A New Method for the Production of High-Concentration Collagen Bioinks with Semiautonomic Preparation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-02-00068
Agentura Pro Zdravotnický Výzkum České Republiky
SGS22/201/OHK4/3T/17
Grant Agency of the Czech Technical University in Prague
PubMed
38247788
PubMed Central
PMC10815100
DOI
10.3390/gels10010066
PII: gels10010066
Knihovny.cz E-zdroje
- Klíčová slova
- automation, biofabrication, bioink, bioprinting, collagen hydrogels, neutralization, pH, stromal cells,
- Publikační typ
- časopisecké články MeSH
It is believed that 3D bioprinting will greatly help the field of tissue engineering and regenerative medicine, as live patient cells are incorporated into the material, which directly creates a 3D structure. Thus, this method has potential in many types of human body tissues. Collagen provides an advantage, as it is the most common extracellular matrix present in all kinds of tissues and is, therefore, very natural for cells and the organism. Hydrogels with highly concentrated collagen make it possible to create 3D structures without additional additives to crosslink the polymer, which could negatively affect cell proliferation and viability. This study established a new method for preparing highly concentrated collagen bioinks, which does not negatively affect cell proliferation and viability. The method is based on two successive neutralizations of the prepared hydrogel using the bicarbonate buffering mechanisms of the 2× enhanced culture medium and pH adjustment by adding NaOH. Collagen hydrogel was used in concentrations of 20 and 30 mg/mL dissolved in acetic acid with a concentration of 0.05 and 0.1 wt.%. The bioink preparation process is automated, including colorimetric pH detection and adjustment. The new method was validated using bioprinting and subsequent cultivation of collagen hydrogels with incorporated stromal cells. After 96 h of cultivation, cell proliferation and viability were not statistically significantly reduced.
Zobrazit více v PubMed
Hospodiuk M., Dey M., Sosnoski D., Ozbolat I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017;35:217–239. doi: 10.1016/j.biotechadv.2016.12.006. PubMed DOI
Abelardo E. 7—Synthetic material bioinks. In: Thomas D.J., Jessop Z.M., Whitaker I.S., editors. 3D Bioprinting for Reconstructive Surgery. Woodhead Publishing; Sawston, UK: 2018. pp. 137–144.
Delgado L.M., Bayon Y., Pandit A., Zeugolis D.I. To crosslink or not to crosslink? Crosslinking associated foreign body response of collagen-based devices. Tissue Eng. Part. B Rev. 2015;21:298–313. doi: 10.1089/ten.teb.2014.0290. PubMed DOI PMC
Kim A., Lakshman N., Karamichos D., Petroll W.M. Growth factor regulation of corneal keratocyte differentiation and migration in compressed collagen matrices. Investig. Ophthalmol. Vis. Sci. 2010;51:864–875. doi: 10.1167/iovs.09-4200. PubMed DOI PMC
Stepanovska J., Supova M., Hanzalek K., Broz A., Matejka R. Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines. 2021;9:1137. doi: 10.3390/biomedicines9091137. PubMed DOI PMC
Ashammakhi N., Ahadian S., Xu C., Montazerian H., Ko H., Nasiri R., Barros N., Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater. Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008. PubMed DOI PMC
Ahmad K., Lim J.-H., Lee E.-J., Chun H.-J., Ali S., Ahmad S.S., Shaikh S., Choi I. Extracellular Matrix and the Production of Cultured Meat. Foods. 2021;10:3116. doi: 10.3390/foods10123116. PubMed DOI PMC
Melchels F.P.W., Blokzijl M.M., Levato R., Peiffer Q.C., de Ruijter M., Hennink W.E., Vermonden T., Malda J. Hydrogel-based reinforcement of 3D bioprinted constructs. Biofabrication. 2016;8:035004. doi: 10.1088/1758-5090/8/3/035004. PubMed DOI PMC
Gaudet C., Marganski W.A., Kim S., Brown C.T., Gunderia V., Dembo M., Wong J.Y. Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys. J. 2003;85:3329–3335. doi: 10.1016/S0006-3495(03)74752-3. PubMed DOI PMC
Silver F.H., Freeman J.W., Seehra G.P. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 2003;36:1529–1553. doi: 10.1016/S0021-9290(03)00135-0. PubMed DOI
Fratzl P. Collagen: Structure and Mechanics. Springer; New York, NY, USA: 2008.
Christiansen D.L., Huang E.K., Silver F.H. Assembly of type I collagen: Fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 2000;19:409–420. doi: 10.1016/S0945-053X(00)00089-5. PubMed DOI
Wood G.C. The formation of fibrils from collagen solutions. 2. A mechanism for collagen-fibril formation. Biochem. J. 1960;75:598–605. doi: 10.1042/bj0750598. PubMed DOI PMC
Matinong A.M.E., Chisti Y., Pickering K.L., Haverkamp R.G. Collagen Extraction from Animal Skin. Biology. 2022;11:905. doi: 10.3390/biology11060905. PubMed DOI PMC
Gobeaux F., Mosser G., Anglo A., Panine P., Davidson P., Giraud-Guille M.M., Belamie E. Fibrillogenesis in Dense Collagen Solutions: A Physicochemical Study. J. Mol. Biol. 2008;376:1509–1522. doi: 10.1016/j.jmb.2007.12.047. PubMed DOI
Forgacs G., Newman S.A., Hinner B., Maier C.W., Sackmann E. Assembly of Collagen Matrices as a Phase Transition Revealed by Structural and Rheologic Studies. Biophys. J. 2003;84:1272–1280. doi: 10.1016/S0006-3495(03)74942-X. PubMed DOI PMC
Zhang X., Xu S., Shen L., Li G. Factors affecting thermal stability of collagen from the aspects of extraction, processing and modification. J. Leather Sci. Eng. 2020;2:19. doi: 10.1186/s42825-020-00033-0. DOI
Wood G.C., Keech M.K. The formation of fibrils from collagen solutions 1. The effect of experimental conditions: Kinetic and electron-microscope studies. Biochem. J. 1960;75:588–598. doi: 10.1042/bj0750588. PubMed DOI PMC
Kar K., Amin P., Bryan M.A., Persikov A.V., Mohs A., Wang Y.-H., Brodsky B. Self-association of Collagen Triple Helic Peptides into Higher Order Structures. J. Biol. Chem. 2006;281:33283–33290. doi: 10.1074/jbc.M605747200. PubMed DOI
Davison P.F., Cannon D.J., Andersson L.P. The Effects of Acetic Acid on Collagen Crosslinks. Connect. Tissue Res. 1972;1:205–216. doi: 10.3109/03008207209152076. DOI
Adamiak K., Sionkowska A. Current methods of collagen crosslinking: Review. Int. J. Biol. Macromol. 2020;161:550–560. doi: 10.1016/j.ijbiomac.2020.06.075. PubMed DOI
Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials. 1997;18:95–105. doi: 10.1016/S0142-9612(96)00106-8. PubMed DOI
Stepanovska J., Otahal M., Hanzalek K., Supova M., Matejka R. pH Modification of High-Concentrated Collagen Bioinks as a Factor Affecting Cell Viability, Mechanical Properties, and Printability. Gels. 2021;7:252. doi: 10.3390/gels7040252. PubMed DOI PMC
Jackson M., Choo L.P., Watson P.H., Halliday W.C., Mantsch H.H. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim. Biophys. Acta. 1995;1270:1–6. doi: 10.1016/0925-4439(94)00056-V. PubMed DOI
Rabotyagova O.S., Cebe P., Kaplan D.L. Collagen Structural Hierarchy and Susceptibility to Degradation by Ultraviolet Radiation. Mater. Sci. Eng. C Mater. Biol. Appl. 2008;28:1420–1429. doi: 10.1016/j.msec.2008.03.012. PubMed DOI PMC
Levraut J., Labib Y., Chave S., Payan P., Raucoules-Aime M., Grimaud D. Effect of sodium bicarbonate on intracellular pH under different buffering conditions. Kidney Int. 1996;49:1262–1267. doi: 10.1038/ki.1996.180. PubMed DOI
Breslin S., O’Driscoll L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today. 2013;18:240–249. doi: 10.1016/j.drudis.2012.10.003. PubMed DOI
Farjanel J., Schürmann G., Bruckner P. Contacts with fibrils containing collagen I, but not collagens II, IX, and XI, can destabilize the cartilage phenotype of chondrocytes. Osteoarthr. Cartil. 2001;9((Suppl. S1)):S55–S63. doi: 10.1053/joca.2001.0445. PubMed DOI
Mayne R., Vail M.S., Mayne P.M., Miller E.J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc. Natl. Acad. Sci. USA. 1976;73:1674–1678. doi: 10.1073/pnas.73.5.1674. PubMed DOI PMC
Matějka R., Koňařík M., Štěpanovská J., Lipenský J., Chlupáč J., Turek D., Pražák Š., Brož A., Šimůnková Z., Mrázová I., et al. Bioreactor Processed Stromal Cell Seeding and Cultivation on Decellularized Pericardium Patches for Cardiovascular Use. Appl. Sci. 2020;10:5473. doi: 10.3390/app10165473. DOI
Michl J., Park K.C., Swietach P. Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun. Biol. 2019;2:144. doi: 10.1038/s42003-019-0393-7. PubMed DOI PMC