A New Method for the Production of High-Concentration Collagen Bioinks with Semiautonomic Preparation

. 2024 Jan 15 ; 10 (1) : . [epub] 20240115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38247788

Grantová podpora
NV19-02-00068 Agentura Pro Zdravotnický Výzkum České Republiky
SGS22/201/OHK4/3T/17 Grant Agency of the Czech Technical University in Prague

It is believed that 3D bioprinting will greatly help the field of tissue engineering and regenerative medicine, as live patient cells are incorporated into the material, which directly creates a 3D structure. Thus, this method has potential in many types of human body tissues. Collagen provides an advantage, as it is the most common extracellular matrix present in all kinds of tissues and is, therefore, very natural for cells and the organism. Hydrogels with highly concentrated collagen make it possible to create 3D structures without additional additives to crosslink the polymer, which could negatively affect cell proliferation and viability. This study established a new method for preparing highly concentrated collagen bioinks, which does not negatively affect cell proliferation and viability. The method is based on two successive neutralizations of the prepared hydrogel using the bicarbonate buffering mechanisms of the 2× enhanced culture medium and pH adjustment by adding NaOH. Collagen hydrogel was used in concentrations of 20 and 30 mg/mL dissolved in acetic acid with a concentration of 0.05 and 0.1 wt.%. The bioink preparation process is automated, including colorimetric pH detection and adjustment. The new method was validated using bioprinting and subsequent cultivation of collagen hydrogels with incorporated stromal cells. After 96 h of cultivation, cell proliferation and viability were not statistically significantly reduced.

Zobrazit více v PubMed

Hospodiuk M., Dey M., Sosnoski D., Ozbolat I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017;35:217–239. doi: 10.1016/j.biotechadv.2016.12.006. PubMed DOI

Abelardo E. 7—Synthetic material bioinks. In: Thomas D.J., Jessop Z.M., Whitaker I.S., editors. 3D Bioprinting for Reconstructive Surgery. Woodhead Publishing; Sawston, UK: 2018. pp. 137–144.

Delgado L.M., Bayon Y., Pandit A., Zeugolis D.I. To crosslink or not to crosslink? Crosslinking associated foreign body response of collagen-based devices. Tissue Eng. Part. B Rev. 2015;21:298–313. doi: 10.1089/ten.teb.2014.0290. PubMed DOI PMC

Kim A., Lakshman N., Karamichos D., Petroll W.M. Growth factor regulation of corneal keratocyte differentiation and migration in compressed collagen matrices. Investig. Ophthalmol. Vis. Sci. 2010;51:864–875. doi: 10.1167/iovs.09-4200. PubMed DOI PMC

Stepanovska J., Supova M., Hanzalek K., Broz A., Matejka R. Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines. 2021;9:1137. doi: 10.3390/biomedicines9091137. PubMed DOI PMC

Ashammakhi N., Ahadian S., Xu C., Montazerian H., Ko H., Nasiri R., Barros N., Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater. Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008. PubMed DOI PMC

Ahmad K., Lim J.-H., Lee E.-J., Chun H.-J., Ali S., Ahmad S.S., Shaikh S., Choi I. Extracellular Matrix and the Production of Cultured Meat. Foods. 2021;10:3116. doi: 10.3390/foods10123116. PubMed DOI PMC

Melchels F.P.W., Blokzijl M.M., Levato R., Peiffer Q.C., de Ruijter M., Hennink W.E., Vermonden T., Malda J. Hydrogel-based reinforcement of 3D bioprinted constructs. Biofabrication. 2016;8:035004. doi: 10.1088/1758-5090/8/3/035004. PubMed DOI PMC

Gaudet C., Marganski W.A., Kim S., Brown C.T., Gunderia V., Dembo M., Wong J.Y. Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys. J. 2003;85:3329–3335. doi: 10.1016/S0006-3495(03)74752-3. PubMed DOI PMC

Silver F.H., Freeman J.W., Seehra G.P. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 2003;36:1529–1553. doi: 10.1016/S0021-9290(03)00135-0. PubMed DOI

Fratzl P. Collagen: Structure and Mechanics. Springer; New York, NY, USA: 2008.

Christiansen D.L., Huang E.K., Silver F.H. Assembly of type I collagen: Fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 2000;19:409–420. doi: 10.1016/S0945-053X(00)00089-5. PubMed DOI

Wood G.C. The formation of fibrils from collagen solutions. 2. A mechanism for collagen-fibril formation. Biochem. J. 1960;75:598–605. doi: 10.1042/bj0750598. PubMed DOI PMC

Matinong A.M.E., Chisti Y., Pickering K.L., Haverkamp R.G. Collagen Extraction from Animal Skin. Biology. 2022;11:905. doi: 10.3390/biology11060905. PubMed DOI PMC

Gobeaux F., Mosser G., Anglo A., Panine P., Davidson P., Giraud-Guille M.M., Belamie E. Fibrillogenesis in Dense Collagen Solutions: A Physicochemical Study. J. Mol. Biol. 2008;376:1509–1522. doi: 10.1016/j.jmb.2007.12.047. PubMed DOI

Forgacs G., Newman S.A., Hinner B., Maier C.W., Sackmann E. Assembly of Collagen Matrices as a Phase Transition Revealed by Structural and Rheologic Studies. Biophys. J. 2003;84:1272–1280. doi: 10.1016/S0006-3495(03)74942-X. PubMed DOI PMC

Zhang X., Xu S., Shen L., Li G. Factors affecting thermal stability of collagen from the aspects of extraction, processing and modification. J. Leather Sci. Eng. 2020;2:19. doi: 10.1186/s42825-020-00033-0. DOI

Wood G.C., Keech M.K. The formation of fibrils from collagen solutions 1. The effect of experimental conditions: Kinetic and electron-microscope studies. Biochem. J. 1960;75:588–598. doi: 10.1042/bj0750588. PubMed DOI PMC

Kar K., Amin P., Bryan M.A., Persikov A.V., Mohs A., Wang Y.-H., Brodsky B. Self-association of Collagen Triple Helic Peptides into Higher Order Structures. J. Biol. Chem. 2006;281:33283–33290. doi: 10.1074/jbc.M605747200. PubMed DOI

Davison P.F., Cannon D.J., Andersson L.P. The Effects of Acetic Acid on Collagen Crosslinks. Connect. Tissue Res. 1972;1:205–216. doi: 10.3109/03008207209152076. DOI

Adamiak K., Sionkowska A. Current methods of collagen crosslinking: Review. Int. J. Biol. Macromol. 2020;161:550–560. doi: 10.1016/j.ijbiomac.2020.06.075. PubMed DOI

Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials. 1997;18:95–105. doi: 10.1016/S0142-9612(96)00106-8. PubMed DOI

Stepanovska J., Otahal M., Hanzalek K., Supova M., Matejka R. pH Modification of High-Concentrated Collagen Bioinks as a Factor Affecting Cell Viability, Mechanical Properties, and Printability. Gels. 2021;7:252. doi: 10.3390/gels7040252. PubMed DOI PMC

Jackson M., Choo L.P., Watson P.H., Halliday W.C., Mantsch H.H. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim. Biophys. Acta. 1995;1270:1–6. doi: 10.1016/0925-4439(94)00056-V. PubMed DOI

Rabotyagova O.S., Cebe P., Kaplan D.L. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation. Mater. Sci. Eng. C Mater. Biol. Appl. 2008;28:1420–1429. doi: 10.1016/j.msec.2008.03.012. PubMed DOI PMC

Levraut J., Labib Y., Chave S., Payan P., Raucoules-Aime M., Grimaud D. Effect of sodium bicarbonate on intracellular pH under different buffering conditions. Kidney Int. 1996;49:1262–1267. doi: 10.1038/ki.1996.180. PubMed DOI

Breslin S., O’Driscoll L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today. 2013;18:240–249. doi: 10.1016/j.drudis.2012.10.003. PubMed DOI

Farjanel J., Schürmann G., Bruckner P. Contacts with fibrils containing collagen I, but not collagens II, IX, and XI, can destabilize the cartilage phenotype of chondrocytes. Osteoarthr. Cartil. 2001;9((Suppl. S1)):S55–S63. doi: 10.1053/joca.2001.0445. PubMed DOI

Mayne R., Vail M.S., Mayne P.M., Miller E.J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc. Natl. Acad. Sci. USA. 1976;73:1674–1678. doi: 10.1073/pnas.73.5.1674. PubMed DOI PMC

Matějka R., Koňařík M., Štěpanovská J., Lipenský J., Chlupáč J., Turek D., Pražák Š., Brož A., Šimůnková Z., Mrázová I., et al. Bioreactor Processed Stromal Cell Seeding and Cultivation on Decellularized Pericardium Patches for Cardiovascular Use. Appl. Sci. 2020;10:5473. doi: 10.3390/app10165473. DOI

Michl J., Park K.C., Swietach P. Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun. Biol. 2019;2:144. doi: 10.1038/s42003-019-0393-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...