.272. DOI
Singh M., Haverinen H.M., Dhagat P., Jabbour G.E. Inkjet printing-process and its applications. Adv. Mat. 2010;22:673–685. doi: 10.1002/adma.200901141. PubMed DOI
Antoine E.E., Vlachos P.P., Rylander M.N. Review of collagen I hydrogels for bioengineered tissue microenvironments: Characterization of mechanics, structure, and transport. Tissue Eng. Part. B Rev. 2014;20:683–696. doi: 10.1089/ten.teb.2014.0086. PubMed DOI PMC
Yang Y.L., Motte S., Kaufman L.J. Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials. 2010;31:5678–5688. doi: 10.1016/j.biomaterials.2010.03.039. PubMed DOI
Chrobak K.M., Potter D.R., Tien J. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 2006;71:185–196. doi: 10.1016/j.mvr.2006.02.005. PubMed DOI
Kim G., Ahn S., Yoon H., Kim Y., Chun W. A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering. J. Mater. Chem. 2009;19:8817–8823. doi: 10.1039/b914187a. DOI
Blaeser A., Duarte Campos D.F., Puster U., Richtering W., Stevens M.M., Fischer H. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity. Adv. Healthc. Mater. 2016;5:326–333. doi: 10.1002/adhm.201500677. PubMed DOI
Sun J., Ng J.H., Fuh Y.H., Wong Y.S., Loh H.T., Xu Q. Comparison of micro-dispensing performance between micro-valve and piezoelectric printhead. Microsyst. Technol. 2009;15:1437–1448. doi: 10.1007/s00542-009-0905-3. DOI
Xu J., Zheng S., Hu X., Li L., Li W., Parungao R., Wang Y., Nie Y., Liu T., Song K. Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting. Polymers. 2020;12:1237. doi: 10.3390/polym12061237. PubMed DOI PMC
Saunders R.E., Derby B. Inkjet printing biomaterials for tissue engineering: Bioprinting. Int. Mater. Rev. 2014;59:430–448. doi: 10.1179/1743280414Y.0000000040. DOI
Koch L., Kuhn S., Sorg H., Gruene M., Schlie S., Gaebel R., Polchow B., Reimers K., Stoelting S., Ma N., et al. Laser printing of skin cells and human stem cells. Tissue Eng. Part. C Methods. 2010;16:847–854. doi: 10.1089/ten.tec.2009.0397. PubMed DOI
Delgado L.M., Bayon Y., Pandit A., Zeugolis D.I. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng. Part. B Rev. 2015;21:298–313. doi: 10.1089/ten.teb.2014.0290. PubMed DOI PMC
Adamiak K., Sionkowska A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020;161:550–560. doi: 10.1016/j.ijbiomac.2020.06.075. PubMed DOI
Nimni M.E., Cheung D., Strates B., Kodama M., Sheikh K. Chemically modified collagen: A natural biomaterial for tissue replacement. J. Biomed. Mater. Res. 1987;21:741–771. doi: 10.1002/jbm.820210606. PubMed DOI
Pan T., Song W., Cao X., Wang Y. 3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties. J. Mater. Sci. Technol. 2016;32:889–900. doi: 10.1016/j.jmst.2016.01.007. DOI
Gough J.E., Scotchford C.A., Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res. 2002;61:121–130. doi: 10.1002/jbm.10145. PubMed DOI
Hermanson G. Bioconjugate Techniques. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2013. pp. 1–1146. DOI
Mu C., Zhang K., Lin W., Li D. Ring-opening polymerization of genipin and its long-range crosslinking effect on collagen hydrogel. J. Biomed. Mater. Res. A. 2013;101:385–393. doi: 10.1002/jbm.a.34338. PubMed DOI
Touyama R., Takeda Y., Inoue K., Kawamura I., Yatsuzuka M., Ikumoto T., Shingu T., Yokoi T., Inouye H. Studies on the Blue Pigments Produced from Genipin and Methylamine. I. Structures of the Brownish-Red Pigments, Intermediates Leading to the Blue Pigments. Chem. Pharm. Bull. 1994;42:668–673. doi: 10.1248/cpb.42.668. DOI
Koob T.J., Hernandez D.J. Material properties of polymerized NDGA–collagen composite fibers: Development of biologically based tendon constructs. Biomaterials. 2002;23:203–212. doi: 10.1016/S0142-9612(01)00096-5. PubMed DOI
Jus S., Stachel I., Schloegl W., Pretzler M., Friess W., Meyer M., Birner-Gruenberger R., Guebitz G.M. Cross-linking of collagen with laccases and tyrosinases. Mater. Sci. Eng. C Mater. Biol. Appl. 2011;31:1068–1077. doi: 10.1016/j.msec.2011.03.007. DOI
Folk J.E. Transglutaminases. Annu. Rev. Biochem. 1980;49:517–531. doi: 10.1146/annurev.bi.49.070180.002505. PubMed DOI
Siegel R.C., Pinnell S.R., Martin G.R. Cross-linking of collagen and elastin. Properties of lysyl oxidase. Biochemistry. 1970;9:4486–4492. doi: 10.1021/bi00825a004. PubMed DOI
Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials. 1997;18:95–105. doi: 10.1016/S0142-9612(96)00106-8. PubMed DOI
Haugh M.G., Jaasma M.J., O’Brien F.J. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J. Biomed. Mater. Res. A. 2009;89:363–369. doi: 10.1002/jbm.a.31955. PubMed DOI
Miles C.A., Bailey A.J. Thermally labile domains in the collagen molecule. Micron. 2001;32:325–332. doi: 10.1016/S0968-4328(00)00034-2. PubMed DOI
Koide M., Osaki K., Konishi J., Oyamada K., Katakura T., Takahashi A., Yoshizato K. A new type of biomaterial for artificial skin: Dehydrothermally cross-linked composites of fibrillar and denatured collagens. J. Biomed. Mater. Res. 1993;27:79–87. doi: 10.1002/jbm.820270111. PubMed DOI
Goldich Y., Marcovich A.L., Barkana Y., Avni I., Zadok D. Safety of corneal collagen cross-linking with UV-A and riboflavin in progressive keratoconus. Cornea. 2010;29:409–411. doi: 10.1097/ICO.0b013e3181bd9f8c. PubMed DOI
Bax D.V., Davidenko N., Hamaia S.W., Farndale R.W., Best S.M., Cameron R.E. Impact of UV- and carbodiimide-based crosslinking on the integrin-binding properties of collagen-based materials. Acta Biomater. 2019;100:280–291. doi: 10.1016/j.actbio.2019.09.046. PubMed DOI
Schacht E.H. Polymer chemistry and hydrogel systems. J. Phys. Conf. Ser. 2004;3:22–28. doi: 10.1088/1742-6596/3/1/004. DOI
Sionkowska A. UV Light as a Tool for Surface Modification of Polymeric Biomaterials. Key Eng. Mater. 2014;583:80–86. doi: 10.4028/www.scientific.net/KEM.583.80. DOI
Pamfil D., Schick C., Vasile C. New Hydrogels Based on Substituted Anhydride Modified Collagen and 2-Hydroxyethyl Methacrylate. Synthesis and Characterization. Ind. Eng. Chem. Res. 2014;53:11239–11248. doi: 10.1021/ie5016848. DOI
Weadock K.S., Miller E.J., Bellincampi L.D., Zawadsky J.P., Dunn M.G. Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment. J. Biomed. Mater. Res. 1995;29:1373–1379. doi: 10.1002/jbm.820291108. PubMed DOI
Oh J.K.K. Engineering of nanometer-sized cross-linked hydrogels for biomedical applications. Can. J. Chem. 2010;88:173–184. doi: 10.1139/v09-158. DOI
Maitra J., Shukla V. Cross-linking in hydrogels—A review. Am. J. Polym. Sci. 2014;4:25–31.
Chuang C.-H., Lin R.-Z., Melero-Martin J.M., Chen Y.-C. Comparison of covalently and physically cross-linked collagen hydrogels on mediating vascular network formation for engineering adipose tissue. Artif. Cells Nanomed. Biotechnol. 2018;46:434–447. doi: 10.1080/21691401.2018.1499660. PubMed DOI PMC
d’Angelo M., Benedetti E., Tupone M.G., Catanesi M., Castelli V., Antonosante A., Cimini A. The Role of Stiffness in Cell Reprogramming: A Potential Role for Biomaterials in Inducing Tissue Regeneration. Cells. 2019;8:1036. doi: 10.3390/cells8091036. PubMed DOI PMC
Valero C., Amaveda H., Mora M., García-Aznar J.M. Combined experimental and computational characterization of crosslinked collagen-based hydrogels. PLoS ONE. 2018;13:e0195820. doi: 10.1371/journal.pone.0195820. PubMed DOI PMC
Handorf A.M., Zhou Y., Halanski M.A., Li W.J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis. 2015;11:1–15. doi: 10.1080/15476278.2015.1019687. PubMed DOI PMC
Provenzano P.P., Inman D.R., Eliceiri K.W., Knittel J.G., Yan L., Rueden C.T., White J.G., Keely P.J. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11. doi: 10.1186/1741-7015-6-11. PubMed DOI PMC
Chandran P.L., Barocas V.H. Microstructural mechanics of collagen gels in confined compression: Poroelasticity, viscoelasticity, and collapse. J. Biomech. Eng. 2004;126:152–166. doi: 10.1115/1.1688774. PubMed DOI
Gribova V., Crouzier T., Picart C. A material’s point of view on recent developments of polymeric biomaterials: Control of mechanical and biochemical properties. J. Mater. Chem. 2011;21:14354–14366. doi: 10.1039/c1jm11372k. PubMed DOI PMC
Wells R.G. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47:1394–1400. doi: 10.1002/hep.22193. PubMed DOI
Yang Y.-l., Leone L.M., Kaufman L.J. Elastic Moduli of Collagen Gels Can Be Predicted from Two-Dimensional Confocal Microscopy. Biophys. J. 2009;97:2051–2060. doi: 10.1016/j.bpj.2009.07.035. PubMed DOI PMC
Reddy N., Reddy R., Jiang Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 2015;33:362–369. doi: 10.1016/j.tibtech.2015.03.008. PubMed DOI
Wen Q., Basu A., Janmey P.A., Yodh A.G. Non-affine deformations in polymer hydrogels. Soft Matter. 2012;8:8039–8049. doi: 10.1039/c2sm25364j. PubMed DOI PMC
Kurniawan N.A., Wong L.H., Rajagopalan R. Early Stiffening and Softening of Collagen: Interplay of Deformation Mechanisms in Biopolymer Networks. Biomacromolecules. 2012;13:691–698. doi: 10.1021/bm2015812. PubMed DOI
Nyambat B., Manga Y.B., Chen C.-H., Gankhuyag U., Pratomo WP A., Kumar Satapathy M., Chuang E.-Y. New Insight into Natural Extracellular Matrix: Genipin Cross-Linked Adipose-Derived Stem Cell Extracellular Matrix Gel for Tissue Engineering. Int. J. Mol. Sci. 2020;21:4864. doi: 10.3390/ijms21144864. PubMed DOI PMC
Sánchez-Cid P., Jiménez-Rosado M., Perez-Puyana V., Guerrero A., Romero A. Rheological and Microstructural Evaluation of Collagen-Based Scaffolds Crosslinked with Fructose. Polymers. 2021;13:632. doi: 10.3390/polym13040632. PubMed DOI PMC
Kreger S.T., Bell B.J., Bailey J., Stites E., Kuske J., Waisner B., Voytik-Harbin S.L. Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. Biopolymers. 2010;93:690–707. doi: 10.1002/bip.21431. PubMed DOI PMC
Miron-Mendoza M., Seemann J., Grinnell F. The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices. Biomaterials. 2010;31:6425–6435. doi: 10.1016/j.biomaterials.2010.04.064. PubMed DOI PMC
Roeder B.A., Kokini K., Voytik-Harbin S.L. Fibril microstructure affects strain transmission within collagen extracellular matrices. J. Biomech. Eng. 2009;131:031004. doi: 10.1115/1.3005331. PubMed DOI
Saddiq Z.A., Barbenel J.C., Grant M.H. The mechanical strength of collagen gels containing glycosaminoglycans and populated with fibroblasts. J. Biomed. Mater. Res. 2009;89:697–706. doi: 10.1002/jbm.a.32007. PubMed DOI
Lam D., Enright H.A., Peters S.K.G., Moya M.L., Soscia D.A., Cadena J., Alvarado J.A., Kulp K.S., Wheeler E.K., Fischer N.O. Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures. J. Neurosci. Methods. 2020;329:108460. doi: 10.1016/j.jneumeth.2019.108460. PubMed DOI
Heid S., Boccaccini A.R. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomater. 2020;113:1–22. doi: 10.1016/j.actbio.2020.06.040. PubMed DOI
Yu Y., Zhang Y., Martin J.A., Ozbolat I.T. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J. Biomech. Eng. 2013;135:91011. doi: 10.1115/1.4024575. PubMed DOI PMC
Ringeisen B.R., Kim H., Barron J.A., Krizman D.B., Chrisey D.B., Jackman S., Auyeung R.Y.C., Spargo B.J. Laser Printing of Pluripotent Embryonal Carcinoma Cells. Tissue Eng. 2004;10:483–491. doi: 10.1089/107632704323061843. PubMed DOI
Lin Y., Huang Y., Wang G., Tzeng T.-R.J., Chrisey D. Effect of laser fluence on yeast cell viability in laser-assisted cell transfer. Int. J. Appl. Phys. 2009;106:043106. doi: 10.1063/1.3202388. DOI
Sun H., Zhou J., Huang Z., Qu L., Lin N., Liang C., Dai R., Tang L., Tian F. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. Int. J. Nanomed. 2017;12:3109–3120. doi: 10.2147/IJN.S128030. PubMed DOI PMC
Current Status of Bioprinting Using Polymer Hydrogels for the Production of Vascular Grafts