xix, 346 stran : ilustrace ; 24 cm
- MeSH
- Cell- and Tissue-Based Therapy MeSH
- Cell Differentiation MeSH
- Clinical Studies as Topic MeSH
- Mesenchymal Stem Cells * MeSH
- Regenerative Medicine MeSH
- Drug Approval MeSH
- Translational Research, Biomedical MeSH
- Mesenchymal Stem Cell Transplantation MeSH
- Conspectus
- Biotechnologie. Genetické inženýrství
- NML Fields
- biomedicínské inženýrství
- cytologie, klinická cytologie
- NML Publication type
- kolektivní monografie
- MeSH
- Gynecomastia diagnosis etiology surgery MeSH
- Hyperplasia MeSH
- Humans MeSH
- Adolescent MeSH
- Breast Diseases diagnosis surgery MeSH
- Giant Cells pathology MeSH
- Check Tag
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Publication type
- Case Reports MeSH
SDF-1, nový cytokin z rodiny a-chemokinů, hraje klíčovou roli v regulaci hematopoézy. Vyskytuje se ve dvou formách (alfa a beta), které vznikají cestou alternativního splicingu. Jeho vysoká exprese v mikroprostředí kostní dřeně je zodpovědná za uvolňování progenitorových buněk do cirkulace a představuje prevenci nekontrolovaného úniku CD34+ buněk. Zvláště významná je jeho stimulace proliferace progenitorů B-řady, u ostatních krevních řad se projevuje jako senzibilizují faktor vůči jiným cytokinům. Schopnost indukovat agregaci trombocytů odhaluje roli SDF-1 v trombogenezi a obliteraci lumina cév postižených aterosklerózou. Výlučným receptorem pro SDF-1 je CXCR4, jehož přítomnost byla prokázána v řadě tkání a orgánů. Jejich přítomnost byla potvrzena i v mozkových tumorech, přičemž míra jejich exprese stoupá s gradingem, angiogenezí a výskytem nekrotických změn v tumoru. Díky této vlastnosti bude pravděpodobně možné určovat i prognózu pacientů. SDF-1 je také supresorem imunitní odpovědi skrze jeho facilitující účinek na interakci makrofágů s CD8+ T-lymfocyty. Afinita T-lymfocytotropního HIV k CXCR4 dává naději na možné ovlivnění infekce pomocí SDF-1. Význam SDF-1 a jeho receptoru CXCR4 potvrzují morfologické a funkční odchylky novorozených myší při jejich absenci, zvl. poruchy hematopoézy, angiogeneze a vývoje srdeční a nervové tkáně.
SDF-1, a novel cytokine from a-chemokine family, plays a key role in regulation of haematopoiesis. It exists in two forms (alpha and beta) that originate from alternative splicing. Its high expression in the bone marrow microenvironment accounts for the release of progenitor cells in the circulation and represents a prevention of uncontrolled leak of CD34+ cells. Notably significant is its stimulation of proliferation of B-lineage progenitors, in other haematopoietic lineages it functions as a facilitating factor of other cytokines. Ability of induction of platelet aggregation reveales the role of SDF-1 in thrombogenesis and vascular lumen obliteration in vessels affected by atherosclerosis. The only receptor for SDF-1 in thrombogenesis and vascular lumen obliteration in vessels affected by atherosclerosis. The only receptor for SDF-1 is CXCR, whose presence was proved in great numbers of tissues and organs. Their presence was also verified in brain tumours, whereas degree of their expression raises with grading, angiogenesis and occurrence of necrotic changes in tumour. Thanks to this feature it will probably be possible to estimate the prognosis of the patients. SDF-1 is also a suppressor of immune response via its facilitating activity on the interaction of the macrophages and CD8+ T lymphocytes. Affinity of the T-lymphocytotropic HIV to CXCR4 holds out hopes for a possible modulation of the infection with SDF-1. The significance of SDF-1 and its receptor CXCR4 is supported by morphological and functional abnormalities of new-born mice in their absence, especially disorders in haematopoiesis, angiogenesis and development of cardiac and nervous tissues.
Východisko. Matrix metaloproteázy (MMPs) patří mezi proteolytické enzymy. Jednou z jejich funkcí je i štěpení bazálních membrán buněk a extracelulární matrix. U maligních nádorů se tak mohou uplatnit v procesu invazivity a metastázování. Vznikají převážně ve stromálních buňkách (fibroblastech a endoteliích) reaktivně na přítomnost nádorových buněk. Ve vztahu k NSCLC jsou nejčastěji zmiňovány MMP-2 (gelatináza A), MMP-9 (gelatináza B) a především MMP-11 (stromelysin 3). Metody a výsledky. Zkoumali jsme vztah mezi expresí výše zmíněných matrix metaloproteáz pouze ve stromálních buňkách a 5letým přežitím u 80 nemocných po kurativní resekci pro NSCLC ve stadiu I dle TNM. Exprese MMP-2 byla asociována s 5letým přežitím, ale bez signifikantní korelace. Žádná korelace nebyla zjištěna u MMP-9. Statisticky téměř významný vztah byl zjištěn mezi expresí MMP-11 a 5letým přežitím. Závěry. Exprese MMP-11 ve stromálních buňkách kurativně zresekovaných pacientů s NSCLC v I. stadiu může být užitečná v predikci jejich prognózy.
Background. Matrix metalloproteinases (MMPs) belong to proteolytic enzymes. Degradation of the cell basement membrane and the extracellular matrix is one of their functions. In malignant tumors they can hypothetically contribute to the invasion and metastasis formation. They are mostly produced by stromal cells (fibroblasts and endothelial cells) as a response to the presence of tumor cells. MMP-2 (gelatinase A), MMP-9 (gelatinase B) and MMP-11 (stromelysin 3) are often mentioned in regard to Non-small Cell Lung Cancer (NSCLC). Methods and Results. The relation between the expression of the above-mentioned matrix metalloproteinases in stromal cells and the cancer-related survival in 80 patients after curative resection of NSCLC in stage I according to TNM was studied. The expression of MMP-2 was associated with cancer-related survival but without significant correlation. No correlation was found in MMP-9. There was a statistically near-significant relation between the expression of MMP-11 and cancer-related survival. Conclusions. The expression of MMP-11 in stromal cells in surgically treated NSCLC patients in stage I appears useful for evaluation of their prognosis.
Mezenchymálních kmenové buňky (MSC) jsou využívány k regeneraci poškozené mezenchymální tkáně. Jsou schopny se diferencovat ve zralé buňky kostní, chrupavčité, nervové, svalové či vazivové. Jejich účinek spočívá jednak v náhradě poškozené tkáně, ale také v parakrinním působení bioaktivních molekul. Autoři prezentují literární přehled recentního výzkumu MSC v oblasti otorinolaryngologie. V současnosti je výzkum zaměřen především na oblast fonochirurgie, percepční nedoslýchavosti a rekonstrukci rozsáhlých defektů kostních, chrupavčitých a měkkých tkání oblasti hlavy a krku. Také v České republice probíhá výzkum využití MSC v otorinolaryngologii. Prioritní oblastí je náhrada kostní tkáně, výzkum je zaměřen na terapii pooperačních defektů v oblasti spánkové kosti.
Multipotent mesenchymal stromal cells (MSC) are used for regeneration of injured mesenchymal tissue due to their self-renewal capacity and ability to differentiate into cells of mesenchymal tissue (bone, cartilage, muscle, fat, nerve or fibrous tissues). They regenerate various tissues through self-renewal, differentiation capacity, immune modulation and secretion of bioactive molecules. Authors present a review of MSC applications in otorhinolaryngology. The major interest is focused on phonosurgery, sensorineural deafness and reconstruction of large tissue defects with bone, cartilage or soft tissue replacement. The MSCs research in Czech otorhinolaryngology is focused on bone tissue replacement. Current point of interest is the temporal bone and treatment of bone defects after middle ear surgery.
Multipotent mesenchymal stromal cells (MSCs) are primitive cells capable of restoring damaged mesenchyme and with the ability to differentiate into mature cells of bone, cartilage, muscle, fat, nerve or fibrous tissues. MSCs are therefore good candidates for applications in regenerative medicine and cell based therapy. They regenerate through self-renewal, differentiational capacity, immune modulation and secretion of bioactive molecules. Authors present a review of MSCs applications in otorhinolaryngology. The major interest is focused on phonosurgery, sensorineural deafness and reconstruction of large tissue defects with bone, cartilage or soft tissue replacement. Current evidence of MSCs treatment efficacy in otorhinolaryngology is based on animal models. The true impact on clinical treatment will not be known until clinical studies prove functional outcomes in human medicine.
- MeSH
- Models, Biological * MeSH
- Cell Differentiation physiology MeSH
- Cartilage cytology physiology MeSH
- Bone and Bones cytology physiology MeSH
- Humans MeSH
- Mesenchymal Stem Cells physiology MeSH
- Nerve Tissue cytology physiology MeSH
- Otolaryngology methods MeSH
- Regenerative Medicine methods MeSH
- Guided Tissue Regeneration methods MeSH
- Mesenchymal Stem Cell Transplantation methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The aim of this study was to compare the standard laboratory method of cultivation of mesenchymal multipotent stromal cells (MSC) and a novel technique of rapid MSC expansion focused on simple clinical use. MATERIAL AND METHODS Bone marrow mononuclear cells of donors were cultured for 14 days by the standard and the new cultivation method. The standard method (STD) was based on an alpha MEM medium supplemented with foetal calf serum (FCS). The new animal protein-free method (CLI) was based on the clinical grade medium CellgroTM, pooled human serum and human recombinant growth factors (EGF, PDGF-BB, M-CSF, FGF-2) supplemented with dexamethasone, insulin and ascorbic acid. The cell product was analyzed by flow cytometry. Furthermore, the cell products of STD and CLI methods were differentiated in vitro, and histochemical and immunohistochemical analyses, electron microscopy and elemental analysis were performed. Some cells were seeded on biodegradable scaffolds, in vivo implanted into immunodeficient mice for 6 weeks and evaluated by histological methods. RESULTS Yields of the CLI method after 14 days of cultivation were 40-fold higher than those obtained by the STD technique (p<0.05). Cell products of both STD and CLI methods fulfilled the criteria of MSC in terms of antigen expression assessed by flow cytometry, as well as osteogenic, chondrogenic and adipogenic in vitro differentiation assays. Moreover, these cells seeded on three-dimensional scaffolds cultured in osteogenic medium produced mineral deposits and a fibrillar extracellular matrix seen with the electron microscope. Deposits examined by element analysis contained calcium and phosphorus at a ratio of 5 to 3, which corresponded to hydroxyapatite. The cell product seeded on biodegradable scaffolds and implanted into immunodeficient mice was able to form a bone-like calcified tissue with blood supply of mouse origin. DISCUSSION The currently used methods of cultivation have certain disadvantages compared to the CLI technique, such as a longer cultivation period, need of primary expansion and reseeding and use of FCS with all its potential risks. High yields of cells obtained by the CLI method in a very short time make the use of cultured cells potentially suitable for an acute trauma management. Other therapeutic non-orthotopic applications of CLI-cultured cells have to be further investigated. CONCLUSIONS The CLI method is unique, rapid, simple and lacking the addition of animal proteins. CLI-cultured cells fulfil the criteria of MSC. The CLI method potentially allows for closed system cultivation in good manufacturing practice (GMP) conditions. It seems to be easily transferable to good clinical practice compared to other protocols and should extend the possibilities of cell therapy and tissue engineering of cartilage and bone. The new method is protected by Czech patent 301 148 and by europian patent EP 1999250 according to Czech and international laws.
- MeSH
- Cell Differentiation MeSH
- Adult Stem Cells MeSH
- Microscopy, Electron MeSH
- Financing, Organized MeSH
- Histology MeSH
- Immunohistochemistry MeSH
- Data Interpretation, Statistical MeSH
- Culture Techniques methods utilization MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Mesenchymal Stem Cells cytology MeSH
- Mice MeSH
- Flow Cytometry MeSH
- Regenerative Medicine MeSH
- Growth Hormone MeSH
- Statistics as Topic MeSH
- In Vitro Techniques MeSH
- Tissue Engineering methods MeSH
- Mesenchymal Stem Cell Transplantation MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Comparative Study MeSH
We have studied a rapid cultivation method for human mesenchymal stromal cells based on CellGroTM medium and human serum, supplemented with insulin, ascorbic acid, dexamethasone, epidermal growth factor, platelet-derived growth factor BB, macrophage colony-stimulating factor and fibroblast growth factor 2. This study has shown that rapid expansion of human multipotent mesenchymal stromal cells using human serum could not be achieved without addition of growth factors. Furthermore, we have found that insulin and, quite probably, epidermal growth factor may be omitted from our formula without loss of colony-forming capacity or total cell yield. On the other hand, dexamethasone, ascorbic acid and fibroblast growth factor 2 were necessary for the growth and colony-forming capacity of multipotent mesenchymal stromal cells, while platelet-derived growth factor BB prevented their differentiation into adipogenic lineage. Moreover, multipotent mesenchymal stromal cells cultivated in our system expressed higher levels of bone morphogenetic protein 2, but not bone morphogenetic protein 7, than cells cultivated in α-MEM with foetal bovine serum. This shows that our system promotes differentiation of mesenchymal cells towards osteogenic and chondrogenic lineages, making them more suitable for bone and cartilage engineering than cells grown in conventional media. Furthermore, we have proved that these cells may be conveniently cultivated in a closed system, in vessels certified for clinical use (RoboFlaskTM), making the transfer of our cultivation technology to good clinical practice easier and more convenient.
- MeSH
- Bone Morphogenetic Protein 2 metabolism MeSH
- Bone Morphogenetic Protein 7 metabolism MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Mesenchymal Stem Cells cytology metabolism MeSH
- Osteocalcin metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH