Current Status of Bioprinting Using Polymer Hydrogels for the Production of Vascular Grafts

. 2024 Dec 26 ; 11 (1) : . [epub] 20241226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39851975

Grantová podpora
NW24J-02-00061 Ministry of Health
SGS22/201/OHK4/3T/17 Czech Technical University in Prague

Cardiovascular disease is one of the leading causes of death and serious illness in Europe and worldwide. Conventional treatment-replacing the damaged blood vessel with an autologous graft-is not always affordable for the patient, so alternative approaches are being sought. One such approach is patient-specific tissue bioprinting, which allows for precise distribution of cells, material, and biochemical signals. With further developmental support, a functional replacement tissue or vessel can be created. This review provides an overview of the current state of bioprinting for vascular graft manufacturing and summarizes the hydrogels used as bioinks, the material of carriers, and the current methods of fabrication used, especially for vessels smaller than 6 mm, which are the most challenging for cardiovascular replacements. The fabrication methods are divided into several sections-self-supporting grafts based on simple 3D bioprinting and bioprinting of bioinks on scaffolds made of decellularized or nanofibrous material.

Zobrazit více v PubMed

Di Cesare M., Perel P., Taylor S., Kabudula C., Bixby H., Gaziano T.A., McGhie D.V., Mwangi J., Pervan B., Narula J., et al. The Heart of the World. Glob. Heart. 2024;19:11. doi: 10.5334/gh.1288. PubMed DOI PMC

Hajar R. Risk Factors for Coronary Artery Disease: Historical Perspectives. Heart Views. 2017;18:109–114. doi: 10.4103/HEARTVIEWS.HEARTVIEWS_106_17. PubMed DOI PMC

Zhu J., Wang X., Lin L., Zeng W. 3D bioprinting for vascular grafts and microvasculature. Int. J. Bioprinting. 2023;9:0012. doi: 10.36922/ijb.0012. DOI

Antoniou G.A., Chalmers N., Georgiadis G.S., Lazarides M.K., Antoniou S.A., Serracino-Inglott F., Smyth J.V., Murray D. A meta-analysis of endovascular versus surgical reconstruction of femoropopliteal arterial disease. J. Vasc. Surg. 2013;57:242–253. doi: 10.1016/j.jvs.2012.07.038. PubMed DOI

Conte M.S. Critical appraisal of surgical revascularization for critical limb ischemia. J. Vasc. Surg. 2013;57:8s–13s. doi: 10.1016/j.jvs.2012.05.114. PubMed DOI

Kannan R.Y., Salacinski H.J., Butler P.E., Hamilton G., Seifalian A.M. Current status of prosthetic bypass grafts: A review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005;74B:570–581. doi: 10.1002/jbm.b.30247. PubMed DOI

Athanasiou T., Saso S., Rao C., Vecht J., Grapsa J., Dunning J., Lemma M., Casula R. Radial artery versus saphenous vein conduits for coronary artery bypass surgery: Forty years of competition—Which conduit offers better patency? A systematic review and meta-analysis. Eur. J. Cardio-Thorac. Surg. 2011;40:208–220. doi: 10.1016/j.ejcts.2010.11.012. PubMed DOI

Harskamp R.E., Lopes R.D., Baisden C.E., de Winter R.J., Alexander J.H. Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery: Pathophysiology, Management, and Future Directions. Ann. Surg. 2013;257:824–833. doi: 10.1097/SLA.0b013e318288c38d. PubMed DOI

Gemelli M., Gallo M., Addonizio M., Pahwa S., Van den Eynde J., Trivedi J., Slaughter M.S., Gerosa G. Venous External Support in Coronary Artery Bypass Surgery: A Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2023;48:101687. doi: 10.1016/j.cpcardiol.2023.101687. PubMed DOI

West-Livingston L., Lim J.W., Lee S.J. Translational tissue-engineered vascular grafts: From bench to bedside. Biomaterials. 2023;302:122322. doi: 10.1016/j.biomaterials.2023.122322. PubMed DOI

Chlupáč J., Filová E., Bačáková L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol. Res. 2009;58((Suppl. S2)):S119–S140. doi: 10.33549/physiolres.931918. PubMed DOI

Tran K., Ho V.T., Itoga N.K., Stern J.R. Comparison of mid-term graft patency in common femoral versus superficial femoral artery inflow for infra-geniculate bypass in the vascular quality initiative. Vascular. 2020;28:722–730. doi: 10.1177/1708538120924908. PubMed DOI PMC

Lovett M., Cannizzaro C., Daheron L., Messmer B., Vunjak-Novakovic G., Kaplan D.L. Silk fibroin microtubes for blood vessel engineering. Biomaterials. 2007;28:5271–5279. doi: 10.1016/j.biomaterials.2007.08.008. PubMed DOI PMC

Pashneh-Tala S., MacNeil S., Claeyssens F. The Tissue-Engineered Vascular Graft—Past, Present, and Future. Tissue Eng. Part B Rev. 2015;22:68–100. doi: 10.1089/ten.teb.2015.0100. PubMed DOI PMC

Lin P.H., Brinkman W.T., Terramani T.T., Lumsden A.B. Management of infected hemodialysis access grafts using cryopreserved human vein allografts. Am. J. Surg. 2002;184:31–36. doi: 10.1016/S0002-9610(02)00894-2. PubMed DOI

Song H.G., Rumma R.T., Ozaki C.K., Edelman E.R., Chen C.S. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell. 2018;22:340–354. doi: 10.1016/j.stem.2018.02.009. PubMed DOI PMC

Zhe M., Wu X., Yu P., Xu J., Liu M., Yang G., Xiang Z., Xing F., Ritz U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. Materials. 2023;16:3197. doi: 10.3390/ma16083197. PubMed DOI PMC

Mirshafiei M., Rashedi H., Yazdian F., Rahdar A., Baino F. Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives. Mater. Des. 2024;240:112853. doi: 10.1016/j.matdes.2024.112853. DOI

Yeo M., Sarkar A., Singh Y.P., Derman I.D., Datta P., Ozbolat I.T. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication. 2023;16:012003. doi: 10.1088/1758-5090/ad0b3f. PubMed DOI PMC

Dell A.C., Wagner G., Own J., Geibel J.P. 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics. 2022;14:2596. doi: 10.3390/pharmaceutics14122596. PubMed DOI PMC

Salih T., Caputo M., Ghorbel M.T. Recent Advances in Hydrogel-Based 3D Bioprinting and Its Potential Application in the Treatment of Congenital Heart Disease. Biomolecules. 2024;14:861. doi: 10.3390/biom14070861. PubMed DOI PMC

Hasan A., Memic A., Annabi N., Hossain M., Paul A., Dokmeci M.R., Dehghani F., Khademhosseini A. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014;10:11–25. doi: 10.1016/j.actbio.2013.08.022. PubMed DOI PMC

O’Connor C., Brady E., Zheng Y., Moore E., Stevens K.R. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 2022;7:702–716. doi: 10.1038/s41578-022-00447-8. PubMed DOI PMC

Sarkar S., Salacinski H.J., Hamilton G., Seifalian A.M. The mechanical properties of infrainguinal vascular bypass grafts: Their role in influencing patency. Eur. J. Vasc. Endovasc. Surg. 2006;31:627–636. doi: 10.1016/j.ejvs.2006.01.006. PubMed DOI

Haruguchi H., Teraoka S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: A review. J. Artif. Organs. 2003;6:227–235. doi: 10.1007/s10047-003-0232-x. PubMed DOI

Scharn D.M., Daamen W.F., van Kuppevelt T.H., van der Vliet J.A. Biological mechanisms influencing prosthetic bypass graft patency: Possible targets for modern graft design. Eur. J. Vasc. Endovasc. Surg. 2012;43:66–72. doi: 10.1016/j.ejvs.2011.09.009. PubMed DOI

Persaud A., Maus A., Strait L., Zhu D. 3D Bioprinting with Live Cells. Eng. Regen. 2022;3:292–309. doi: 10.1016/j.engreg.2022.07.002. DOI

Chen X.B., Fazel Anvari-Yazdi A., Duan X., Zimmerling A., Gharraei R., Sharma N.K., Sweilem S., Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact. Mater. 2023;28:511–536. doi: 10.1016/j.bioactmat.2023.06.006. PubMed DOI PMC

Karvinen J., Kellomäki M. Design aspects and characterization of hydrogel-based bioinks for extrusion-based bioprinting. Bioprinting. 2023;32:e00274. doi: 10.1016/j.bprint.2023.e00274. DOI

Osidak E.O., Kozhukhov V.I., Osidak M.S., Domogatsky S.P. Collagen as Bioink for Bioprinting: A Comprehensive Review. Int. J. Bioprint. 2020;6:270. doi: 10.18063/ijb.v6i3.270. PubMed DOI PMC

Sapuła P., Bialik-Wąs K., Malarz K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics. 2023;15:253. doi: 10.3390/pharmaceutics15010253. PubMed DOI PMC

Hu W., Wang Z., Xiao Y., Zhang S., Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019;7:843–855. doi: 10.1039/C8BM01246F. PubMed DOI

Hennink W.E., van Nostrum C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2012;64:223–236. doi: 10.1016/j.addr.2012.09.009. PubMed DOI

Joseph A.M., George B. Cross-Linking Biopolymers for Biomedical Applications. In: Thomas S., Ar A., Jose Chirayil C., Thomas B., editors. Handbook of Biopolymers. Springer Nature; Singapore: 2023. pp. 1135–1172.

Smandri A., Nordin A., Hwei N.M., Chin K.Y., Abd Aziz I., Fauzi M.B. Natural 3D-Printed Bioinks for Skin Regeneration and Wound Healing: A Systematic Review. Polymers. 2020;12:1782. doi: 10.3390/polym12081782. PubMed DOI PMC

Gomez-Florit M., Pardo A., Domingues R.M.A., Graça A.L., Babo P.S., Reis R.L., Gomes M.E. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules. 2020;25:5858. doi: 10.3390/molecules25245858. PubMed DOI PMC

Montero F.E., Rezende R.A., da Silva J.V.L., Sabino M.A. Development of a Smart Bioink for Bioprinting Applications. Front. Mech. Eng. 2019;5:56. doi: 10.3389/fmech.2019.00056. DOI

Gopinathan J., Noh I. Recent trends in bioinks for 3D printing. Biomater. Res. 2018;22:11. doi: 10.1186/s40824-018-0122-1. PubMed DOI PMC

Lei M., Wang X. Biodegradable Polymers and Stem Cells for Bioprinting. Molecules. 2016;21:539. doi: 10.3390/molecules21050539. PubMed DOI PMC

Petta D., D’Amora U., Ambrosio L., Grijpma D.W., Eglin D., D’Este M. Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication. 2020;12:032001. doi: 10.1088/1758-5090/ab8752. PubMed DOI

Lam T., Dehne T., Krüger J.P., Hondke S., Endres M., Thomas A., Lauster R., Sittinger M., Kloke L. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J. Biomed. Mater. Res. B Appl. Biomater. 2019;107:2649–2657. doi: 10.1002/jbm.b.34354. PubMed DOI PMC

Catoira M.C., Fusaro L., Di Francesco D., Ramella M., Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019;30:115. doi: 10.1007/s10856-019-6318-7. PubMed DOI PMC

Zhang Y., Wang Y., Li Y., Yang Y., Jin M., Lin X., Zhuang Z., Guo K., Zhang T., Tan W. Application of Collagen-Based Hydrogel in Skin Wound Healing. Gels. 2023;9:185. doi: 10.3390/gels9030185. PubMed DOI PMC

Ribeiro M., Simões M., Vitorino C., Mascarenhas-Melo F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels. 2024;10:188. doi: 10.3390/gels10030188. PubMed DOI PMC

Ferruzzi J., Sun M., Gkousioudi A., Pilvar A., Roblyer D., Zhang Y., Zaman M.H. Compressive Remodeling Alters Fluid Transport Properties of Collagen Networks—Implications for Tumor Growth. Sci. Rep. 2019;9:17151. doi: 10.1038/s41598-019-50268-z. PubMed DOI PMC

Bosch-Rué È., Díez-Tercero L., Delgado L.M., Pérez R.A. Biofabrication of Collagen Tissue-Engineered Blood Vessels with Direct Co-Axial Extrusion. Int. J. Mol. Sci. 2022;23:5618. doi: 10.3390/ijms23105618. PubMed DOI PMC

Stepanovska J., Otahal M., Hanzalek K., Supova M., Matejka R. pH Modification of High-Concentrated Collagen Bioinks as a Factor Affecting Cell Viability, Mechanical Properties, and Printability. Gels. 2021;7:252. doi: 10.3390/gels7040252. PubMed DOI PMC

Matejkova J., Kanokova D., Supova M., Matejka R. A New Method for the Production of High-Concentration Collagen Bioinks with Semiautonomic Preparation. Gels. 2024;10:66. doi: 10.3390/gels10010066. PubMed DOI PMC

Nair M., Johal R.K., Hamaia S.W., Best S.M., Cameron R.E. Tunable bioactivity and mechanics of collagen-based tissue engineering constructs: A comparison of EDC-NHS, genipin and TG2 crosslinkers. Biomaterials. 2020;254:120109. doi: 10.1016/j.biomaterials.2020.120109. PubMed DOI PMC

Stepanovska J., Supova M., Hanzalek K., Broz A., Matejka R. Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines. 2021;9:1137. doi: 10.3390/biomedicines9091137. PubMed DOI PMC

Liu H., Gong Y., Zhang K., Ke S., Wang Y., Wang J., Wang H. Recent Advances in Decellularized Matrix-Derived Materials for Bioink and 3D Bioprinting. Gels. 2023;9:195. doi: 10.3390/gels9030195. PubMed DOI PMC

Golebiowska A.A., Intravaia J.T., Sathe V.M., Kumbar S.G., Nukavarapu S.P. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioact. Mater. 2024;32:98–123. doi: 10.1016/j.bioactmat.2023.09.017. PubMed DOI PMC

Walker C., Mojares E., Del Río Hernández A. Role of Extracellular Matrix in Development and Cancer Progression. Int. J. Mol. Sci. 2018;19:3028. doi: 10.3390/ijms19103028. PubMed DOI PMC

Shibru M.G., Ali Z.M., Almansoori A.S., Paunovic J., Pantic I.V., Corridon P.R. Slaughterhouse Waste: A Unique and Sustainable Source for dECM-Based Bioinks. Regen. Med. 2024;19:113–118. doi: 10.2217/rme-2023-0194. PubMed DOI

Kim Y.S., Majid M., Melchiorri A.J., Mikos A.G. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng. Transl. Med. 2019;4:83–95. doi: 10.1002/btm2.10110. PubMed DOI PMC

Liu H., Xing F., Yu P., Lu R., Ma S., Shakya S., Zhou X., Peng K., Zhang D., Liu M. Biomimetic fabrication bioprinting strategies based on decellularized extracellular matrix for musculoskeletal tissue regeneration: Current status and future perspectives. Mater. Des. 2024;243:113072. doi: 10.1016/j.matdes.2024.113072. DOI

Xie F., Gao C., Avérous L. Alginate-based materials: Enhancing properties through multiphase formulation design and processing innovation. Mater. Sci. Eng. R Rep. 2024;159:100799. doi: 10.1016/j.mser.2024.100799. DOI

Chae S., Cho D.-W. Three-dimensional bioprinting with decellularized extracellular matrix-based bioinks in translational regenerative medicine. MRS Bull. 2022;47:70–79. doi: 10.1557/s43577-021-00260-8. DOI

Potere F., Venturelli G., Belgio B., Guagliano G., Boschetti F., Mantero S., Petrini P. Double-crosslinked dECM bioink to print a self-sustaining 3D multi-layered aortic-like construct. Bioprinting. 2024;44:e00368. doi: 10.1016/j.bprint.2024.e00368. DOI

Zhang C.-Y., Fu C.-P., Li X.-Y., Lu X.-C., Hu L.-G., Kankala R.K., Wang S.-B., Chen A.-Z. Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering. Molecules. 2022;27:3442. doi: 10.3390/molecules27113442. PubMed DOI PMC

Andreazza R., Morales A., Pieniz S., Labidi J. Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers. 2023;15:1026. doi: 10.3390/polym15041026. PubMed DOI PMC

Leucht A., Volz A.C., Rogal J., Borchers K., Kluger P.J. Advanced gelatin-based vascularization bioinks for extrusion-based bioprinting of vascularized bone equivalents. Sci. Rep. 2020;10:5330. doi: 10.1038/s41598-020-62166-w. PubMed DOI PMC

Bupphathong S., Quiroz C., Huang W., Chung P.F., Tao H.Y., Lin C.H. Gelatin Methacrylate Hydrogel for Tissue Engineering Applications-A Review on Material Modifications. Pharmaceuticals. 2022;15:171. doi: 10.3390/ph15020171. PubMed DOI PMC

Zhu M., Wang Y., Ferracci G., Zheng J., Cho N.J., Lee B.H. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci. Rep. 2019;9:6863. doi: 10.1038/s41598-019-42186-x. PubMed DOI PMC

Nichol J.W., Koshy S.T., Bae H., Hwang C.M., Yamanlar S., Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31:5536–5544. doi: 10.1016/j.biomaterials.2010.03.064. PubMed DOI PMC

Jammalamadaka U., Tappa K. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering. J. Funct. Biomater. 2018;9:22. doi: 10.3390/jfb9010022. PubMed DOI PMC

Yang H., Sun L., Pang Y., Hu D., Xu H., Mao S., Peng W., Wang Y., Xu Y., Zheng Y.C., et al. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut. 2021;70:567–574. doi: 10.1136/gutjnl-2019-319960. PubMed DOI PMC

Benton G., Arnaoutova I., George J., Kleinman H.K., Koblinski J. Matrigel: From discovery and ECM mimicry to assays and models for cancer research. Adv. Drug Deliv. Rev. 2014;79–80:3–18. doi: 10.1016/j.addr.2014.06.005. PubMed DOI

Lugassy C., Wadehra M., Li X., Corselli M., Akhavan D., Binder S.W., Péault B., Cochran A.J., Mischel P.S., Kleinman H.K., et al. Pilot Study on “Pericytic Mimicry” and Potential Embryonic/Stem Cell Properties of Angiotropic Melanoma Cells Interacting with the Abluminal Vascular Surface. Cancer Microenviron. 2013;6:19–29. doi: 10.1007/s12307-012-0128-5. PubMed DOI PMC

Azzarello J., Kropp B.P., Fung K.M., Lin H.K. Age-dependent vascular endothelial growth factor expression and angiogenic capability of bladder smooth muscle cells: Implications for cell-seeded technology in bladder tissue engineering. J. Tissue Eng. Regen. Med. 2009;3:579–589. doi: 10.1002/term.199. PubMed DOI

Kleinman H.K., Martin G.R. Matrigel: Basement membrane matrix with biological activity. Semin. Cancer Biol. 2005;15:378–386. doi: 10.1016/j.semcancer.2005.05.004. PubMed DOI

Shojaie S., Ermini L., Ackerley C., Wang J., Chin S., Yeganeh B., Bilodeau M., Sambi M., Rogers I., Rossant J., et al. Acellular lung scaffolds direct differentiation of endoderm to functional airway epithelial cells: Requirement of matrix-bound HS proteoglycans. Stem Cell Rep. 2015;4:419–430. doi: 10.1016/j.stemcr.2015.01.004. PubMed DOI PMC

Ng H.Y., Lee K.A., Kuo C.N., Shen Y.F. Bioprinting of artificial blood vessels. Int. J. Bioprint. 2018;4:140. doi: 10.18063/ijb.v4i2.140. PubMed DOI PMC

Ozbolat I.T. Scaffold-Based or Scaffold-Free Bioprinting: Competing or Complementing Approaches? J. Nanotechnol. Eng. Med. 2015;6:024701. doi: 10.1115/1.4030414. DOI

Klinkert P., Post P.N., Breslau P.J., van Bockel J.H. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur. J. Vasc. Endovasc. Surg. 2004;27:357–362. doi: 10.1016/j.ejvs.2003.12.027. PubMed DOI

van Det R.J., Vriens B.H., van der Palen J., Geelkerken R.H. Dacron or ePTFE for femoro-popliteal above-knee bypass grafting: Short- and long-term results of a multicentre randomised trial. Eur. J. Vasc. Endovasc. Surg. 2009;37:457–463. doi: 10.1016/j.ejvs.2008.11.041. PubMed DOI

Brothers T.E., Stanley J.C., Burkel W.E., Graham L.M. Small-caliber polyurethane and polytetrafluoroethylene grafts: A comparative study in a canine aortoiliac model. J. Biomed. Mater. Res. 1990;24:761–771. doi: 10.1002/jbm.820240610. PubMed DOI

Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–3243. doi: 10.1016/j.biomaterials.2011.01.057. PubMed DOI PMC

Hashi C.K., Zhu Y., Yang G.-Y., Young W.L., Hsiao B.S., Wang K., Chu B., Li S. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc. Natl. Acad. Sci. USA. 2007;104:11915–11920. doi: 10.1073/pnas.0704581104. PubMed DOI PMC

Tara S., Rocco K.A., Hibino N., Sugiura T., Kurobe H., Breuer C.K., Shinoka T. Vessel Bioengineering– Development of Small-Diameter Arterial Grafts &ndash. Circ. J. 2014;78:12–19. doi: 10.1253/circj.CJ-13-1440. PubMed DOI

Allen R.A., Wu W., Yao M., Dutta D., Duan X., Bachman T.N., Champion H.C., Stolz D.B., Robertson A.M., Kim K., et al. Nerve regeneration and elastin formation within poly(glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model. Biomaterials. 2014;35:165–173. doi: 10.1016/j.biomaterials.2013.09.081. PubMed DOI PMC

Matsuzaki Y., John K., Shoji T., Shinoka T. The Evolution of Tissue Engineered Vascular Graft Technologies: From Preclinical Trials to Advancing Patient Care. Appl. Sci. 2019;9:1274. doi: 10.3390/app9071274. PubMed DOI PMC

Pektok E., Nottelet B., Tille J.C., Gurny R., Kalangos A., Moeller M., Walpoth B.H. Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation. 2008;118:2563–2570. doi: 10.1161/CIRCULATIONAHA.108.795732. PubMed DOI

Fontes A.B., Marcomini R.F. 3D Bioprinting: A Review of Materials, Processes and Bioink Properties. J. Eng. Exact Sci. 2020;6:617–639. doi: 10.18540/jcecvl6iss5pp0617-0639. DOI

Tripathi S., Mandal S.S., Bauri S., Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm. 2023;4:e194. doi: 10.1002/mco2.194. PubMed DOI PMC

Vijayavenkataraman S., Yan W.-C., Lu W.F., Wang C.-H., Fuh J.Y.H. 3D bioprinting of tissues and organs for regenerative medicine. Adv. Drug Deliv. Rev. 2018;132:296–332. doi: 10.1016/j.addr.2018.07.004. PubMed DOI

Xu L., Varkey M., Jorgensen A., Ju J., Jin Q., Park J.H., Fu Y., Zhang G., Ke D., Zhao W., et al. Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step. Biofabrication. 2020;12:045012. doi: 10.1088/1758-5090/aba2b6. PubMed DOI

Smith C.M. A Direct-Write Three-Dimensional Bioassembly Tool for Regenerative Medicine. The University of Arizona; Tucson, AZ, USA: 2005.

Skardal A., Zhang J., McCoard L., Oottamasathien S., Prestwich G.D. Dynamically crosslinked gold nanoparticle—Hyaluronan hydrogels. Adv. Mater. 2010;22:4736–4740. doi: 10.1002/adma.201001436. PubMed DOI

Skardal A., Zhang J., McCoard L., Xu X., Oottamasathien S., Prestwich G.D. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. Part A. 2010;16:2675–2685. doi: 10.1089/ten.tea.2009.0798. PubMed DOI PMC

Skardal A., Zhang J., Prestwich G.D. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31:6173–6181. doi: 10.1016/j.biomaterials.2010.04.045. PubMed DOI

Visser J., Peters B., Burger T.J., Boomstra J., Dhert W.J., Melchels F.P., Malda J. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication. 2013;5:035007. doi: 10.1088/1758-5082/5/3/035007. PubMed DOI

Gao Q., He Y., Fu J.-z., Liu A., Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203–215. doi: 10.1016/j.biomaterials.2015.05.031. PubMed DOI

Hinton T.J., Jallerat Q., Palchesko R.N., Park J.H., Grodzicki M.S., Shue H.J., Ramadan M.H., Hudson A.R., Feinberg A.W. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 2015;1:e1500758. doi: 10.1126/sciadv.1500758. PubMed DOI PMC

Gao G., Lee J.H., Jang J., Lee D.H., Kong J.-S., Kim B.S., Choi Y.-J., Jang W.B., Hong Y.J., Kwon S.-M., et al. Tissue Engineered Bio-Blood-Vessels Constructed Using a Tissue-Specific Bioink and 3D Coaxial Cell Printing Technique: A Novel Therapy for Ischemic Disease. Adv. Funct. Mater. 2017;27:1700798. doi: 10.1002/adfm.201700798. DOI

Xu Y., Hu Y., Liu C., Yao H., Liu B., Mi S. A Novel Strategy for Creating Tissue-Engineered Biomimetic Blood Vessels Using 3D Bioprinting Technology. Materials. 2018;11:1581. doi: 10.3390/ma11091581. PubMed DOI PMC

Bosch-Rué E., Delgado L.M., Gil F.J., Perez R.A. Direct extrusion of individually encapsulated endothelial and smooth muscle cells mimicking blood vessel structures and vascular native cell alignment. Biofabrication. 2021;13:015003. doi: 10.1088/1758-5090/abbd27. PubMed DOI

Kreimendahl F., Kniebs C., Tavares Sobreiro A.M., Schmitz-Rode T., Jockenhoevel S., Thiebes A.L. FRESH bioprinting technology for tissue engineering—The influence of printing process and bioink composition on cell behavior and vascularization. J. Appl. Biomater. Funct. Mater. 2021;19:22808000211028808. doi: 10.1177/22808000211028808. PubMed DOI

Wang D., Maharjan S., Kuang X., Wang Z., Mille L.S., Tao M., Yu P., Cao X., Lian L., Lv L., et al. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Sci. Adv. 2022;8:eabq6900. doi: 10.1126/sciadv.abq6900. PubMed DOI PMC

Kesari P., Xu T., Boland T. Layer-by-layer printing of cells and its application to tissue engineering. MRS Proc. 2005;845:AA4-5. doi: 10.1557/PROC-845-AA4.5. DOI

Zhao L., Lee V.K., Yoo S.-S., Dai G., Intes X. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials. 2012;33:5325–5332. doi: 10.1016/j.biomaterials.2012.04.004. PubMed DOI PMC

Lee V.K., Kim D.Y., Ngo H., Lee Y., Seo L., Yoo S.-S., Vincent P.A., Dai G. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials. 2014;35:8092–8102. doi: 10.1016/j.biomaterials.2014.05.083. PubMed DOI PMC

Xu C., Chai W., Huang Y., Markwald R.R. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol. Bioeng. 2012;109:3152–3160. doi: 10.1002/bit.24591. PubMed DOI

Nakamura M., Nishiyama Y., Henmi C. 3D Micro-fabrication by Inkjet 3D biofabrication for 3D tissue engineering; Proceedings of the 2008 International Symposium on Micro-NanoMechatronics and Human Science; Nagoya, Japan. 6–9 November 2008; pp. 451–456.

Anandakrishnan N., Ye H., Guo Z., Chen Z., Mentkowski K.I., Lang J.K., Rajabian N., Andreadis S.T., Ma Z., Spernyak J.A., et al. Fast Stereolithography Printing of Large-Scale Biocompatible Hydrogel Models. Adv. Healthc. Mater. 2021;10:e2002103. doi: 10.1002/adhm.202002103. PubMed DOI PMC

Carrabba M., Fagnano M., Ghorbel M.T., Rapetto F., Su B., De Maria C., Vozzi G., Biglino G., Perriman A.W., Caputo M., et al. Development of a Novel Hierarchically Biofabricated Blood Vessel Mimic Decorated with Three Vascular Cell Populations for the Reconstruction of Small-Diameter Arteries. Adv. Funct. Mater. 2024;34:2300621. doi: 10.1002/adfm.202300621. PubMed DOI PMC

Zhang Z., Wu C., Dai C., Shi Q., Fang G., Xie D., Zhao X., Liu Y.-J., Wang C.C.L., Wang X.-J. A multi-axis robot-based bioprinting system supporting natural cell function preservation and cardiac tissue fabrication. Bioact. Mater. 2022;18:138–150. doi: 10.1016/j.bioactmat.2022.02.009. PubMed DOI PMC

Jin Q., Fu Y., Zhang G., Xu L., Jin G., Tang L., Ju J., Zhao W., Hou R. Nanofiber electrospinning combined with rotary bioprinting for fabricating small-diameter vessels with endothelium and smooth muscle. Compos. Part B Eng. 2022;234:109691. doi: 10.1016/j.compositesb.2022.109691. DOI

Mohd Pu’ad N.A.S., Abdul Haq R.H., Mohd Noh H., Abdullah H.Z., Idris M.I., Lee T.C. Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications. Mater. Today Proc. 2020;29:228–232. doi: 10.1016/j.matpr.2020.05.535. DOI

Boularaoui S., Al Hussein G., Khan K.A., Christoforou N., Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting. 2020;20:e00093. doi: 10.1016/j.bprint.2020.e00093. DOI

Kanokova D., Matejka R., Zaloudkova M., Zigmond J., Supova M., Matejkova J. Active Media Perfusion in Bioprinted Highly Concentrated Collagen Bioink Enhances the Viability of Cell Culture and Substrate Remodeling. Gels. 2024;10:316. doi: 10.3390/gels10050316. PubMed DOI PMC

Nakayama K. Development of a Scaffold-Free 3D Biofabrication System “Kenzan Method”. In: Nakayama K., editor. Kenzan Method for Scaffold-Free Biofabrication. Springer International Publishing; Cham, Switzerland: 2021. pp. 1–15.

Moldovan N.I. Position of the Kenzan Method in the Space-Time of Tissue Engineering. In: Nakayama K., editor. Kenzan Method for Scaffold-Free Biofabrication. Springer International Publishing; Cham, Switzerland: 2021. pp. 17–31.

Li X., Liu B., Pei B., Chen J., Zhou D., Peng J., Zhang X., Jia W., Xu T. Inkjet Bioprinting of Biomaterials. Chem. Rev. 2020;120:10793–10833. doi: 10.1021/acs.chemrev.0c00008. PubMed DOI

Wang Z., Xiang L., Lin F., Tang Y., Cui W. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. J. Control. Release. 2023;353:147–165. doi: 10.1016/j.jconrel.2022.11.035. PubMed DOI

Adhikari J., Roy A., Das A., Ghosh M., Thomas S., Sinha A., Kim J., Saha P. Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks. Macromol. Biosci. 2021;21:e2000179. doi: 10.1002/mabi.202000179. PubMed DOI

Gao G., Cui X. Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol. Lett. 2016;38:203–211. doi: 10.1007/s10529-015-1975-1. PubMed DOI

Cui X., Dean D., Ruggeri Z.M., Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnol. Bioeng. 2010;106:963–969. doi: 10.1002/bit.22762. PubMed DOI

Kong Z., Wang X. Bioprinting Technologies and Bioinks for Vascular Model Establishment. Int. J. Mol. Sci. 2023;24:891. doi: 10.3390/ijms24010891. PubMed DOI PMC

Gudapati H., Dey M., Ozbolat I. A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials. 2016;102:20–42. doi: 10.1016/j.biomaterials.2016.06.012. PubMed DOI

Bourell D.L., Beaman J.J., Wohlers T. History and Evolution of Additive Manufacturing, Additive Manufacturing Processes. In: Bourell D.L., Frazier W., Kuhn H., Seifi M., editors. ASM Handbook. Volume 24. ASM International; Almere, The Netherlands: 2020. pp. 11–18. DOI

Wilson W.C., Jr., Boland T. Cell and organ printing 1: Protein and cell printers. Anat. Rec.—Part A Discov. Mol. Cell. Evol. Biol. 2003;272:491–496. doi: 10.1002/ar.a.10057. PubMed DOI

Hoch E., Tovar G.E.M., Borchers K. Bioprinting of artificial blood vessels: Current approaches towards a demanding goal. Eur. J. Cardio-Thorac. Surg. 2014;46:767–778. doi: 10.1093/ejcts/ezu242. PubMed DOI

Engelhardt S., Hoch E., Borchers K., Meyer W., Krüger H., Tovar G.E., Gillner A. Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization. Biofabrication. 2011;3:025003. doi: 10.1088/1758-5082/3/2/025003. PubMed DOI

Meyer W., Engelhardt S., Novosel E., Elling B., Wegener M., Krüger H. Soft Polymers for Building up Small and Smallest Blood Supplying Systems by Stereolithography. J. Funct. Biomater. 2012;3:257–268. doi: 10.3390/jfb3020257. PubMed DOI PMC

Novosel E.C., Meyer W., Klechowitz N., Krüger H., Wegener M., Walles H., Tovar G.E.M., Hirth T., Kluger P.J. Evaluation of Cell-Material Interactions on Newly Designed, Printable Polymers for Tissue Engineering Applications. Adv. Eng. Mater. 2011;13:B467–B475. doi: 10.1002/adem.201180018. DOI

Guillemot F., Souquet A., Catros S., Guillotin B. Laser-assisted cell printing: Principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine. 2010;5:507–515. doi: 10.2217/nnm.10.14. PubMed DOI

Williams C.G., Malik A.N., Kim T.K., Manson P.N., Elisseeff J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26:1211–1218. doi: 10.1016/j.biomaterials.2004.04.024. PubMed DOI

Mandrycky C., Wang Z., Kim K., Kim D.H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 2016;34:422–434. doi: 10.1016/j.biotechadv.2015.12.011. PubMed DOI PMC

Ekaputra A.K., Prestwich G.D., Cool S.M., Hutmacher D.W. Combining Electrospun Scaffolds with Electrosprayed Hydrogels Leads to Three-Dimensional Cellularization of Hybrid Constructs. Biomacromolecules. 2008;9:2097–2103. doi: 10.1021/bm800565u. PubMed DOI

Yang D.L., Faraz F., Wang J.X., Radacsi N. Combination of 3D Printing and Electrospinning Techniques for Biofabrication. Adv. Mater. Technol. 2022;7:2101309. doi: 10.1002/admt.202101309. DOI

Adhikari K.R., Zimmerman J., Dimble P.S., Tucker B.S., Thomas V. Kink-free electrospun PET/PU-based vascular grafts with 3D-printed additive manufacturing reinforcement. J. Mater. Res. 2021;36:4013–4023. doi: 10.1557/s43578-021-00291-6. DOI

Smith J.A., Mele E. Electrospinning and Additive Manufacturing: Adding Three-Dimensionality to Electrospun Scaffolds for Tissue Engineering. Front. Bioeng. Biotechnol. 2021;9:674738. doi: 10.3389/fbioe.2021.674738. PubMed DOI PMC

Jeon H.J., Simon C.G., Kim G.H. A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J. Biomed. Mater. Res.—Part B Appl. Biomater. 2014;102:1580–1594. doi: 10.1002/jbm.b.33158. PubMed DOI

Maliszewska I., Czapka T. Electrospun Polymer Nanofibers with Antimicrobial Activity. Polymers. 2022;14:1661. doi: 10.3390/polym14091661. PubMed DOI PMC

Stitzel J., Liu J., Lee S.J., Komura M., Berry J., Soker S., Lim G., Van Dyke M., Czerw R., Yoo J.J., et al. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27:1088–1094. doi: 10.1016/j.biomaterials.2005.07.048. PubMed DOI

Kidoaki S., Kwon I.K., Matsuda T. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials. 2005;26:37–46. doi: 10.1016/j.biomaterials.2004.01.063. PubMed DOI

Zhang Y., Xu K., Zhi D., Qian M., Liu K., Shuai Q., Qin Z., Xie J., Wang K., Yang J. Improving Vascular Regeneration Performance of Electrospun Poly(ε-Caprolactone) Vascular Grafts via Synergistic Functionalization with VE-Cadherin/VEGF. Adv. Fiber Mater. 2022;4:1685–1702. doi: 10.1007/s42765-022-00213-z. DOI

Romero-Araya P., Pino V., Nenen A., Cárdenas V., Pavicic F., Ehrenfeld P., Serandour G., Lisoni J.G., Moreno-Villoslada I., Flores M.E. Combining Materials Obtained by 3D-Printing and Electrospinning from Commercial Polylactide Filament to Produce Biocompatible Composites. Polymers. 2021;13:3806. doi: 10.3390/polym13213806. PubMed DOI PMC

Scarritt M.E., Pashos N.C., Bunnell B.A. A Review of Cellularization Strategies for Tissue Engineering of Whole Organs. Front. Bioeng. Biotechnol. 2015;3:43. doi: 10.3389/fbioe.2015.00043. PubMed DOI PMC

Gilbert T.W., Sellaro T.L., Badylak S.F. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–3683. doi: 10.1016/j.biomaterials.2006.02.014. PubMed DOI

Guyette J.P., Gilpin S.E., Charest J.M., Tapias L.F., Ren X., Ott H.C. Perfusion decellularization of whole organs. Nat. Protoc. 2014;9:1451–1468. doi: 10.1038/nprot.2014.097. PubMed DOI

Wilson G.J., Courtman D.W., Klement P., Michael Lee J., Yeger H. Acellular matrix: A biomaterials approach for coronary artery bypass and heart valve replacement. Ann. Thorac. Surg. 1995;60:S353–S358. doi: 10.1016/0003-4975(95)98967-Y. PubMed DOI

Neishabouri A., Soltani Khaboushan A., Daghigh F., Kajbafzadeh A.-M., Majidi Zolbin M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front. Bioeng. Biotechnol. 2022;10:805299. doi: 10.3389/fbioe.2022.805299. PubMed DOI PMC

Li B., Shu Y., Ma H., Cao K., Cheng Y.Y., Jia Z., Ma X., Wang H., Song K. Three-dimensional printing and decellularized-extracellular-matrix based methods for advances in artificial blood vessel fabrication: A review. Tissue Cell. 2024;87:102304. doi: 10.1016/j.tice.2024.102304. PubMed DOI

Badylak S.F., Freytes D.O., Gilbert T.W. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2009;5:1–13. doi: 10.1016/j.actbio.2008.09.013. PubMed DOI

Maina R.M., Barahona M.J., Finotti M., Lysyy T., Geibel P., D’Amico F., Mulligan D., Geibel J.P. Generating vascular conduits: From tissue engineering to three-dimensional bioprinting. Innov. Surg. Sci. 2018;3:203–213. doi: 10.1515/iss-2018-0016. PubMed DOI PMC

Badylak S.F., Taylor D., Uygun K. Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 2011;13:27–53. doi: 10.1146/annurev-bioeng-071910-124743. PubMed DOI PMC

Dahl S.L.M., Rhim C., Song Y.C., Niklason L.E. Mechanical Properties and Compositions of Tissue Engineered and Native Arteries. Ann. Biomed. Eng. 2007;35:348–355. doi: 10.1007/s10439-006-9226-1. PubMed DOI PMC

Chlupac J., Matejka R., Konarik M., Novotny R., Simunkova Z., Mrazova I., Fabian O., Zapletal M., Pulda Z., Lipensky J.F., et al. Vascular Remodeling of Clinically Used Patches and Decellularized Pericardial Matrices Recellularized with Autologous or Allogeneic Cells in a Porcine Carotid Artery Model. Int. J. Mol. Sci. 2022;23:3310. doi: 10.3390/ijms23063310. PubMed DOI PMC

Griffith C.K., Miller C., Sainson R.C., Calvert J.W., Jeon N.L., Hughes C.C., George S.C. Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng. 2005;11:257–266. doi: 10.1089/ten.2005.11.257. PubMed DOI

Mirsky N.A., Ehlen Q.T., Greenfield J.A., Antonietti M., Slavin B.V., Nayak V.V., Pelaez D., Tse D.T., Witek L., Daunert S., et al. Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine. Bioengineering. 2024;11:777. doi: 10.3390/bioengineering11080777. PubMed DOI PMC

Frossard L. Trends and Opportunities in Health Economic Evaluations of Prosthetic Care Innovations. Can. Prosthet. Orthot. J. 2021;4:36364. doi: 10.33137/cpoj.v4i2.36364. PubMed DOI PMC

Rodríguez-Espíndola O., Chowdhury S., Dey P.K., Albores P., Emrouznejad A. Analysis of the adoption of emergent technologies for risk management in the era of digital manufacturing. Technol. Forecast. Soc. Chang. 2022;178:121562. doi: 10.1016/j.techfore.2022.121562. DOI

Ashammakhi N., Ahadian S., Zengjie F., Suthiwanich K., Lorestani F., Orive G., Ostrovidov S., Khademhosseini A. Advances and Future Perspectives in 4D Bioprinting. Biotechnol. J. 2018;13:e1800148. doi: 10.1002/biot.201800148. PubMed DOI PMC

Abdollahi S., Boktor J., Hibino N. Bioprinting of freestanding vascular grafts and the regulatory considerations for additively manufactured vascular prostheses. Transl. Res. 2019;211:123–138. doi: 10.1016/j.trsl.2019.05.005. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...