pH Modification of High-Concentrated Collagen Bioinks as a Factor Affecting Cell Viability, Mechanical Properties, and Printability

. 2021 Dec 07 ; 7 (4) : . [epub] 20211207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34940312

Grantová podpora
NV19-02-00068 Ministry of Health
SGS20/201/OHK4/3T/17 Czech Technical University in Prague
CZ.02.2.69/0.0/0.0/16_018/0002242 Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/16_017/0002244 Ministry of Education Youth and Sports

The 3D bioprinting of cell-incorporated gels is a promising direction in tissue engineering applications. Collagen-based hydrogels, due to their similarity to extracellular matrix tissue, can be a good candidate for bioink and 3D bioprinting applications. However, low hydrogel concentrations of hydrogel (<10 mg/mL) provide insufficient structural support and, in highly concentrated gels, cell proliferation is reduced. In this study, we showed that it is possible to print highly concentrated collagen hydrogels with incorporated cells, where the viability of the cells in the gel remains very good. This can be achieved simply by optimizing the properties of the bioink, particularly the gel composition and pH modification, as well as by optimizing the printing parameters. The bioink composed of porcine collagen hydrogel with a collagen concentration of 20 mg/mL was tested, while the final bioink collagen concentration was 10 mg/mL. This bioink was modified with 0, 5, 9, 13, 17 and 20 μL/mL of 1M NaOH solution, which affected the resulting pH and gelling time. Cylindrical samples based on the given bioink, with the incorporation of porcine adipose-derived stromal cells, were printed with a custom 3D bioprinter. These constructs were cultivated in static conditions for 6 h, and 3 and 5 days. Cell viability and morphology were evaluated. Mechanical properties were evaluated by means of a compression test. Our results showed that optimal composition and the addition of 13 μL NaOH per mL of bioink adjusted the pH of the bioink enough to allow cells to grow and divide. This modification also contributed to a higher elastic modulus, making it possible to print structures up to several millimeters with sufficient mechanical resistance. We optimized the bioprinter parameters for printing low-viscosity bioinks. With this experiment, we showed that a high concentration of collagen gels may not be a limiting factor for cell proliferation.

Zobrazit více v PubMed

Furth M.E., Atala A., Van Dyke M.E. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials. 2007;28:5068–5073. doi: 10.1016/j.biomaterials.2007.07.042. PubMed DOI

Hospodiuk M., Dey M., Sosnoski D., Ozbolat I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017;35:217–239. doi: 10.1016/j.biotechadv.2016.12.006. PubMed DOI

Abelardo E. 7—Synthetic material bioinks. In: Thomas D.J., Jessop Z.M., Whitaker I.S., editors. 3D Bioprinting for Reconstructive Surgery. Woodhead Publishing; Sawston, UK: 2018. pp. 137–144. DOI

Delgado L.M., Bayon Y., Pandit A., Zeugolis D.I. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Eng. Part B Rev. 2015;21:298–313. doi: 10.1089/ten.teb.2014.0290. PubMed DOI PMC

Leberfinger A.N., Ravnic D.J., Dhawan A., Ozbolat I.T. Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem Cells Transl. Med. 2017;6:1940–1948. doi: 10.1002/sctm.17-0148. PubMed DOI PMC

Rajan N., Habermehl J., Coté M.F., Doillon C.J., Mantovani D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc. 2006;1:2753–2758. doi: 10.1038/nprot.2006.430. PubMed DOI

Duconseille A., Astruc T., Quintana N., Meersman F., Sante-Lhoutellier V. Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocoll. 2015;43:360–376. doi: 10.1016/j.foodhyd.2014.06.006. DOI

Gómez-Guillén M.C., Giménez B., López-Caballero M.E., Montero M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25:1813–1827. doi: 10.1016/j.foodhyd.2011.02.007. DOI

Antoine E.E., Vlachos P.P., Rylander M.N. Tunable Collagen I Hydrogels for Engineered Physiological Tissue Micro-Environments. PLoS ONE. 2015;10:e0122500. doi: 10.1371/journal.pone.0122500. PubMed DOI PMC

Tavakoli J., Wang J., Chuah C., Tang Y. Natural-based Hydrogels: A Journey from Simple to Smart Networks for Medical Examination. Curr. Med. Chem. 2020;27:2704–2733. doi: 10.2174/0929867326666190816125144. PubMed DOI

Nezhad-Mokhtari P., Ghorbani M., Roshangar L., Soleimani Rad J. Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo- and enzymatic-crosslinking methods. Int. J. Biol. Macromol. 2019;139:760–772. doi: 10.1016/j.ijbiomac.2019.08.047. PubMed DOI

Miles C.A., Bailey A.J. Thermally labile domains in the collagen molecule. Micron. 2001;32:325–332. doi: 10.1016/S0968-4328(00)00034-2. PubMed DOI

Adamiak K., Sionkowska A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020;161:550–560. doi: 10.1016/j.ijbiomac.2020.06.075. PubMed DOI

Shariatzadeh M., Perrault C., Lacroix D. Stiffness of Cell Micro-Environment Guides Long Term Cell Growth in Cell Seeded Collagen Microspheres. Arch. Clin. Biomed. Res. 2018;2:167–182. doi: 10.26502/acbr.50170056. DOI

Polio S.R., Smith M.L. Patterned hydrogels for simplified measurement of cell traction forces. Methods Cell Biol. 2014;121:17–31. doi: 10.1016/b978-0-12-800281-0.00002-6. PubMed DOI

Lotz C., Schmid F.F., Oechsle E., Monaghan M.G., Walles H., Groeber-Becker F. Cross-linked Collagen Hydrogel Matrix Resisting Contraction to Facilitate Full-Thickness Skin Equivalents. ACS Appl. Mater. Interfaces. 2017;9:20417–20425. doi: 10.1021/acsami.7b04017. PubMed DOI

Lee P.S., Eckert H., Hess R., Gelinsky M., Rancourt D., Krawetz R., Cuniberti G., Scharnweber D. Developing a Customized Perfusion Bioreactor Prototype with Controlled Positional Variability in Oxygen Partial Pressure for Bone and Cartilage Tissue Engineering. Tissue Eng. Part C Methods. 2017;23:286–297. doi: 10.1089/ten.tec.2016.0244. PubMed DOI

Hong S., Hsu H.-J., Kaunas R., Kameoka J. Collagen microsphere production on a chip. Lab Chip. 2012;12:3277–3280. doi: 10.1039/c2lc40558j. PubMed DOI

Chan B.P., Hui T.Y., Yeung C.W., Li J., Mo I., Chan G.C. Self-assembled collagen-human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials. 2007;28:4652–4666. doi: 10.1016/j.biomaterials.2007.07.041. PubMed DOI

Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials. 1997;18:95–105. doi: 10.1016/S0142-9612(96)00106-8. PubMed DOI

Kim A., Lakshman N., Karamichos D., Petroll W.M. Growth Factor Regulation of Corneal Keratocyte Differentiation and Migration in Compressed Collagen Matrices. Investig. Ophthalmol. Vis. Sci. 2010;51:864–875. doi: 10.1167/iovs.09-4200. PubMed DOI PMC

Antoine E.E., Vlachos P.P., Rylander M.N. Review of collagen i hydrogels for bioengineered tissue microenvironments: Characterization of mechanics, structure, and transport. Tissue Eng. Part B Rev. 2014;20:683–696. doi: 10.1089/ten.teb.2014.0086. PubMed DOI PMC

Stepanovska J., Supova M., Hanzalek K., Broz A., Matejka R. Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines. 2021;9:1137. doi: 10.3390/biomedicines9091137. PubMed DOI PMC

Ren X., Wang F., Chen C., Gong X., Yin L., Yang L. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet. Disord. 2016;17:301. doi: 10.1186/s12891-016-1130-8. PubMed DOI PMC

Diamantides N., Wang L., Pruiksma T., Siemiatkoski J., Dugopolski C., Shortkroff S., Kennedy S., Bonassar L.J. Correlating rheological properties and printability of collagen bioinks: The effects of riboflavin photocrosslinking and pH. Biofabrication. 2017;9:034102. doi: 10.1088/1758-5090/aa780f. PubMed DOI

Moncal K.K., Ozbolat V., Datta P., Heo D.N., Ozbolat I.T. Thermally-controlled extrusion-based bioprinting of collagen. J. Mater. Sci. Mater. Med. 2019;30:55. doi: 10.1007/s10856-019-6258-2. PubMed DOI

Rhee S., Puetzer J.L., Mason B.N., Reinhart-King C.A., Bonassar L.J. 3D Bioprinting of Spatially Heterogeneous Collagen Constructs for Cartilage Tissue Engineering. ACS Biomater. Sci. Eng. 2016;2:1800–1805. doi: 10.1021/acsbiomaterials.6b00288. PubMed DOI

Zhu Y.K., Umino T., Liu X.D., Wang H.J., Romberger D.J., Spurzem J.R., Rennard S.I. Contraction of fibroblast-containing collagen gels: Initial collagen concentration regulates the degree of contraction and cell survival. In Vitro Cell Dev. Biol. Anim. 2001;37:10–16. doi: 10.1290/1071-2690(2001)037<0010:COFCCG>2.0.CO;2. PubMed DOI

Melchels F.P.W., Blokzijl M.M., Levato R., Peiffer Q.C., Ruijter M.D., Hennink W.E., Vermonden T., Malda J. Hydrogel-based reinforcement of 3D bioprinted constructs. Biofabrication. 2016;8:035004. doi: 10.1088/1758-5090/8/3/035004. PubMed DOI PMC

Gaudet C., Marganski W.A., Kim S., Brown C.T., Gunderia V., Dembo M., Wong J.Y. Influence of Type I Collagen Surface Density on Fibroblast Spreading, Motility, and Contractility. Biophys. J. 2003;85:3329–3335. doi: 10.1016/S0006-3495(03)74752-3. PubMed DOI PMC

Gungor-Ozkerim P.S., Inci I., Zhang Y.S., Khademhosseini A., Dokmeci M.R. Bioinks for 3D bioprinting: An overview. Biomater. Sci. 2018;6:915–946. doi: 10.1039/C7BM00765E. PubMed DOI PMC

Xu T., Gregory C.A., Molnar P., Cui X., Jalota S., Bhaduri S.B., Boland T. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27:3580–3588. doi: 10.1016/j.biomaterials.2006.01.048. PubMed DOI

Xu T., Jin J., Gregory C., Hickman J.J., Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93–99. doi: 10.1016/j.biomaterials.2004.04.011. PubMed DOI

Guillotin B., Souquet A., Catros S., Duocastella M., Pippenger B., Bellance S., Bareille R., Rémy M., Bordenave L., Amédée J., et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31:7250–7256. doi: 10.1016/j.biomaterials.2010.05.055. PubMed DOI

Nalinanon S., Benjakul S., Kishimura H., Osako K. Type I collagen from the skin of ornate threadfin bream (Nemipterus hexodon): Characteristics and effect of pepsin hydrolysis. Food Chem. 2011;125:500–507. doi: 10.1016/j.foodchem.2010.09.040. DOI

Veeruraj A., MUTHUVEL A., Ajithkumar T., Balasubramanian T. Isolation and characterization of collagen from the outer skin of squid (Doryteuthis singhalensis) Food Hydrocoll. 2015;43:708–716. doi: 10.1016/j.foodhyd.2014.07.025. DOI

Payne K.J., Veis A. Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers. 1988;27:1749–1760. doi: 10.1002/bip.360271105. PubMed DOI

Prystupa D.A., Donald A.M. Infrared study of gelatin conformations in the gel and sol states. Polym. Gels Netw. 1996;4:87–110. doi: 10.1016/0966-7822(96)00003-2. DOI

Jackson M., Choo L.P., Watson P.H., Halliday W.C., Mantsch H.H. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim. Biophys. Acta. 1995;1270:1–6. doi: 10.1016/0925-4439(94)00056-V. PubMed DOI

Abdollahi M., Rezaei M., Jafarpour A., Undeland I. Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach. Food Chem. 2018;242:568–578. doi: 10.1016/j.foodchem.2017.09.045. PubMed DOI

Sodupe-Ortega E., Sanz-Garcia A., Pernia-Espinoza A., Escobedo-Lucea C. Accurate Calibration in Multi-Material 3D Bioprinting for Tissue Engineering. Materials. 2018;11:1402. doi: 10.3390/ma11081402. PubMed DOI PMC

Mackenzie C.G., Mackenzie J.B., Beck P. The effect of pH on growth, protein synthesis, and lipid-rich particles of cultured mammalian cells. J. Biophys. Biochem. Cytol. 1961;9:141–156. doi: 10.1083/jcb.9.1.141. PubMed DOI PMC

Yasuda K., Ping Gong J., Katsuyama Y., Nakayama A., Tanabe Y., Kondo E., Ueno M., Osada Y. Biomechanical properties of high-toughness double network hydrogels. Biomaterials. 2005;26:4468–4475. doi: 10.1016/j.biomaterials.2004.11.021. PubMed DOI

Czerner M., Fellay L.S., Suárez M.P., Frontini P.M., Fasce L.A. Determination of Elastic Modulus of Gelatin Gels by Indentation Experiments. Procedia Mat. Sci. 2015;8:287–296. doi: 10.1016/j.mspro.2015.04.075. DOI

Yasui N., Osawa S., Ochi T., Nakashima H., Ono K. Primary culture of chondrocytes embedded in collagen gels. Exp. Cell Biol. 1982;50:92–100. doi: 10.1159/000163133. PubMed DOI

Inzana J.A., Olvera D., Fuller S.M., Kelly J.P., Graeve O.A., Schwarz E.M., Kates S.L., Awad H.A. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35:4026–4034. doi: 10.1016/j.biomaterials.2014.01.064. PubMed DOI PMC

Wu Z., Su X., Xu Y., Kong B., Sun W., Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci. Rep. 2016;6:24474. doi: 10.1038/srep24474. PubMed DOI PMC

Behrens P., Bitter T., Kurz B., Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)--5-year follow-up. Knee. 2006;13:194–202. doi: 10.1016/j.knee.2006.02.012. PubMed DOI

Farjanel J., Schürmann G., Bruckner P. Contacts with fibrils containing collagen I, but not collagens II, IX, and XI, can destabilize the cartilage phenotype of chondrocytes. Osteoarthr. Cartil. 2001;9((Suppl. A)):S55–S63. doi: 10.1053/joca.2001.0445. PubMed DOI

Mayne R., Vail M.S., Mayne P.M., Miller E.J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc. Natl. Acad. Sci. USA. 1976;73:1674–1678. doi: 10.1073/pnas.73.5.1674. PubMed DOI PMC

Griffith C.K., Miller C., Sainson R.C.A., Calvert J.W., Jeon N.L., Hughes C.C.W., George S.C. Diffusion Limits of an in Vitro Thick Prevascularized Tissue. Tissue Eng. 2005;11:257–266. doi: 10.1089/ten.2005.11.257. PubMed DOI

Bacakova L., Pajorova J., Tomkova M., Matejka R., Broz A., Stepanovska J., Prazak S., Skogberg A., Siljander S., Kallio P. Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine. Nanomaterials. 2020;10:196. doi: 10.3390/nano10020196. PubMed DOI PMC

Nirmalanandhan V.S., Shearn J.T., Juncosa-Melvin N., Rao M., Gooch C., Jain A., Bradica G., Butler D.L. Improving linear stiffness of the cell-seeded collagen sponge constructs by varying the components of the mechanical stimulus. Tissue Eng. Part A. 2008;14:1883–1891. doi: 10.1089/ten.tea.2007.0125. PubMed DOI

Bella J., Brodsky B., Berman H.M. Hydration structure of a collagen peptide. Structure. 1995;3:893–906. doi: 10.1016/S0969-2126(01)00224-6. PubMed DOI

ibidi Collagen Type I, Rat Tail, 5 mg/mL Protocol. [(accessed on 17 June 2021)]. Available online: https://ibidi.com/img/cms/products/cells_reagents/R_5020X_CollagenI/IN_5020X_CollagenI_05mg.pdf.

Matejka R., Konarik M., Stepanovska J., Lipensky J., Chlupac J., Turek D., Prazak I., Broz A., Simunkova Z., Mrazova I., et al. Bioreactor Processed Stromal Cell Seeding and Cultivation on Decellularized Pericardium Patches for Cardiovascular Use. Appl. Sci. 2020;10:5473. doi: 10.3390/app10165473. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...