Current Status of Bioprinting Using Polymer Hydrogels for the Production of Vascular Grafts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NW24J-02-00061
Ministry of Health
SGS22/201/OHK4/3T/17
Czech Technical University in Prague
PubMed
39851975
PubMed Central
PMC11765431
DOI
10.3390/gels11010004
PII: gels11010004
Knihovny.cz E-zdroje
- Klíčová slova
- bioinks, bioprinting, decellularized scaffold, electrospun scaffolds, extrusion bioprinting, inkjet bioprinting, tissue-engineered vascular grafts, vascular grafts,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cardiovascular disease is one of the leading causes of death and serious illness in Europe and worldwide. Conventional treatment-replacing the damaged blood vessel with an autologous graft-is not always affordable for the patient, so alternative approaches are being sought. One such approach is patient-specific tissue bioprinting, which allows for precise distribution of cells, material, and biochemical signals. With further developmental support, a functional replacement tissue or vessel can be created. This review provides an overview of the current state of bioprinting for vascular graft manufacturing and summarizes the hydrogels used as bioinks, the material of carriers, and the current methods of fabrication used, especially for vessels smaller than 6 mm, which are the most challenging for cardiovascular replacements. The fabrication methods are divided into several sections-self-supporting grafts based on simple 3D bioprinting and bioprinting of bioinks on scaffolds made of decellularized or nanofibrous material.
Zobrazit více v PubMed
Di Cesare M., Perel P., Taylor S., Kabudula C., Bixby H., Gaziano T.A., McGhie D.V., Mwangi J., Pervan B., Narula J., et al. The Heart of the World. Glob. Heart. 2024;19:11. doi: 10.5334/gh.1288. PubMed DOI PMC
Hajar R. Risk Factors for Coronary Artery Disease: Historical Perspectives. Heart Views. 2017;18:109–114. doi: 10.4103/HEARTVIEWS.HEARTVIEWS_106_17. PubMed DOI PMC
Zhu J., Wang X., Lin L., Zeng W. 3D bioprinting for vascular grafts and microvasculature. Int. J. Bioprinting. 2023;9:0012. doi: 10.36922/ijb.0012. DOI
Antoniou G.A., Chalmers N., Georgiadis G.S., Lazarides M.K., Antoniou S.A., Serracino-Inglott F., Smyth J.V., Murray D. A meta-analysis of endovascular versus surgical reconstruction of femoropopliteal arterial disease. J. Vasc. Surg. 2013;57:242–253. doi: 10.1016/j.jvs.2012.07.038. PubMed DOI
Conte M.S. Critical appraisal of surgical revascularization for critical limb ischemia. J. Vasc. Surg. 2013;57:8s–13s. doi: 10.1016/j.jvs.2012.05.114. PubMed DOI
Kannan R.Y., Salacinski H.J., Butler P.E., Hamilton G., Seifalian A.M. Current status of prosthetic bypass grafts: A review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005;74B:570–581. doi: 10.1002/jbm.b.30247. PubMed DOI
Athanasiou T., Saso S., Rao C., Vecht J., Grapsa J., Dunning J., Lemma M., Casula R. Radial artery versus saphenous vein conduits for coronary artery bypass surgery: Forty years of competition—Which conduit offers better patency? A systematic review and meta-analysis. Eur. J. Cardio-Thorac. Surg. 2011;40:208–220. doi: 10.1016/j.ejcts.2010.11.012. PubMed DOI
Harskamp R.E., Lopes R.D., Baisden C.E., de Winter R.J., Alexander J.H. Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery: Pathophysiology, Management, and Future Directions. Ann. Surg. 2013;257:824–833. doi: 10.1097/SLA.0b013e318288c38d. PubMed DOI
Gemelli M., Gallo M., Addonizio M., Pahwa S., Van den Eynde J., Trivedi J., Slaughter M.S., Gerosa G. Venous External Support in Coronary Artery Bypass Surgery: A Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2023;48:101687. doi: 10.1016/j.cpcardiol.2023.101687. PubMed DOI
West-Livingston L., Lim J.W., Lee S.J. Translational tissue-engineered vascular grafts: From bench to bedside. Biomaterials. 2023;302:122322. doi: 10.1016/j.biomaterials.2023.122322. PubMed DOI
Chlupáč J., Filová E., Bačáková L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol. Res. 2009;58((Suppl. S2)):S119–S140. doi: 10.33549/physiolres.931918. PubMed DOI
Tran K., Ho V.T., Itoga N.K., Stern J.R. Comparison of mid-term graft patency in common femoral versus superficial femoral artery inflow for infra-geniculate bypass in the vascular quality initiative. Vascular. 2020;28:722–730. doi: 10.1177/1708538120924908. PubMed DOI PMC
Lovett M., Cannizzaro C., Daheron L., Messmer B., Vunjak-Novakovic G., Kaplan D.L. Silk fibroin microtubes for blood vessel engineering. Biomaterials. 2007;28:5271–5279. doi: 10.1016/j.biomaterials.2007.08.008. PubMed DOI PMC
Pashneh-Tala S., MacNeil S., Claeyssens F. The Tissue-Engineered Vascular Graft—Past, Present, and Future. Tissue Eng. Part B Rev. 2015;22:68–100. doi: 10.1089/ten.teb.2015.0100. PubMed DOI PMC
Lin P.H., Brinkman W.T., Terramani T.T., Lumsden A.B. Management of infected hemodialysis access grafts using cryopreserved human vein allografts. Am. J. Surg. 2002;184:31–36. doi: 10.1016/S0002-9610(02)00894-2. PubMed DOI
Song H.G., Rumma R.T., Ozaki C.K., Edelman E.R., Chen C.S. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell. 2018;22:340–354. doi: 10.1016/j.stem.2018.02.009. PubMed DOI PMC
Zhe M., Wu X., Yu P., Xu J., Liu M., Yang G., Xiang Z., Xing F., Ritz U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. Materials. 2023;16:3197. doi: 10.3390/ma16083197. PubMed DOI PMC
Mirshafiei M., Rashedi H., Yazdian F., Rahdar A., Baino F. Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives. Mater. Des. 2024;240:112853. doi: 10.1016/j.matdes.2024.112853. DOI
Yeo M., Sarkar A., Singh Y.P., Derman I.D., Datta P., Ozbolat I.T. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication. 2023;16:012003. doi: 10.1088/1758-5090/ad0b3f. PubMed DOI PMC
Dell A.C., Wagner G., Own J., Geibel J.P. 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics. 2022;14:2596. doi: 10.3390/pharmaceutics14122596. PubMed DOI PMC
Salih T., Caputo M., Ghorbel M.T. Recent Advances in Hydrogel-Based 3D Bioprinting and Its Potential Application in the Treatment of Congenital Heart Disease. Biomolecules. 2024;14:861. doi: 10.3390/biom14070861. PubMed DOI PMC
Hasan A., Memic A., Annabi N., Hossain M., Paul A., Dokmeci M.R., Dehghani F., Khademhosseini A. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014;10:11–25. doi: 10.1016/j.actbio.2013.08.022. PubMed DOI PMC
O’Connor C., Brady E., Zheng Y., Moore E., Stevens K.R. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 2022;7:702–716. doi: 10.1038/s41578-022-00447-8. PubMed DOI PMC
Sarkar S., Salacinski H.J., Hamilton G., Seifalian A.M. The mechanical properties of infrainguinal vascular bypass grafts: Their role in influencing patency. Eur. J. Vasc. Endovasc. Surg. 2006;31:627–636. doi: 10.1016/j.ejvs.2006.01.006. PubMed DOI
Haruguchi H., Teraoka S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: A review. J. Artif. Organs. 2003;6:227–235. doi: 10.1007/s10047-003-0232-x. PubMed DOI
Scharn D.M., Daamen W.F., van Kuppevelt T.H., van der Vliet J.A. Biological mechanisms influencing prosthetic bypass graft patency: Possible targets for modern graft design. Eur. J. Vasc. Endovasc. Surg. 2012;43:66–72. doi: 10.1016/j.ejvs.2011.09.009. PubMed DOI
Persaud A., Maus A., Strait L., Zhu D. 3D Bioprinting with Live Cells. Eng. Regen. 2022;3:292–309. doi: 10.1016/j.engreg.2022.07.002. DOI
Chen X.B., Fazel Anvari-Yazdi A., Duan X., Zimmerling A., Gharraei R., Sharma N.K., Sweilem S., Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact. Mater. 2023;28:511–536. doi: 10.1016/j.bioactmat.2023.06.006. PubMed DOI PMC
Karvinen J., Kellomäki M. Design aspects and characterization of hydrogel-based bioinks for extrusion-based bioprinting. Bioprinting. 2023;32:e00274. doi: 10.1016/j.bprint.2023.e00274. DOI
Osidak E.O., Kozhukhov V.I., Osidak M.S., Domogatsky S.P. Collagen as Bioink for Bioprinting: A Comprehensive Review. Int. J. Bioprint. 2020;6:270. doi: 10.18063/ijb.v6i3.270. PubMed DOI PMC
Sapuła P., Bialik-Wąs K., Malarz K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics. 2023;15:253. doi: 10.3390/pharmaceutics15010253. PubMed DOI PMC
Hu W., Wang Z., Xiao Y., Zhang S., Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019;7:843–855. doi: 10.1039/C8BM01246F. PubMed DOI
Hennink W.E., van Nostrum C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2012;64:223–236. doi: 10.1016/j.addr.2012.09.009. PubMed DOI
Joseph A.M., George B. Cross-Linking Biopolymers for Biomedical Applications. In: Thomas S., Ar A., Jose Chirayil C., Thomas B., editors. Handbook of Biopolymers. Springer Nature; Singapore: 2023. pp. 1135–1172.
Smandri A., Nordin A., Hwei N.M., Chin K.Y., Abd Aziz I., Fauzi M.B. Natural 3D-Printed Bioinks for Skin Regeneration and Wound Healing: A Systematic Review. Polymers. 2020;12:1782. doi: 10.3390/polym12081782. PubMed DOI PMC
Gomez-Florit M., Pardo A., Domingues R.M.A., Graça A.L., Babo P.S., Reis R.L., Gomes M.E. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules. 2020;25:5858. doi: 10.3390/molecules25245858. PubMed DOI PMC
Montero F.E., Rezende R.A., da Silva J.V.L., Sabino M.A. Development of a Smart Bioink for Bioprinting Applications. Front. Mech. Eng. 2019;5:56. doi: 10.3389/fmech.2019.00056. DOI
Gopinathan J., Noh I. Recent trends in bioinks for 3D printing. Biomater. Res. 2018;22:11. doi: 10.1186/s40824-018-0122-1. PubMed DOI PMC
Lei M., Wang X. Biodegradable Polymers and Stem Cells for Bioprinting. Molecules. 2016;21:539. doi: 10.3390/molecules21050539. PubMed DOI PMC
Petta D., D’Amora U., Ambrosio L., Grijpma D.W., Eglin D., D’Este M. Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication. 2020;12:032001. doi: 10.1088/1758-5090/ab8752. PubMed DOI
Lam T., Dehne T., Krüger J.P., Hondke S., Endres M., Thomas A., Lauster R., Sittinger M., Kloke L. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J. Biomed. Mater. Res. B Appl. Biomater. 2019;107:2649–2657. doi: 10.1002/jbm.b.34354. PubMed DOI PMC
Catoira M.C., Fusaro L., Di Francesco D., Ramella M., Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019;30:115. doi: 10.1007/s10856-019-6318-7. PubMed DOI PMC
Zhang Y., Wang Y., Li Y., Yang Y., Jin M., Lin X., Zhuang Z., Guo K., Zhang T., Tan W. Application of Collagen-Based Hydrogel in Skin Wound Healing. Gels. 2023;9:185. doi: 10.3390/gels9030185. PubMed DOI PMC
Ribeiro M., Simões M., Vitorino C., Mascarenhas-Melo F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels. 2024;10:188. doi: 10.3390/gels10030188. PubMed DOI PMC
Ferruzzi J., Sun M., Gkousioudi A., Pilvar A., Roblyer D., Zhang Y., Zaman M.H. Compressive Remodeling Alters Fluid Transport Properties of Collagen Networks—Implications for Tumor Growth. Sci. Rep. 2019;9:17151. doi: 10.1038/s41598-019-50268-z. PubMed DOI PMC
Bosch-Rué È., Díez-Tercero L., Delgado L.M., Pérez R.A. Biofabrication of Collagen Tissue-Engineered Blood Vessels with Direct Co-Axial Extrusion. Int. J. Mol. Sci. 2022;23:5618. doi: 10.3390/ijms23105618. PubMed DOI PMC
Stepanovska J., Otahal M., Hanzalek K., Supova M., Matejka R. pH Modification of High-Concentrated Collagen Bioinks as a Factor Affecting Cell Viability, Mechanical Properties, and Printability. Gels. 2021;7:252. doi: 10.3390/gels7040252. PubMed DOI PMC
Matejkova J., Kanokova D., Supova M., Matejka R. A New Method for the Production of High-Concentration Collagen Bioinks with Semiautonomic Preparation. Gels. 2024;10:66. doi: 10.3390/gels10010066. PubMed DOI PMC
Nair M., Johal R.K., Hamaia S.W., Best S.M., Cameron R.E. Tunable bioactivity and mechanics of collagen-based tissue engineering constructs: A comparison of EDC-NHS, genipin and TG2 crosslinkers. Biomaterials. 2020;254:120109. doi: 10.1016/j.biomaterials.2020.120109. PubMed DOI PMC
Stepanovska J., Supova M., Hanzalek K., Broz A., Matejka R. Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines. 2021;9:1137. doi: 10.3390/biomedicines9091137. PubMed DOI PMC
Liu H., Gong Y., Zhang K., Ke S., Wang Y., Wang J., Wang H. Recent Advances in Decellularized Matrix-Derived Materials for Bioink and 3D Bioprinting. Gels. 2023;9:195. doi: 10.3390/gels9030195. PubMed DOI PMC
Golebiowska A.A., Intravaia J.T., Sathe V.M., Kumbar S.G., Nukavarapu S.P. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioact. Mater. 2024;32:98–123. doi: 10.1016/j.bioactmat.2023.09.017. PubMed DOI PMC
Walker C., Mojares E., Del Río Hernández A. Role of Extracellular Matrix in Development and Cancer Progression. Int. J. Mol. Sci. 2018;19:3028. doi: 10.3390/ijms19103028. PubMed DOI PMC
Shibru M.G., Ali Z.M., Almansoori A.S., Paunovic J., Pantic I.V., Corridon P.R. Slaughterhouse Waste: A Unique and Sustainable Source for dECM-Based Bioinks. Regen. Med. 2024;19:113–118. doi: 10.2217/rme-2023-0194. PubMed DOI
Kim Y.S., Majid M., Melchiorri A.J., Mikos A.G. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng. Transl. Med. 2019;4:83–95. doi: 10.1002/btm2.10110. PubMed DOI PMC
Liu H., Xing F., Yu P., Lu R., Ma S., Shakya S., Zhou X., Peng K., Zhang D., Liu M. Biomimetic fabrication bioprinting strategies based on decellularized extracellular matrix for musculoskeletal tissue regeneration: Current status and future perspectives. Mater. Des. 2024;243:113072. doi: 10.1016/j.matdes.2024.113072. DOI
Xie F., Gao C., Avérous L. Alginate-based materials: Enhancing properties through multiphase formulation design and processing innovation. Mater. Sci. Eng. R Rep. 2024;159:100799. doi: 10.1016/j.mser.2024.100799. DOI
Chae S., Cho D.-W. Three-dimensional bioprinting with decellularized extracellular matrix-based bioinks in translational regenerative medicine. MRS Bull. 2022;47:70–79. doi: 10.1557/s43577-021-00260-8. DOI
Potere F., Venturelli G., Belgio B., Guagliano G., Boschetti F., Mantero S., Petrini P. Double-crosslinked dECM bioink to print a self-sustaining 3D multi-layered aortic-like construct. Bioprinting. 2024;44:e00368. doi: 10.1016/j.bprint.2024.e00368. DOI
Zhang C.-Y., Fu C.-P., Li X.-Y., Lu X.-C., Hu L.-G., Kankala R.K., Wang S.-B., Chen A.-Z. Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering. Molecules. 2022;27:3442. doi: 10.3390/molecules27113442. PubMed DOI PMC
Andreazza R., Morales A., Pieniz S., Labidi J. Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers. 2023;15:1026. doi: 10.3390/polym15041026. PubMed DOI PMC
Leucht A., Volz A.C., Rogal J., Borchers K., Kluger P.J. Advanced gelatin-based vascularization bioinks for extrusion-based bioprinting of vascularized bone equivalents. Sci. Rep. 2020;10:5330. doi: 10.1038/s41598-020-62166-w. PubMed DOI PMC
Bupphathong S., Quiroz C., Huang W., Chung P.F., Tao H.Y., Lin C.H. Gelatin Methacrylate Hydrogel for Tissue Engineering Applications-A Review on Material Modifications. Pharmaceuticals. 2022;15:171. doi: 10.3390/ph15020171. PubMed DOI PMC
Zhu M., Wang Y., Ferracci G., Zheng J., Cho N.J., Lee B.H. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci. Rep. 2019;9:6863. doi: 10.1038/s41598-019-42186-x. PubMed DOI PMC
Nichol J.W., Koshy S.T., Bae H., Hwang C.M., Yamanlar S., Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31:5536–5544. doi: 10.1016/j.biomaterials.2010.03.064. PubMed DOI PMC
Jammalamadaka U., Tappa K. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering. J. Funct. Biomater. 2018;9:22. doi: 10.3390/jfb9010022. PubMed DOI PMC
Yang H., Sun L., Pang Y., Hu D., Xu H., Mao S., Peng W., Wang Y., Xu Y., Zheng Y.C., et al. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut. 2021;70:567–574. doi: 10.1136/gutjnl-2019-319960. PubMed DOI PMC
Benton G., Arnaoutova I., George J., Kleinman H.K., Koblinski J. Matrigel: From discovery and ECM mimicry to assays and models for cancer research. Adv. Drug Deliv. Rev. 2014;79–80:3–18. doi: 10.1016/j.addr.2014.06.005. PubMed DOI
Lugassy C., Wadehra M., Li X., Corselli M., Akhavan D., Binder S.W., Péault B., Cochran A.J., Mischel P.S., Kleinman H.K., et al. Pilot Study on “Pericytic Mimicry” and Potential Embryonic/Stem Cell Properties of Angiotropic Melanoma Cells Interacting with the Abluminal Vascular Surface. Cancer Microenviron. 2013;6:19–29. doi: 10.1007/s12307-012-0128-5. PubMed DOI PMC
Azzarello J., Kropp B.P., Fung K.M., Lin H.K. Age-dependent vascular endothelial growth factor expression and angiogenic capability of bladder smooth muscle cells: Implications for cell-seeded technology in bladder tissue engineering. J. Tissue Eng. Regen. Med. 2009;3:579–589. doi: 10.1002/term.199. PubMed DOI
Kleinman H.K., Martin G.R. Matrigel: Basement membrane matrix with biological activity. Semin. Cancer Biol. 2005;15:378–386. doi: 10.1016/j.semcancer.2005.05.004. PubMed DOI
Shojaie S., Ermini L., Ackerley C., Wang J., Chin S., Yeganeh B., Bilodeau M., Sambi M., Rogers I., Rossant J., et al. Acellular lung scaffolds direct differentiation of endoderm to functional airway epithelial cells: Requirement of matrix-bound HS proteoglycans. Stem Cell Rep. 2015;4:419–430. doi: 10.1016/j.stemcr.2015.01.004. PubMed DOI PMC
Ng H.Y., Lee K.A., Kuo C.N., Shen Y.F. Bioprinting of artificial blood vessels. Int. J. Bioprint. 2018;4:140. doi: 10.18063/ijb.v4i2.140. PubMed DOI PMC
Ozbolat I.T. Scaffold-Based or Scaffold-Free Bioprinting: Competing or Complementing Approaches? J. Nanotechnol. Eng. Med. 2015;6:024701. doi: 10.1115/1.4030414. DOI
Klinkert P., Post P.N., Breslau P.J., van Bockel J.H. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur. J. Vasc. Endovasc. Surg. 2004;27:357–362. doi: 10.1016/j.ejvs.2003.12.027. PubMed DOI
van Det R.J., Vriens B.H., van der Palen J., Geelkerken R.H. Dacron or ePTFE for femoro-popliteal above-knee bypass grafting: Short- and long-term results of a multicentre randomised trial. Eur. J. Vasc. Endovasc. Surg. 2009;37:457–463. doi: 10.1016/j.ejvs.2008.11.041. PubMed DOI
Brothers T.E., Stanley J.C., Burkel W.E., Graham L.M. Small-caliber polyurethane and polytetrafluoroethylene grafts: A comparative study in a canine aortoiliac model. J. Biomed. Mater. Res. 1990;24:761–771. doi: 10.1002/jbm.820240610. PubMed DOI
Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–3243. doi: 10.1016/j.biomaterials.2011.01.057. PubMed DOI PMC
Hashi C.K., Zhu Y., Yang G.-Y., Young W.L., Hsiao B.S., Wang K., Chu B., Li S. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc. Natl. Acad. Sci. USA. 2007;104:11915–11920. doi: 10.1073/pnas.0704581104. PubMed DOI PMC
Tara S., Rocco K.A., Hibino N., Sugiura T., Kurobe H., Breuer C.K., Shinoka T. Vessel Bioengineering– Development of Small-Diameter Arterial Grafts &ndash. Circ. J. 2014;78:12–19. doi: 10.1253/circj.CJ-13-1440. PubMed DOI
Allen R.A., Wu W., Yao M., Dutta D., Duan X., Bachman T.N., Champion H.C., Stolz D.B., Robertson A.M., Kim K., et al. Nerve regeneration and elastin formation within poly(glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model. Biomaterials. 2014;35:165–173. doi: 10.1016/j.biomaterials.2013.09.081. PubMed DOI PMC
Matsuzaki Y., John K., Shoji T., Shinoka T. The Evolution of Tissue Engineered Vascular Graft Technologies: From Preclinical Trials to Advancing Patient Care. Appl. Sci. 2019;9:1274. doi: 10.3390/app9071274. PubMed DOI PMC
Pektok E., Nottelet B., Tille J.C., Gurny R., Kalangos A., Moeller M., Walpoth B.H. Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation. 2008;118:2563–2570. doi: 10.1161/CIRCULATIONAHA.108.795732. PubMed DOI
Fontes A.B., Marcomini R.F. 3D Bioprinting: A Review of Materials, Processes and Bioink Properties. J. Eng. Exact Sci. 2020;6:617–639. doi: 10.18540/jcecvl6iss5pp0617-0639. DOI
Tripathi S., Mandal S.S., Bauri S., Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm. 2023;4:e194. doi: 10.1002/mco2.194. PubMed DOI PMC
Vijayavenkataraman S., Yan W.-C., Lu W.F., Wang C.-H., Fuh J.Y.H. 3D bioprinting of tissues and organs for regenerative medicine. Adv. Drug Deliv. Rev. 2018;132:296–332. doi: 10.1016/j.addr.2018.07.004. PubMed DOI
Xu L., Varkey M., Jorgensen A., Ju J., Jin Q., Park J.H., Fu Y., Zhang G., Ke D., Zhao W., et al. Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step. Biofabrication. 2020;12:045012. doi: 10.1088/1758-5090/aba2b6. PubMed DOI
Smith C.M. A Direct-Write Three-Dimensional Bioassembly Tool for Regenerative Medicine. The University of Arizona; Tucson, AZ, USA: 2005.
Skardal A., Zhang J., McCoard L., Oottamasathien S., Prestwich G.D. Dynamically crosslinked gold nanoparticle—Hyaluronan hydrogels. Adv. Mater. 2010;22:4736–4740. doi: 10.1002/adma.201001436. PubMed DOI
Skardal A., Zhang J., McCoard L., Xu X., Oottamasathien S., Prestwich G.D. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A. 2010;16:2675–2685. doi: 10.1089/ten.tea.2009.0798. PubMed DOI PMC
Skardal A., Zhang J., Prestwich G.D. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31:6173–6181. doi: 10.1016/j.biomaterials.2010.04.045. PubMed DOI
Visser J., Peters B., Burger T.J., Boomstra J., Dhert W.J., Melchels F.P., Malda J. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication. 2013;5:035007. doi: 10.1088/1758-5082/5/3/035007. PubMed DOI
Gao Q., He Y., Fu J.-z., Liu A., Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203–215. doi: 10.1016/j.biomaterials.2015.05.031. PubMed DOI
Hinton T.J., Jallerat Q., Palchesko R.N., Park J.H., Grodzicki M.S., Shue H.J., Ramadan M.H., Hudson A.R., Feinberg A.W. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 2015;1:e1500758. doi: 10.1126/sciadv.1500758. PubMed DOI PMC
Gao G., Lee J.H., Jang J., Lee D.H., Kong J.-S., Kim B.S., Choi Y.-J., Jang W.B., Hong Y.J., Kwon S.-M., et al. Tissue Engineered Bio-Blood-Vessels Constructed Using a Tissue-Specific Bioink and 3D Coaxial Cell Printing Technique: A Novel Therapy for Ischemic Disease. Adv. Funct. Mater. 2017;27:1700798. doi: 10.1002/adfm.201700798. DOI
Xu Y., Hu Y., Liu C., Yao H., Liu B., Mi S. A Novel Strategy for Creating Tissue-Engineered Biomimetic Blood Vessels Using 3D Bioprinting Technology. Materials. 2018;11:1581. doi: 10.3390/ma11091581. PubMed DOI PMC
Bosch-Rué E., Delgado L.M., Gil F.J., Perez R.A. Direct extrusion of individually encapsulated endothelial and smooth muscle cells mimicking blood vessel structures and vascular native cell alignment. Biofabrication. 2021;13:015003. doi: 10.1088/1758-5090/abbd27. PubMed DOI
Kreimendahl F., Kniebs C., Tavares Sobreiro A.M., Schmitz-Rode T., Jockenhoevel S., Thiebes A.L. FRESH bioprinting technology for tissue engineering—The influence of printing process and bioink composition on cell behavior and vascularization. J. Appl. Biomater. Funct. Mater. 2021;19:22808000211028808. doi: 10.1177/22808000211028808. PubMed DOI
Wang D., Maharjan S., Kuang X., Wang Z., Mille L.S., Tao M., Yu P., Cao X., Lian L., Lv L., et al. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Sci. Adv. 2022;8:eabq6900. doi: 10.1126/sciadv.abq6900. PubMed DOI PMC
Kesari P., Xu T., Boland T. Layer-by-layer printing of cells and its application to tissue engineering. MRS Proc. 2005;845:AA4-5. doi: 10.1557/PROC-845-AA4.5. DOI
Zhao L., Lee V.K., Yoo S.-S., Dai G., Intes X. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials. 2012;33:5325–5332. doi: 10.1016/j.biomaterials.2012.04.004. PubMed DOI PMC
Lee V.K., Kim D.Y., Ngo H., Lee Y., Seo L., Yoo S.-S., Vincent P.A., Dai G. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials. 2014;35:8092–8102. doi: 10.1016/j.biomaterials.2014.05.083. PubMed DOI PMC
Xu C., Chai W., Huang Y., Markwald R.R. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol. Bioeng. 2012;109:3152–3160. doi: 10.1002/bit.24591. PubMed DOI
Nakamura M., Nishiyama Y., Henmi C. 3D Micro-fabrication by Inkjet 3D biofabrication for 3D tissue engineering; Proceedings of the 2008 International Symposium on Micro-NanoMechatronics and Human Science; Nagoya, Japan. 6–9 November 2008; pp. 451–456.
Anandakrishnan N., Ye H., Guo Z., Chen Z., Mentkowski K.I., Lang J.K., Rajabian N., Andreadis S.T., Ma Z., Spernyak J.A., et al. Fast Stereolithography Printing of Large-Scale Biocompatible Hydrogel Models. Adv. Healthc. Mater. 2021;10:e2002103. doi: 10.1002/adhm.202002103. PubMed DOI PMC
Carrabba M., Fagnano M., Ghorbel M.T., Rapetto F., Su B., De Maria C., Vozzi G., Biglino G., Perriman A.W., Caputo M., et al. Development of a Novel Hierarchically Biofabricated Blood Vessel Mimic Decorated with Three Vascular Cell Populations for the Reconstruction of Small-Diameter Arteries. Adv. Funct. Mater. 2024;34:2300621. doi: 10.1002/adfm.202300621. PubMed DOI PMC
Zhang Z., Wu C., Dai C., Shi Q., Fang G., Xie D., Zhao X., Liu Y.-J., Wang C.C.L., Wang X.-J. A multi-axis robot-based bioprinting system supporting natural cell function preservation and cardiac tissue fabrication. Bioact. Mater. 2022;18:138–150. doi: 10.1016/j.bioactmat.2022.02.009. PubMed DOI PMC
Jin Q., Fu Y., Zhang G., Xu L., Jin G., Tang L., Ju J., Zhao W., Hou R. Nanofiber electrospinning combined with rotary bioprinting for fabricating small-diameter vessels with endothelium and smooth muscle. Compos. Part B Eng. 2022;234:109691. doi: 10.1016/j.compositesb.2022.109691. DOI
Mohd Pu’ad N.A.S., Abdul Haq R.H., Mohd Noh H., Abdullah H.Z., Idris M.I., Lee T.C. Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications. Mater. Today Proc. 2020;29:228–232. doi: 10.1016/j.matpr.2020.05.535. DOI
Boularaoui S., Al Hussein G., Khan K.A., Christoforou N., Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting. 2020;20:e00093. doi: 10.1016/j.bprint.2020.e00093. DOI
Kanokova D., Matejka R., Zaloudkova M., Zigmond J., Supova M., Matejkova J. Active Media Perfusion in Bioprinted Highly Concentrated Collagen Bioink Enhances the Viability of Cell Culture and Substrate Remodeling. Gels. 2024;10:316. doi: 10.3390/gels10050316. PubMed DOI PMC
Nakayama K. Development of a Scaffold-Free 3D Biofabrication System “Kenzan Method”. In: Nakayama K., editor. Kenzan Method for Scaffold-Free Biofabrication. Springer International Publishing; Cham, Switzerland: 2021. pp. 1–15.
Moldovan N.I. Position of the Kenzan Method in the Space-Time of Tissue Engineering. In: Nakayama K., editor. Kenzan Method for Scaffold-Free Biofabrication. Springer International Publishing; Cham, Switzerland: 2021. pp. 17–31.
Li X., Liu B., Pei B., Chen J., Zhou D., Peng J., Zhang X., Jia W., Xu T. Inkjet Bioprinting of Biomaterials. Chem. Rev. 2020;120:10793–10833. doi: 10.1021/acs.chemrev.0c00008. PubMed DOI
Wang Z., Xiang L., Lin F., Tang Y., Cui W. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. J. Control. Release. 2023;353:147–165. doi: 10.1016/j.jconrel.2022.11.035. PubMed DOI
Adhikari J., Roy A., Das A., Ghosh M., Thomas S., Sinha A., Kim J., Saha P. Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks. Macromol. Biosci. 2021;21:e2000179. doi: 10.1002/mabi.202000179. PubMed DOI
Gao G., Cui X. Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol. Lett. 2016;38:203–211. doi: 10.1007/s10529-015-1975-1. PubMed DOI
Cui X., Dean D., Ruggeri Z.M., Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol. Bioeng. 2010;106:963–969. doi: 10.1002/bit.22762. PubMed DOI
Kong Z., Wang X. Bioprinting Technologies and Bioinks for Vascular Model Establishment. Int. J. Mol. Sci. 2023;24:891. doi: 10.3390/ijms24010891. PubMed DOI PMC
Gudapati H., Dey M., Ozbolat I. A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials. 2016;102:20–42. doi: 10.1016/j.biomaterials.2016.06.012. PubMed DOI
Bourell D.L., Beaman J.J., Wohlers T. History and Evolution of Additive Manufacturing, Additive Manufacturing Processes. In: Bourell D.L., Frazier W., Kuhn H., Seifi M., editors. ASM Handbook. Volume 24. ASM International; Almere, The Netherlands: 2020. pp. 11–18. DOI
Wilson W.C., Jr., Boland T. Cell and organ printing 1: Protein and cell printers. Anat. Rec.—Part A Discov. Mol. Cell. Evol. Biol. 2003;272:491–496. doi: 10.1002/ar.a.10057. PubMed DOI
Hoch E., Tovar G.E.M., Borchers K. Bioprinting of artificial blood vessels: Current approaches towards a demanding goal. Eur. J. Cardio-Thorac. Surg. 2014;46:767–778. doi: 10.1093/ejcts/ezu242. PubMed DOI
Engelhardt S., Hoch E., Borchers K., Meyer W., Krüger H., Tovar G.E., Gillner A. Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization. Biofabrication. 2011;3:025003. doi: 10.1088/1758-5082/3/2/025003. PubMed DOI
Meyer W., Engelhardt S., Novosel E., Elling B., Wegener M., Krüger H. Soft Polymers for Building up Small and Smallest Blood Supplying Systems by Stereolithography. J. Funct. Biomater. 2012;3:257–268. doi: 10.3390/jfb3020257. PubMed DOI PMC
Novosel E.C., Meyer W., Klechowitz N., Krüger H., Wegener M., Walles H., Tovar G.E.M., Hirth T., Kluger P.J. Evaluation of Cell-Material Interactions on Newly Designed, Printable Polymers for Tissue Engineering Applications. Adv. Eng. Mater. 2011;13:B467–B475. doi: 10.1002/adem.201180018. DOI
Guillemot F., Souquet A., Catros S., Guillotin B. Laser-assisted cell printing: Principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine. 2010;5:507–515. doi: 10.2217/nnm.10.14. PubMed DOI
Williams C.G., Malik A.N., Kim T.K., Manson P.N., Elisseeff J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26:1211–1218. doi: 10.1016/j.biomaterials.2004.04.024. PubMed DOI
Mandrycky C., Wang Z., Kim K., Kim D.H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 2016;34:422–434. doi: 10.1016/j.biotechadv.2015.12.011. PubMed DOI PMC
Ekaputra A.K., Prestwich G.D., Cool S.M., Hutmacher D.W. Combining Electrospun Scaffolds with Electrosprayed Hydrogels Leads to Three-Dimensional Cellularization of Hybrid Constructs. Biomacromolecules. 2008;9:2097–2103. doi: 10.1021/bm800565u. PubMed DOI
Yang D.L., Faraz F., Wang J.X., Radacsi N. Combination of 3D Printing and Electrospinning Techniques for Biofabrication. Adv. Mater. Technol. 2022;7:2101309. doi: 10.1002/admt.202101309. DOI
Adhikari K.R., Zimmerman J., Dimble P.S., Tucker B.S., Thomas V. Kink-free electrospun PET/PU-based vascular grafts with 3D-printed additive manufacturing reinforcement. J. Mater. Res. 2021;36:4013–4023. doi: 10.1557/s43578-021-00291-6. DOI
Smith J.A., Mele E. Electrospinning and Additive Manufacturing: Adding Three-Dimensionality to Electrospun Scaffolds for Tissue Engineering. Front. Bioeng. Biotechnol. 2021;9:674738. doi: 10.3389/fbioe.2021.674738. PubMed DOI PMC
Jeon H.J., Simon C.G., Kim G.H. A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J. Biomed. Mater. Res.—Part B Appl. Biomater. 2014;102:1580–1594. doi: 10.1002/jbm.b.33158. PubMed DOI
Maliszewska I., Czapka T. Electrospun Polymer Nanofibers with Antimicrobial Activity. Polymers. 2022;14:1661. doi: 10.3390/polym14091661. PubMed DOI PMC
Stitzel J., Liu J., Lee S.J., Komura M., Berry J., Soker S., Lim G., Van Dyke M., Czerw R., Yoo J.J., et al. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27:1088–1094. doi: 10.1016/j.biomaterials.2005.07.048. PubMed DOI
Kidoaki S., Kwon I.K., Matsuda T. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials. 2005;26:37–46. doi: 10.1016/j.biomaterials.2004.01.063. PubMed DOI
Zhang Y., Xu K., Zhi D., Qian M., Liu K., Shuai Q., Qin Z., Xie J., Wang K., Yang J. Improving Vascular Regeneration Performance of Electrospun Poly(ε-Caprolactone) Vascular Grafts via Synergistic Functionalization with VE-Cadherin/VEGF. Adv. Fiber Mater. 2022;4:1685–1702. doi: 10.1007/s42765-022-00213-z. DOI
Romero-Araya P., Pino V., Nenen A., Cárdenas V., Pavicic F., Ehrenfeld P., Serandour G., Lisoni J.G., Moreno-Villoslada I., Flores M.E. Combining Materials Obtained by 3D-Printing and Electrospinning from Commercial Polylactide Filament to Produce Biocompatible Composites. Polymers. 2021;13:3806. doi: 10.3390/polym13213806. PubMed DOI PMC
Scarritt M.E., Pashos N.C., Bunnell B.A. A Review of Cellularization Strategies for Tissue Engineering of Whole Organs. Front. Bioeng. Biotechnol. 2015;3:43. doi: 10.3389/fbioe.2015.00043. PubMed DOI PMC
Gilbert T.W., Sellaro T.L., Badylak S.F. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–3683. doi: 10.1016/j.biomaterials.2006.02.014. PubMed DOI
Guyette J.P., Gilpin S.E., Charest J.M., Tapias L.F., Ren X., Ott H.C. Perfusion decellularization of whole organs. Nat. Protoc. 2014;9:1451–1468. doi: 10.1038/nprot.2014.097. PubMed DOI
Wilson G.J., Courtman D.W., Klement P., Michael Lee J., Yeger H. Acellular matrix: A biomaterials approach for coronary artery bypass and heart valve replacement. Ann. Thorac. Surg. 1995;60:S353–S358. doi: 10.1016/0003-4975(95)98967-Y. PubMed DOI
Neishabouri A., Soltani Khaboushan A., Daghigh F., Kajbafzadeh A.-M., Majidi Zolbin M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front. Bioeng. Biotechnol. 2022;10:805299. doi: 10.3389/fbioe.2022.805299. PubMed DOI PMC
Li B., Shu Y., Ma H., Cao K., Cheng Y.Y., Jia Z., Ma X., Wang H., Song K. Three-dimensional printing and decellularized-extracellular-matrix based methods for advances in artificial blood vessel fabrication: A review. Tissue Cell. 2024;87:102304. doi: 10.1016/j.tice.2024.102304. PubMed DOI
Badylak S.F., Freytes D.O., Gilbert T.W. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2009;5:1–13. doi: 10.1016/j.actbio.2008.09.013. PubMed DOI
Maina R.M., Barahona M.J., Finotti M., Lysyy T., Geibel P., D’Amico F., Mulligan D., Geibel J.P. Generating vascular conduits: From tissue engineering to three-dimensional bioprinting. Innov. Surg. Sci. 2018;3:203–213. doi: 10.1515/iss-2018-0016. PubMed DOI PMC
Badylak S.F., Taylor D., Uygun K. Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 2011;13:27–53. doi: 10.1146/annurev-bioeng-071910-124743. PubMed DOI PMC
Dahl S.L.M., Rhim C., Song Y.C., Niklason L.E. Mechanical Properties and Compositions of Tissue Engineered and Native Arteries. Ann. Biomed. Eng. 2007;35:348–355. doi: 10.1007/s10439-006-9226-1. PubMed DOI PMC
Chlupac J., Matejka R., Konarik M., Novotny R., Simunkova Z., Mrazova I., Fabian O., Zapletal M., Pulda Z., Lipensky J.F., et al. Vascular Remodeling of Clinically Used Patches and Decellularized Pericardial Matrices Recellularized with Autologous or Allogeneic Cells in a Porcine Carotid Artery Model. Int. J. Mol. Sci. 2022;23:3310. doi: 10.3390/ijms23063310. PubMed DOI PMC
Griffith C.K., Miller C., Sainson R.C., Calvert J.W., Jeon N.L., Hughes C.C., George S.C. Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng. 2005;11:257–266. doi: 10.1089/ten.2005.11.257. PubMed DOI
Mirsky N.A., Ehlen Q.T., Greenfield J.A., Antonietti M., Slavin B.V., Nayak V.V., Pelaez D., Tse D.T., Witek L., Daunert S., et al. Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine. Bioengineering. 2024;11:777. doi: 10.3390/bioengineering11080777. PubMed DOI PMC
Frossard L. Trends and Opportunities in Health Economic Evaluations of Prosthetic Care Innovations. Can. Prosthet. Orthot. J. 2021;4:36364. doi: 10.33137/cpoj.v4i2.36364. PubMed DOI PMC
Rodríguez-Espíndola O., Chowdhury S., Dey P.K., Albores P., Emrouznejad A. Analysis of the adoption of emergent technologies for risk management in the era of digital manufacturing. Technol. Forecast. Soc. Chang. 2022;178:121562. doi: 10.1016/j.techfore.2022.121562. DOI
Ashammakhi N., Ahadian S., Zengjie F., Suthiwanich K., Lorestani F., Orive G., Ostrovidov S., Khademhosseini A. Advances and Future Perspectives in 4D Bioprinting. Biotechnol. J. 2018;13:e1800148. doi: 10.1002/biot.201800148. PubMed DOI PMC
Abdollahi S., Boktor J., Hibino N. Bioprinting of freestanding vascular grafts and the regulatory considerations for additively manufactured vascular prostheses. Transl. Res. 2019;211:123–138. doi: 10.1016/j.trsl.2019.05.005. PubMed DOI PMC