Vascular Remodeling of Clinically Used Patches and Decellularized Pericardial Matrices Recellularized with Autologous or Allogeneic Cells in a Porcine Carotid Artery Model

. 2022 Mar 18 ; 23 (6) : . [epub] 20220318

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35328732

Grantová podpora
NV18-02-00422 Ministry of Health of the Czech Republic

Background: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo. Methods: Porcine (allograft) and ovine (heterograft, xenograft) pericardia were decellularized using 1% sodium dodecyl sulfate ((1) Allo-decel and (2) Xeno-decel). We used two cell types for pressure-stimulated recellularization in a bioreactor: autologous adipose tissue-derived stromal cells (ASCs) isolated from subcutaneous fat of pigs ((3) Allo-ASC and (4) Xeno-ASC) and allogeneic Wharton’s jelly mesenchymal stem cells (WJCs) ((5) Allo-WJC and (6) Xeno-WJC). These six experimental patches were implanted in porcine carotid arteries for one month. For comparison, we also implanted six types of control patches, namely, arterial or venous autografts, expanded polytetrafluoroethylene (ePTFE Propaten® Gore®), polyethylene terephthalate (PET Vascutek®), chemically stabilized bovine pericardium (XenoSure®), and detoxified porcine pericardium (BioIntegral® NoReact®). The grafts were evaluated through the use of flowmetry, angiography, and histological examination. Results: All grafts were well-integrated and patent with no signs of thrombosis, stenosis, or aneurysm. A histological analysis revealed that the arterial autograft resembled a native artery. All other control and experimental patches developed neo-adventitial inflammation (NAI) and neo-intimal hyperplasia (NIH), and the endothelial lining was present. NAI and NIH were most prominent on XenoSure® and Xeno-decel and least prominent on NoReact®. In xenografts, the degree of NIH developed in the following order: Xeno-decel > Xeno-ASC > Xeno-WJC. NAI and patch resorption increased in Allo-ASC and Xeno-ASC and decreased in Allo-WJC and Xeno-WJC. Conclusions: In our setting, pre-implant seeding with ASC or WJC had a modest impact on vascular patch remodeling. However, ASC increased the neo-adventitial inflammatory reaction and patch resorption, suggesting accelerated remodeling. WJC mitigated this response, as well as neo-intimal hyperplasia on xenografts, suggesting immunomodulatory properties.

Zobrazit více v PubMed

Li X., Guo Y., Ziegler K.R., Model L.S., Eghbalieh S.D., Brenes R.A., Kim S.T., Shu C., Dardik A. Current usage and future directions for the bovine pericardial patch. Ann. Vasc. Surg. 2011;25:561–568. doi: 10.1016/j.avsg.2010.11.007. PubMed DOI PMC

Iop L., Palmosi T., Dal Sasso E., Gerosa G. Bioengineered tissue solutions for repair, correction and reconstruction in cardiovascular surgery. J. Thorac. Dis. 2018;10:S2390–S2411. doi: 10.21037/jtd.2018.04.27. PubMed DOI PMC

Tsai J.W., Ayubi F.S., Rice R.D., Zhang Z., Armstrong P.J. Permacol (porcine dermal collagen) and Alloderm (acellular cadaveric dermis) as a vascular patch repair for common carotid arteriotomy in a rabbit model. Ann. Vasc. Surg. 2009;23:374–381. doi: 10.1016/j.avsg.2008.10.004. PubMed DOI

Chlupac J., Filova E., Bacakova L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol. Res. 2009;58((Suppl. S2)):S119–S139. doi: 10.33549/physiolres.931918. PubMed DOI

Neethling W.M., Strange G., Firth L., Smit F.E. Evaluation of a tissue-engineered bovine pericardial patch in paediatric patients with congenital cardiac anomalies: Initial experience with the ADAPT-treated CardioCel(R) patch. Interact. Cardiovasc. Thorac. Surg. 2013;17:698–702. doi: 10.1093/icvts/ivt268. PubMed DOI PMC

Kirkton R.D., Prichard H.L., Santiago-Maysonet M., Niklason L.E., Lawson J.H., Dahl S.L.M. Susceptibility of ePTFE vascular grafts and bioengineered human acellular vessels to infection. J. Surg. Res. 2018;221:143–151. doi: 10.1016/j.jss.2017.08.035. PubMed DOI

Fahner P.J., Idu M.M., van Gulik T.M., Legemate D.A. Systematic review of preservation methods and clinical outcome of infrainguinal vascular allografts. J. Vasc. Surg. 2006;44:518–524. doi: 10.1016/j.jvs.2006.05.037. PubMed DOI

Matia I., Janousek L., Marada T., Adamec M. Cold-stored venous allografts in the treatment of critical limb ischaemia. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2007;34:424–431. doi: 10.1016/j.ejvs.2007.04.005. PubMed DOI

Fioretta E.S., von Boehmer L., Motta S.E., Lintas V., Hoerstrup S.P., Emmert M.Y. Cardiovascular tissue engineering: From basic science to clinical application. Exp. Gerontol. 2019;117:1–12. doi: 10.1016/j.exger.2018.03.022. PubMed DOI

Dardik H. A 30-year odyssey with the umbilical vein graft. J. Am. Coll. Surg. 2006;203:582–583. doi: 10.1016/j.jamcollsurg.2006.07.003. PubMed DOI

Jorge-Herrero E., Fonseca C., Barge A.P., Turnay J., Olmo N., Fernández P., Lizarbe M.A., García Páez J.M. Biocompatibility and calcification of bovine pericardium employed for the construction of cardiac bioprostheses treated with different chemical crosslink methods. Artif. Organs. 2010;34:E168–E176. doi: 10.1111/j.1525-1594.2009.00978.x. PubMed DOI

Pennel T., Fercana G., Bezuidenhout D., Simionescu A., Chuang T.H., Zilla P., Simionescu D. The performance of cross-linked acellular arterial scaffolds as vascular grafts; pre-clinical testing in direct and isolation loop circulatory models. Biomaterials. 2014;35:6311–6322. doi: 10.1016/j.biomaterials.2014.04.062. PubMed DOI PMC

Terlecki P., Zubilewicz T., Wojtak A., Pleban E., Przywara S., Iłżecki M., Feldo M., Chrapko M., Kęsik J.J., Terlecki K., et al. Replacement of infected aortoiliac vascular grafts with bifurcated BioIntegral Surgical No-React(®) bovine pericardial xenografts. Xenotransplantation. 2019;26:e12496. doi: 10.1111/xen.12496. PubMed DOI

Brown B.N., Badylak S.F. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl. Res. 2014;163:268–285. doi: 10.1016/j.trsl.2013.11.003. PubMed DOI PMC

Pashneh-Tala S., MacNeil S., Claeyssens F. The Tissue-Engineered Vascular Graft-Past, Present, and Future. Tissue Eng. Part B Rev. 2016;22:68–100. doi: 10.1089/ten.teb.2015.0100. PubMed DOI PMC

Verbrugghe P., Meuris B., Flameng W., Herijgers P. Reconstruction of atrioventricular valves with photo-oxidized bovine pericardium. Interact. Cardiovasc. Thorac. Surg. 2009;9:775–779. doi: 10.1510/icvts.2008.200097. PubMed DOI

Majeed A., Baird C., Borisuk M.J., Sanders S.P., Padera R.F., Jr. Histology of Pericardial Tissue Substitutes Used in Congenital Heart Surgery. Pediatr. Dev. Pathol. 2016;19:383–388. doi: 10.2350/15-08-1696-OA.1. PubMed DOI

Baird C.W., Myers P.O., Piekarski B., Borisuk M., Majeed A., Emani S.M., Sanders S.P., Nathan M., Del Nido P.J. Photo-oxidized bovine pericardium in congenital cardiac surgery: Single-centre experience. Interact. Cardiovasc. Thorac. Surg. 2017;24:240–244. doi: 10.1093/icvts/ivw315. PubMed DOI

Schmidt C.E., Baier J.M. Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215–2231. doi: 10.1016/S0142-9612(00)00148-4. PubMed DOI

Neethling W.M.L., Puls K., Rea A. Comparison of physical and biological properties of CardioCel® with commonly used bioscaffolds. Interact. Cardiovasc. Thorac. Surg. 2018;26:985–992. doi: 10.1093/icvts/ivx413. PubMed DOI

Pavy C., Michielon G., Robertus J.L., Lacour-Gayet F., Ghez O. Initial 2-year results of CardioCel® patch implantation in children. Interact. Cardiovasc. Thorac. Surg. 2018;26:448–453. doi: 10.1093/icvts/ivx295. PubMed DOI

Bell D., Betts K., Justo R., Forde N., Venugopal P., Corno A.F., Smith P., Caputo M., Marsico R., Karl T.R., et al. Multicenter Experience With 500 CardioCel Implants Used for the Repair of Congenital Heart Defects. Ann. Thorac. Surg. 2019;108:1883–1888. doi: 10.1016/j.athoracsur.2019.04.085. PubMed DOI

Moroni F., Mirabella T. Decellularized matrices for cardiovascular tissue engineering. Am. J. Stem Cells. 2014;3:1–20. PubMed PMC

Boccafoschi F., Botta M., Fusaro L., Copes F., Ramella M., Cannas M. Decellularized biological matrices: An interesting approach for cardiovascular tissue repair and regeneration. J. Tissue Eng. Regen. Med. 2017;11:1648–1657. doi: 10.1002/term.2103. PubMed DOI

Porzionato A., Stocco E., Barbon S., Grandi F., Macchi V., De Caro R. Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int. J. Mol. Sci. 2018;19:4117. doi: 10.3390/ijms19124117. PubMed DOI PMC

Gutowski P., Gage S.M., Guziewicz M., Ilzecki M., Kazimierczak A., Kirkton R., Niklason L.E., Pilgrim A., Prichard H.L., Przywara S., et al. Arterial reconstruction with human bioengineered acellular blood vessels in patients with peripheral arterial disease. J. Vasc. Surg. 2020;72:1247–1258. doi: 10.1016/j.jvs.2019.11.056. PubMed DOI

Teebken O.E., Puschmann C., Rohde B., Burgwitz K., Winkler M., Pichlmaier A.M., Weidemann J., Haverich A. Human iliac vein replacement with a tissue-engineered graft. VASA Z. Gefasskrankh. 2009;38:60–65. doi: 10.1024/0301-1526.38.1.60. PubMed DOI

Olausson M., Patil P.B., Kuna V.K., Chougule P., Hernandez N., Methe K., Kullberg-Lindh C., Borg H., Ejnell H., Sumitran-Holgersson S. Transplantation of an allogeneic vein bioengineered with autologous stem cells: A proof-of-concept study. Lancet. 2012;380:230–237. doi: 10.1016/S0140-6736(12)60633-3. PubMed DOI

Olausson M., Kuna V.K., Travnikova G., Bäckdahl H., Patil P.B., Saalman R., Borg H., Jeppsson A., Sumitran-Holgersson S. In Vivo Application of Tissue-Engineered Veins Using Autologous Peripheral Whole Blood: A Proof of Concept Study. EBioMedicine. 2014;1:72–79. doi: 10.1016/j.ebiom.2014.09.001. PubMed DOI PMC

Sugiura T., Matsumura G., Miyamoto S., Miyachi H., Breuer C.K., Shinoka T. Tissue-engineered Vascular Grafts in Children With Congenital Heart Disease: Intermediate Term Follow-up. Semin. Thorac. Cardiovasc. Surg. 2018;30:175–179. doi: 10.1053/j.semtcvs.2018.02.002. PubMed DOI PMC

Nii T., Katayama Y. Biomaterial-Assisted Regenerative Medicine. Int. J. Mol. Sci. 2021;22:8657. doi: 10.3390/ijms22168657. PubMed DOI PMC

Lin C.H., Hsia K., Ma H., Lee H., Lu J.H. In Vivo Performance of Decellularized Vascular Grafts: A Review Article. Int. J. Mol. Sci. 2018;19:2101. doi: 10.3390/ijms19072101. PubMed DOI PMC

Roh J.D., Sawh-Martinez R., Brennan M.P., Jay S.M., Devine L., Rao D.A., Yi T., Mirensky T.L., Nalbandian A., Udelsman B., et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc. Natl. Acad. Sci. USA. 2010;107:4669–4674. doi: 10.1073/pnas.0911465107. PubMed DOI PMC

Villalona G.A., Udelsman B., Duncan D.R., McGillicuddy E., Sawh-Martinez R.F., Hibino N., Painter C., Mirensky T., Erickson B., Shinoka T., et al. Cell-seeding techniques in vascular tissue engineering. Tissue Eng. Part B Rev. 2010;16:341–350. doi: 10.1089/ten.teb.2009.0527. PubMed DOI PMC

Harris L.J., Abdollahi H., Zhang P., McIlhenny S., Tulenko T.N., DiMuzio P.J. Differentiation of adult stem cells into smooth muscle for vascular tissue engineering. J. Surg. Res. 2011;168:306–314. doi: 10.1016/j.jss.2009.08.001. PubMed DOI PMC

Harris L.J., Zhang P., Abdollahi H., Tarola N.A., DiMatteo C., McIlhenny S.E., Tulenko T.N., DiMuzio P.J. Availability of adipose-derived stem cells in patients undergoing vascular surgical procedures. J. Surg. Res. 2010;163:e105–e112. doi: 10.1016/j.jss.2010.04.025. PubMed DOI PMC

El Omar R., Beroud J., Stoltz J.F., Menu P., Velot E., Decot V. Umbilical cord mesenchymal stem cells: The new gold standard for mesenchymal stem cell-based therapies? Tissue Eng. Part B Rev. 2014;20:523–544. doi: 10.1089/ten.teb.2013.0664. PubMed DOI

Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI

Abbaszadeh H., Ghorbani F., Derakhshani M., Movassaghpour A.A., Yousefi M., Talebi M., Shamsasenjan K. Regenerative potential of Wharton’s jelly-derived mesenchymal stem cells: A new horizon of stem cell therapy. J. Cell Physiol. 2020;235:9230–9240. doi: 10.1002/jcp.29810. PubMed DOI

Stefańska K., Ożegowska K., Hutchings G., Popis M., Moncrieff L., Dompe C., Janowicz K., Pieńkowski W., Gutaj P., Shibli J.A., et al. Human Wharton’s Jelly-Cellular Specificity, Stemness Potency, Animal Models, and Current Application in Human Clinical Trials. J. Clin. Med. 2020;9:1102. doi: 10.3390/jcm9041102. PubMed DOI PMC

Mebarki M., Abadie C., Larghero J., Cras A. Human umbilical cord-derived mesenchymal stem/stromal cells: A promising candidate for the development of advanced therapy medicinal products. Stem Cell Res. Ther. 2021;12:152. doi: 10.1186/s13287-021-02222-y. PubMed DOI PMC

Chen M.Y., Lie P.C., Li Z.L., Wei X. Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp. Hematol. 2009;37:629–640. doi: 10.1016/j.exphem.2009.02.003. PubMed DOI

Mesure B., Huber-Villaume S., Menu P., Velot É. Transforming growth factor-beta 1 or ascorbic acid are able to differentiate Wharton’s jelly mesenchymal stem cells towards a smooth muscle phenotype. Biomed. Mater. Eng. 2017;28:S101–S105. doi: 10.3233/BME-171630. PubMed DOI

Zilla P., Bezuidenhout D., Human P. Prosthetic vascular grafts: Wrong models, wrong questions and no healing. Biomaterials. 2007;28:5009–5027. doi: 10.1016/j.biomaterials.2007.07.017. PubMed DOI

Zilla P., Deutsch M., Bezuidenhout D., Davies N.H., Pennel T. Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering. Front. Cardiovasc. Med. 2020;7:159. doi: 10.3389/fcvm.2020.00159. PubMed DOI PMC

Pennel T., Zilla P., Bezuidenhout D. Differentiating transmural from transanastomotic prosthetic graft endothelialization through an isolation loop-graft model. J. Vasc. Surg. 2013;58:1053–1061. doi: 10.1016/j.jvs.2012.11.093. PubMed DOI

Pennel T., Bezuidenhout D., Koehne J., Davies N.H., Zilla P. Transmural capillary ingrowth is essential for confluent vascular graft healing. Acta Biomater. 2018;65:237–247. doi: 10.1016/j.actbio.2017.10.038. PubMed DOI

Keane T.J., Badylak S.F. The host response to allogeneic and xenogeneic biological scaffold materials. J. Tissue Eng. Regen. Med. 2015;9:504–511. doi: 10.1002/term.1874. PubMed DOI

Van Steenberghe M., Schubert T., Guiot Y., Bouzin C., Bollen X., Gianello P. Enhanced vascular biocompatibility of decellularized xeno-/allogeneic matrices in a rodent model. Cell Tissue Bank. 2017;18:249–262. doi: 10.1007/s10561-017-9610-0. PubMed DOI

Van Steenberghe M., Schubert T., Bouzin C., Caravaggio C., Guiot Y., Xhema D., Gianello P. Enhanced Vascular Biocompatibility and Remodeling of Decellularized and Secured Xenogeneic/Allogeneic Matrices in a Porcine Model. Eur. Surg. Res. 2018;59:58–71. doi: 10.1159/000487591. PubMed DOI

Van Steenberghe M., Schubert T., Bouzin C., Caravaggio C., Guiot Y., Xhema D., Gianello P. Decellularized and Secured Porcine Arteries with NaOH-based Process: Proof of Concept. Ann. Vasc. Surg. 2018;49:179–190. doi: 10.1016/j.avsg.2017.12.013. PubMed DOI

Stöwe I., Pissarek J., Moosmann P., Pröhl A., Pantermehl S., Bielenstein J., Radenkovic M., Jung O., Najman S., Alkildani S., et al. Ex Vivo and In Vivo Analysis of a Novel Porcine Aortic Patch for Vascular Reconstruction. Int. J. Mol. Sci. 2021;22:7623. doi: 10.3390/ijms22147623. PubMed DOI PMC

Pattar S.S., Fatehi Hassanabad A., Fedak P.W.M. Acellular Extracellular Matrix Bioscaffolds for Cardiac Repair and Regeneration. Front. Cell Dev. Biol. 2019;7:63. doi: 10.3389/fcell.2019.00063. PubMed DOI PMC

BioIntegral Surgical Instructions for Use, NoReact Patch, Porcine Pericardial Patch. 2021. [(accessed on 15 January 2022)]. Available online: https://www.biointegral-surgical.com/_files/ugd/af08f2_11ef2a7e7ff14c3e8af091283663aaeb.pdf.

Chang Y., Liang H.C., Wei H.J., Chu C.P., Sung H.W. Tissue regeneration patterns in acellular bovine pericardia implanted in a canine model as a vascular patch. J. Biomed. Mater. Res. A. 2004;69:323–333. doi: 10.1002/jbm.a.30003. PubMed DOI

Chang Y., Lai P.H., Wei H.J., Lin W.W., Chen C.H., Hwang S.M., Chen S.C., Sung H.W. Tissue regeneration observed in a basic fibroblast growth factor-loaded porous acellular bovine pericardium populated with mesenchymal stem cells. J. Thorac. Cardiovasc. Surg. 2007;134:65–73. doi: 10.1016/j.jtcvs.2007.02.019. PubMed DOI

Wei H.J., Chen S.C., Chang Y., Hwang S.M., Lin W.W., Lai P.H., Chiang H.K., Hsu L.F., Yang H.H., Sung H.W. Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model. Biomaterials. 2006;27:5409–5419. doi: 10.1016/j.biomaterials.2006.06.022. PubMed DOI

Lin C.H., Hsia K., Tsai C.H., Ma H., Lu J.H., Tsay R.Y. Decellularized porcine coronary artery with adipose stem cells for vascular tissue engineering. Biomed. Mater. 2019;14:045014. doi: 10.1088/1748-605X/ab2329. PubMed DOI

Cho S.W., Park H.J., Ryu J.H., Kim S.H., Kim Y.H., Choi C.Y., Lee M.J., Kim J.S., Jang I.S., Kim D.I., et al. Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials. 2005;26:1915–1924. doi: 10.1016/j.biomaterials.2004.06.018. PubMed DOI

Martin I., Wendt D., Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004;22:80–86. doi: 10.1016/j.tibtech.2003.12.001. PubMed DOI

Chen C.H., Wei H.J., Lin W.W., Chiu I., Hwang S.M., Wang C.C., Lee W.Y., Chang Y., Sung H.W. Porous tissue grafts sandwiched with multilayered mesenchymal stromal cell sheets induce tissue regeneration for cardiac repair. Cardiovasc. Res. 2008;80:88–95. doi: 10.1093/cvr/cvn149. PubMed DOI

Pu L., Meng M., Wu J., Zhang J., Hou Z., Gao H., Xu H., Liu B., Tang W., Jiang L., et al. Compared to the amniotic membrane, Wharton’s jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration. Stem Cell Res. Ther. 2017;8:72. doi: 10.1186/s13287-017-0501-x. PubMed DOI PMC

Mallis P., Papapanagiotou A., Katsimpoulas M., Kostakis A., Siasos G., Kassi E., Stavropoulos-Giokas C., Michalopoulos E. Efficient differentiation of vascular smooth muscle cells from Wharton’s Jelly mesenchymal stromal cells using human platelet lysate: A potential cell source for small blood vessel engineering. World J. Stem Cells. 2020;12:203–221. doi: 10.4252/wjsc.v12.i3.203. PubMed DOI PMC

Rüffer A., Purbojo A., Cicha I., Glöckler M., Potapov S., Dittrich S., Cesnjevar R.A. Early failure of xenogenous de-cellularised pulmonary valve conduits—A word of caution! Eur. J. Cardiothorac. Surg. 2010;38:78–85. doi: 10.1016/j.ejcts.2010.01.044. PubMed DOI

Sharp M.A., Phillips D., Roberts I., Hands L. A cautionary case: The SynerGraft vascular prosthesis. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2004;27:42–44. doi: 10.1016/j.ejvs.2003.09.015. PubMed DOI

de Vries M.R., Simons K.H., Jukema J.W., Braun J., Quax P.H. Vein graft failure: From pathophysiology to clinical outcomes. Nat. Rev. Cardiol. 2016;13:451–470. doi: 10.1038/nrcardio.2016.76. PubMed DOI

Rerkasem K., Rothwell P.M. Systematic review of randomized controlled trials of patch angioplasty versus primary closure and different types of patch materials during carotid endarterectomy. Asian J. Surg. 2011;34:32–40. doi: 10.1016/S1015-9584(11)60016-X. PubMed DOI

Texakalidis P., Giannopoulos S., Charisis N., Giannopoulos S., Karasavvidis T., Koullias G., Jabbour P. A meta-analysis of randomized trials comparing bovine pericardium and other patch materials for carotid endarterectomy. J. Vasc. Surg. 2018;68:1241–1256. doi: 10.1016/j.jvs.2018.07.023. PubMed DOI

Marien B.J., Raffetto J.D., Seidman C.S., LaMorte W.W., Menzoian J.O. Bovine pericardium vs dacron for patch angioplasty after carotid endarterectomy: A prospective randomized study. Arch. Surg. 2002;137:785–788. doi: 10.1001/archsurg.137.7.785. PubMed DOI

David T.E. The surgical treatment of patients with prosthetic valve endocarditis. Semin. Thorac. Cardiovasc. Surg. 1995;7:47–53. PubMed

Jones J.M., Sarsam M.A. Partial mitral valve replacement for acute endocarditis. Ann. Thorac. Surg. 2001;72:255–257. doi: 10.1016/S0003-4975(00)02582-0. PubMed DOI

Anibueze C., Sankaran V., Sadat U., Tan K., Wilson Y.G., Brightwell R.E., Delbridge M.S., Stather P.W. Neoaortic Xenoprosthetic Grafts for Treatment of Mycotic Aneurysms and Infected Aortic Grafts. Ann. Vasc. Surg. 2017;44:419.e1–419.e12. doi: 10.1016/j.avsg.2017.02.021. PubMed DOI

Derksen W.J., Verhoeven B.A., van de Mortel R.H., Moll F.L., de Vries J.P. Risk factors for surgical-site infection following common femoral artery endarterectomy. Vasc. Endovasc. Surg. 2009;43:69–75. doi: 10.1177/1538574408323502. PubMed DOI

Us M.H., Sungun M., Sanioglu S., Pocan S., Cebeci B.S., Ogus T., Ucak A., Guler A. A retrospective comparison of bovine pericardium and polytetrafluoroethylene patch for closure of ventricular septal defects. J. Int. Med. Res. 2004;32:218–221. doi: 10.1177/147323000403200216. PubMed DOI

Shin’oka T., Matsumura G., Hibino N., Naito Y., Watanabe M., Konuma T., Sakamoto T., Nagatsu M., Kurosawa H. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J. Thorac. Cardiovasc. Surg. 2005;129:1330–1338. doi: 10.1016/j.jtcvs.2004.12.047. PubMed DOI

Kakisis J.D., Liapis C.D., Breuer C., Sumpio B.E. Artificial blood vessel: The Holy Grail of peripheral vascular surgery. J. Vasc. Surg. 2005;41:349–354. doi: 10.1016/j.jvs.2004.12.026. PubMed DOI

Wystrychowski W., Cierpka L., Zagalski K., Garrido S., Dusserre N., Radochonski S., McAllister T.N., L’Heureux N. Case study: First implantation of a frozen, devitalized tissue-engineered vascular graft for urgent hemodialysis access. J. Vasc. Access. 2011;12:67–70. doi: 10.5301/JVA.2011.6360. PubMed DOI

Zhang P., Policha A., Tulenko T., DiMuzio P. Autologous human plasma in stem cell culture and cryopreservation in the creation of a tissue-engineered vascular graft. J. Vasc. Surg. 2016;63:805–814. doi: 10.1016/j.jvs.2014.10.015. PubMed DOI

Fluoropassiv Thin Wall Carotid Patch. [(accessed on 15 January 2022)]. Available online: https://medistim.no/wp-content/uploads/2014/03/fluoropassiv-twcp-english.pdf.

Gore Propaten Vascular Graft Instructions for Use. 2021. [(accessed on 15 January 2022)]. Available online: https://eifu.goremedical.com/

XenoSure Biologic Patch, Instructions for Use. 2016. [(accessed on 15 January 2022)]. Available online: https://www.lemaitre.com/sites/default/files/downloads/product-ifu/R2390-01%20Rev.%20E.pdf.

Matějka R., Koňařík M., Štěpanovská J., Lipenský J., Chlupáč J., Turek D., Pražák Š., Brož A., Šimůnková Z., Mrázová I., et al. Bioreactor Processed Stromal Cell Seeding and Cultivation on Decellularized Pericardium Patches for Cardiovascular Use. Appl. Sci. 2020;10:5473. doi: 10.3390/app10165473. DOI

Dondelinger R.F., Ghysels M.P., Brisbois D., Donkers E., Snaps F.R., Saunders J., Devière J. Relevant radiological anatomy of the pig as a training model in interventional radiology. Eur. Radiol. 1998;8:1254–1273. doi: 10.1007/s003300050545. PubMed DOI

Bankhead P., Loughrey M.B., Fernández J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017;7:16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace