Active Media Perfusion in Bioprinted Highly Concentrated Collagen Bioink Enhances the Viability of Cell Culture and Substrate Remodeling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-02-00068
Agentura Pro Zdravotnický Výzkum České Republiky
NW24J-02-00061
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
38786233
PubMed Central
PMC11120981
DOI
10.3390/gels10050316
PII: gels10050316
Knihovny.cz E-zdroje
- Klíčová slova
- active perfusion, bioinks, bioprinting, collagen, high-concentrated polymer hydrogels,
- Publikační typ
- časopisecké články MeSH
The bioprinting of high-concentrated collagen bioinks is a promising technology for tissue engineering and regenerative medicine. Collagen is a widely used biomaterial for bioprinting because of its natural abundance in the extracellular matrix of many tissues and its biocompatibility. High-concentrated collagen hydrogels have shown great potential in tissue engineering due to their favorable mechanical and structural properties. However, achieving high cell proliferation rates within these hydrogels remains a challenge. In static cultivation, the volume of the culture medium is changed once every few days. Thus, perfect perfusion is not achieved due to the relative increase in metabolic concentration and no medium flow. Therefore, in our work, we developed a culture system in which printed collagen bioinks (collagen concentration in hydrogels of 20 and 30 mg/mL with a final concentration of 10 and 15 mg/mL in bioink) where samples flow freely in the culture medium, thus enhancing the elimination of nutrients and metabolites of cells. Cell viability, morphology, and metabolic activity (MTT tests) were analyzed on collagen hydrogels with a collagen concentration of 20 and 30 mg/mL in static culture groups without medium exchange and with active medium perfusion; the influence of pure growth culture medium and smooth muscle cells differentiation medium was next investigated. Collagen isolated from porcine skins was used; every batch was titrated to optimize the pH of the resulting collagen to minimize the difference in production batches and, therefore, the results. Active medium perfusion significantly improved cell viability and activity in the high-concentrated gel, which, to date, is the most limiting factor for using these hydrogels. In addition, based on SEM images and geometry analysis, the cells remodel collagen material to their extracellular matrix.
Zobrazit více v PubMed
Silva L.P. 3D and 4D Printing in Biomedical Applications. Wiley; Hoboken, NJ, USA: 2019. Current Trends and Challenges in Biofabrication Using Biomaterials and Nanomaterials: Future Perspectives for 3D/4D Bioprinting; pp. 373–421.
Hospodiuk M., Dey M., Sosnoski D., Ozbolat I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017;35:217–239. doi: 10.1016/j.biotechadv.2016.12.006. PubMed DOI
Panwar A., Tan L.P. Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting. Molecules. 2016;21:685. doi: 10.3390/molecules21060685. PubMed DOI PMC
Lee H.J., Kim Y.B., Ahn S.H., Lee J.-S., Jang C.H., Yoon H., Chun W., Kim G.H. A New Approach for Fabricating Collagen/ECM-Based Bioinks Using Preosteoblasts and Human Adipose Stem Cells. Adv. Healthc. Mater. 2015;4:1359–1368. doi: 10.1002/adhm.201500193. PubMed DOI
Abelardo E. 7—Synthetic material bioinks. In: Thomas D.J., Jessop Z.M., Whitaker I.S., editors. 3D Bioprinting for Reconstructive Surgery. Woodhead Publishing; Sawston, UK: 2018. pp. 137–144.
Moldovan F. Recent Trends in Bioprinting. Procedia Manuf. 2019;32:95–101. doi: 10.1016/j.promfg.2019.02.188. DOI
Lee C.H., Singla A., Lee Y. Biomedical applications of collagen. Int. J. Pharm. 2001;221:1–22. doi: 10.1016/S0378-5173(01)00691-3. PubMed DOI
Hinton T.J., Jallerat Q., Palchesko R.N., Park J.H., Grodzicki M.S., Shue H.J., Ramadan M.H., Hudson A.R., Feinberg A.W. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 2015;1:e1500758. doi: 10.1126/sciadv.1500758. PubMed DOI PMC
Wu Z., Su X., Xu Y., Kong B., Sun W., Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci. Rep. 2016;6:24474. doi: 10.1038/srep24474. PubMed DOI PMC
Xu T., Gregory C.A., Molnar P., Cui X., Jalota S., Bhaduri S.B., Boland T. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27:3580–3588. doi: 10.1016/j.biomaterials.2006.01.048. PubMed DOI
Lee V., Singh G., Trasatti J.P., Bjornsson C., Xu X., Tran T.N., Yoo S.S., Dai G., Karande P. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods. 2014;20:473–484. doi: 10.1089/ten.TEC.2013.0335. PubMed DOI PMC
Inzana J.A., Olvera D., Fuller S.M., Kelly J.P., Graeve O.A., Schwarz E.M., Kates S.L., Awad H.A. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35:4026–4034. doi: 10.1016/j.biomaterials.2014.01.064. PubMed DOI PMC
Ho T.C., Chang C.C., Chan H.P., Chung T.W., Shu C.W., Chuang K.P., Duh T.H., Yang M.H., Tyan Y.C. Hydrogels: Properties and Applications in Biomedicine. Molecules. 2022;27:2902. doi: 10.3390/molecules27092902. PubMed DOI PMC
Rýglová Š., Braun M., Suchý T., Hříbal M., Žaloudková M., Vištějnová L. The investigation of batch-to-batch variabilities in the composition of isolates from fish and mammalian species using different protocols. Food Res. Int. 2023;169:112798. doi: 10.1016/j.foodres.2023.112798. PubMed DOI
Gaudet C., Marganski W.A., Kim S., Brown C.T., Gunderia V., Dembo M., Wong J.Y. Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys. J. 2003;85:3329–3335. doi: 10.1016/s0006-3495(03)74752-3. PubMed DOI PMC
Stepanovska J., Supova M., Hanzalek K., Broz A., Matejka R. Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines. 2021;9:1137. doi: 10.3390/biomedicines9091137. PubMed DOI PMC
Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014;32:773–785. doi: 10.1038/nbt.2958. PubMed DOI
Davison-Kotler E., Marshall W.S., García-Gareta E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering. 2019;6:56. doi: 10.3390/bioengineering6030056. PubMed DOI PMC
Antoine E.E., Vlachos P.P., Rylander M.N. Review of collagen I hydrogels for bioengineered tissue microenvironments: Characterization of mechanics, structure, and transport. Tissue Eng. Part B Rev. 2014;20:683–696. doi: 10.1089/ten.TEB.2014.0086. PubMed DOI PMC
Martyniak K., Lokshina A., Cruz M.A., Karimzadeh M., Kemp R., Kean T.J. Biomaterial composition and stiffness as decisive properties of 3D bioprinted constructs for type II collagen stimulation. Acta Biomater. 2022;152:221–234. doi: 10.1016/j.actbio.2022.08.058. PubMed DOI
Ifkovits J.L., Burdick J.A. Review: Photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 2007;13:2369–2385. doi: 10.1089/ten.2007.0093. PubMed DOI
Van Den Bulcke A.I., Bogdanov B., De Rooze N., Schacht E.H., Cornelissen M., Berghmans H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules. 2000;1:31–38. doi: 10.1021/bm990017d. PubMed DOI
Mansour A., Romani M., Acharya A.B., Rahman B., Verron E., Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics. 2023;15:695. doi: 10.3390/pharmaceutics15020695. PubMed DOI PMC
Brinkman W.T., Nagapudi K., Thomas B.S., Chaikof E.L. Photo-cross-linking of type I collagen gels in the presence of smooth muscle cells: Mechanical properties, cell viability, and function. Biomacromolecules. 2003;4:890–895. doi: 10.1021/bm0257412. PubMed DOI
Bupphathong S., Quiroz C., Huang W., Chung P.F., Tao H.Y., Lin C.H. Gelatin Methacrylate Hydrogel for Tissue Engineering Applications-A Review on Material Modifications. Pharmaceuticals. 2022;15:171. doi: 10.3390/ph15020171. PubMed DOI PMC
Ibusuki S., Halbesma G.J., Randolph M.A., Redmond R.W., Kochevar I.E., Gill T.J. Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering. Tissue Eng. 2007;13:1995–2001. doi: 10.1089/ten.2006.0153. PubMed DOI
Raub C.B., Putnam A.J., Tromberg B.J., George S.C. Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy. Acta Biomater. 2010;6:4657–4665. doi: 10.1016/j.actbio.2010.07.004. PubMed DOI PMC
Kong W., Gao Y., Liu Q., Dong L., Guo L., Fan H., Fan Y., Zhang X. The effects of chemical crosslinking manners on the physical properties and biocompatibility of collagen type I/hyaluronic acid composite hydrogels. Int. J. Biol. Macromol. 2020;160:1201–1211. doi: 10.1016/j.ijbiomac.2020.05.208. PubMed DOI
Wolf M.K.F., Closet A., Bzowska M., Bielser J.M., Souquet J., Broly H., Morbidelli M. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition. Biotechnol. J. 2019;14:e1700722. doi: 10.1002/biot.201700722. PubMed DOI
Stepanovska J., Otahal M., Hanzalek K., Supova M., Matejka R. pH Modification of High-Concentrated Collagen Bioinks as a Factor Affecting Cell Viability, Mechanical Properties, and Printability. Gels. 2021;7:252. doi: 10.3390/gels7040252. PubMed DOI PMC
Kurtis Kasper M.S.F., Mikos A.G. Chapter II.6.3—Tissue Engineering Scaffolds. In: Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., editors. Biomaterials Science. 3rd ed. Academic Press; Cambridge, MA, USA: 2013. pp. 1138–1159.
Matějka R., Koňařík M., Štěpanovská J., Lipenský J., Chlupáč J., Turek D., Pražák Š., Brož A., Šimůnková Z., Mrázová I., et al. Bioreactor Processed Stromal Cell Seeding and Cultivation on Decellularized Pericardium Patches for Cardiovascular Use. Appl. Sci. 2020;10:5473. doi: 10.3390/app10165473. DOI
Chlupac J., Matejka R., Konarik M., Novotny R., Simunkova Z., Mrazova I., Fabian O., Zapletal M., Pulda Z., Lipensky J.F., et al. Vascular Remodeling of Clinically Used Patches and Decellularized Pericardial Matrices Recellularized with Autologous or Allogeneic Cells in a Porcine Carotid Artery Model. Int. J. Mol. Sci. 2022;23:3310. doi: 10.3390/ijms23063310. PubMed DOI PMC
Matejkova J., Kanokova D., Supova M., Matejka R. A New Method for the Production of High-Concentration Collagen Bioinks with Semiautonomic Preparation. Gels. 2024;10:66. doi: 10.3390/gels10010066. PubMed DOI PMC
Antoine E.E., Vlachos P.P., Rylander M.N. Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PLoS ONE. 2015;10:e0122500. doi: 10.1371/journal.pone.0122500. PubMed DOI PMC
Stanton A.E., Tong X., Yang F. Varying solvent type modulates collagen coating and stem cell mechanotransduction on hydrogel substrates. APL Bioeng. 2019;3:036108. doi: 10.1063/1.5111762. PubMed DOI PMC
Shayegan M., Forde N.R. Microrheological characterization of collagen systems: From molecular solutions to fibrillar gels. PLoS ONE. 2013;8:e70590. doi: 10.1371/journal.pone.0070590. PubMed DOI PMC
Collin E.C., Grad S., Zeugolis D.I., Vinatier C.S., Clouet J.R., Guicheux J.J., Weiss P., Alini M., Pandit A.S. An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials. 2011;32:2862–2870. doi: 10.1016/j.biomaterials.2011.01.018. PubMed DOI
Tripathi S., Mandal S.S., Bauri S., Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm. 2023;4:e194. doi: 10.1002/mco2.194. PubMed DOI PMC
Kim S.J., Spinks G.M., Prosser S., Whitten P.G., Wallace G.G., Kim S.I. Surprising shrinkage of expanding gels under an external load. Nat. Mater. 2006;5:48–51. doi: 10.1038/nmat1553. PubMed DOI
Hsieh H.Y., Camci-Unal G., Huang T.W., Liao R., Chen T.J., Paul A., Tseng F.G., Khademhosseini A. Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab Chip. 2014;14:482–493. doi: 10.1039/c3lc50884f. PubMed DOI PMC
Kim S., Lee H., Kim J.A., Park T.H. Prevention of collagen hydrogel contraction using polydopamine-coating and alginate outer shell increases cell contractile force. Biomater. Adv. 2022;136:212780. doi: 10.1016/j.bioadv.2022.212780. PubMed DOI
Tsou Y.-H., Khoneisser J., Huang P.-C., Xu X. Hydrogel as a bioactive material to regulate stem cell fate. Bioact. Mater. 2016;1:39–55. doi: 10.1016/j.bioactmat.2016.05.001. PubMed DOI PMC
Ishida-Ishihara S., Takada R., Furusawa K., Ishihara S., Haga H. Improvement of the cell viability of hepatocytes cultured in three-dimensional collagen gels using pump-free perfusion driven by water level difference. Sci. Rep. 2022;12:20269. doi: 10.1038/s41598-022-24423-y. PubMed DOI PMC
Langer R., Vacanti J.P. Tissue engineering. Science. 1993;260:920–926. doi: 10.1126/science.8493529. PubMed DOI
Hull S.M., Brunel L.G., Heilshorn S.C. 3D Bioprinting of Cell-Laden Hydrogels for Improved Biological Functionality. Adv. Mater. 2022;34:e2103691. doi: 10.1002/adma.202103691. PubMed DOI PMC