External Support of Autologous Internal Jugular Vein Grafts with FRAME Mesh in a Porcine Carotid Artery Model

. 2024 Jun 16 ; 12 (6) : . [epub] 20240616

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38927542

Grantová podpora
NV19-02-00068 Agentura Pro Zdravotnický Výzkum České Republiky
LX22NPO5104 Ministry of Education Youth and Sports

BACKGROUND: Autologous vein grafts are widely used for bypass procedures in cardiovascular surgery. However, these grafts are susceptible to failure due to vein graft disease. Our study aimed to evaluate the impact of the latest-generation FRAME external support on vein graft remodeling in a preclinical model. METHODS: We performed autologous internal jugular vein interposition grafting in porcine carotid arteries for one month. Four grafts were supported with a FRAME mesh, while seven unsupported grafts served as controls. The conduits were examined through flowmetry, angiography, macroscopy, and microscopy. RESULTS: The one-month patency rate of FRAME-supported grafts was 100% (4/4), whereas that of unsupported controls was 43% (3/7, Log-rank p = 0.071). On explant angiography, FRAME grafts exhibited significantly more areas with no or mild stenosis (9/12) compared to control grafts (3/21, p = 0.0009). Blood flow at explantation was higher in the FRAME grafts (145 ± 51 mL/min) than in the controls (46 ± 85 mL/min, p = 0.066). Area and thickness of neo-intimal hyperplasia (NIH) at proximal anastomoses were similar for the FRAME and the control groups: 5.79 ± 1.38 versus 6.94 ± 1.10 mm2, respectively (p = 0.558) and 480 ± 95 vs. 587 ± 52 μm2/μm, respectively (p = 0.401). However, in the midgraft portions, the NIH area and thickness were significantly lower in the FRAME group than in the control group: 3.73 ± 0.64 vs. 6.27 ± 0.64 mm2, respectively (p = 0.022) and 258 ± 49 vs. 518 ± 36 μm2/μm, respectively (p = 0.0002). CONCLUSIONS: In our porcine model, the external mesh FRAME improved the patency of vein-to-carotid artery grafts and protected them from stenosis, particularly in the mid regions. The midgraft neo-intimal hyperplasia was two-fold thinner in the meshed grafts than in the controls.

Zobrazit více v PubMed

de Vries M.R., Simons K.H., Jukema J.W., Braun J., Quax P.H. Vein graft failure: From pathophysiology to clinical outcomes. Nat. Rev. Cardiol. 2016;13:451–470. doi: 10.1038/nrcardio.2016.76. PubMed DOI

Martínez-González B., Reyes-Hernández C.G., Quiroga-Garza A., Rodríguez-Rodríguez V.E., Esparza-Hernández C.N., Elizondo-Omaña R.E., Guzmán-López S. Conduits Used in Coronary Artery Bypass Grafting: A Review of Morphological Studies. Ann. Thorac. Cardiovasc. Surg. 2017;23:55–65. doi: 10.5761/atcs.ra.16-00178. PubMed DOI PMC

Thomas A.C. Animal models for studying vein graft failure and therapeutic interventions. Curr. Opin. Pharmacol. 2012;12:121–126. doi: 10.1016/j.coph.2012.01.002. PubMed DOI

Guida G., Ward A.O., Bruno V.D., George S.J., Caputo M., Angelini G.D., Zakkar M. Saphenous vein graft disease, pathophysiology, prevention, and treatment. A review of the literature. J. Card. Surg. 2020;35:1314–1321. doi: 10.1111/jocs.14542. PubMed DOI

Samano N., Geijer H., Liden M., Fremes S., Bodin L., Souza D. The no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: A randomized trial. J. Thorac. Cardiovasc. Surg. 2015;150:880–888. doi: 10.1016/j.jtcvs.2015.07.027. PubMed DOI

Weltert L.P., Wolf L.G., Garufi L., Scaffa R., Salica A., Ricci A., Irace F.G., Fusca S., D’Aleo S., Chirichilli I., et al. External Stents for Vein Grafts in Coronary Artery Bypass Grafting: Targeting Intimal Hyperplasia. Surg. Technol. Int. 2020;35:197–201. PubMed

Nitecki S., Yosef L., Tozzi M., Shofti R. Inhibition of vein graft remodeling and neo-intimal formation using a cobalt chrome external support. Arch. Clin. Exp. Surg. 2018;7:108–115. doi: 10.5455/aces.20171128090019. DOI

Fashina O., Abbasciano R.G., McQueen L.W., Ladak S., George S.J., Suleiman S., Punjabi P.P., Angelini G.D., Zakkar M. Large animal model of vein grafts intimal hyperplasia: A systematic review. Perfusion. 2023;38:894–930. doi: 10.1177/02676591221091200. PubMed DOI

Gemelli M., Gallo M., Addonizio M., Pahwa S., Van den Eynde J., Trivedi J., Slaughter M.S., Gerosa G. Venous External Support in Coronary Artery Bypass Surgery: A Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2023;48:101687. doi: 10.1016/j.cpcardiol.2023.101687. PubMed DOI

Emmert M.Y., Bonatti J., Caliskan E., Gaudino M., Grabenwöger M., Grapow M.T., Heinisch P.P., Kieser-Prieur T., Kim K.-B., Kiss A., et al. Consensus statement—Graft treatment in cardiovascular bypass graft surgery. Front. Cardiovasc. Med. 2024;11:1285685. doi: 10.3389/fcvm.2024.1285685. PubMed DOI PMC

Hu J., Wan S. External support in preventing vein graft failure. Asian Cardiovasc. Thorac. Ann. 2012;20:615–622. doi: 10.1177/0218492312456980. PubMed DOI

Goldstein D.J. Device profile of the VEST for external support of SVG Coronary artery bypass grafting: Historical development, current status, and future directions. Expert Rev. Med. Devices. 2021;18:921–931. doi: 10.1080/17434440.2021.1960504. PubMed DOI

Soletti G.J., Dell’Aquila M., Harik L., Cancelli G., Alzghari T., Perezgrovas-Olaria R., Dimagli A., An K.R., Leith J., Rossi C.S., et al. The VEST External Support for Saphenous Vein Grafts in Coronary Surgery: A Review of Randomized Clinical Trials. J. Cardiovasc. Dev. Dis. 2023;10:453. doi: 10.3390/jcdd10110453. PubMed DOI PMC

Vigliotti R.C., Montelione N., Franceschi F., Franceschini E., Zardi E., Spinelli F., Stilo F. Externally Supported Extra-anatomical Venous Bypass to Treat Upper Limb Ischemia with Shoulder Prosthetic Infection. Ann. Vasc. Surg. 2020;69:453.e5–453.e10. doi: 10.1016/j.avsg.2020.07.002. PubMed DOI

Ciftci Ü., Marti R., Fahrni J., Gähwiler R., Thalhammer C., Gürke L., Isaak A. External stenting and disease progression in vein grafts 1 year after open surgical repair of popliteal artery aneurysm. J. Vasc. Surg. 2021;74:521–527. doi: 10.1016/j.jvs.2021.01.046. PubMed DOI

Chlupac J., Matejka R., Konarik M., Novotny R., Simunkova Z., Mrazova I., Fabian O., Zapletal M., Pulda Z., Lipensky J.F., et al. Vascular Remodeling of Clinically Used Patches and Decellularized Pericardial Matrices Recellularized with Autologous or Allogeneic Cells in a Porcine Carotid Artery Model. Int. J. Mol. Sci. 2022;23:3310. doi: 10.3390/ijms23063310. PubMed DOI PMC

Góes A.M.O., Chaves R.H.F., Furlaneto I.P., Rodrigues E.M., de Albuquerque F.B.A., Smit J.H.A., de Oliveira C.P., Abib S.C.V. Comparative angiotomographic study of swine vascular anatomy: Contributions to research and training models in vascular and endovascular surgery. J. Vasc. Bras. 2021;20:e20200086. doi: 10.1590/1677-5449.200086. PubMed DOI PMC

FRAME TM External Support for Peripheral Vascular Reconstructions. [(accessed on 27 July 2023)]. Available online: https://www.cardion.cz/file/1466/lb461-rev02-frame-product-page.pdf.

Mrowczynski W., Mugnai D., de Valence S., Tille J.C., Khabiri E., Cikirikcioglu M., Moller M., Walpoth B.H. Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis. J. Vasc. Surg. 2014;59:210–219. doi: 10.1016/j.jvs.2013.03.004. PubMed DOI

Bankhead P., Loughrey M.B., Fernández J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017;7:16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC

Angelini G.D., Lloyd C., Bush R., Johnson J., Newby A.C. An external, oversized, porous polyester stent reduces vein graft neointima formation, cholesterol concentration, and vascular cell adhesion molecule 1 expression in cholesterol-fed pigs. J. Thorac. Cardiovasc. Surg. 2002;124:950–956. doi: 10.1067/mtc.2002.127004. PubMed DOI

Moodley L., Franz T., Human P., Wolf M.F., Bezuidenhout D., Scherman J., Zilla P. Protective constriction of coronary vein grafts with knitted nitinol. Eur. J. Cardio Thorac. Surg. 2013;44:64–71. doi: 10.1093/ejcts/ezs670. PubMed DOI PMC

Rippstein P., Black M.K., Boivin M., Veinot J.P., Ma X., Chen Y.X., Human P., Zilla P., O’Brien E.R. Comparison of processing and sectioning methodologies for arteries containing metallic stents. J. Histochem. Cytochem. 2006;54:673–681. doi: 10.1369/jhc.5A6824.2006. PubMed DOI

Honetschlägerová Z., Husková Z., Kikerlová S., Sadowski J., Kompanowska-Jezierska E., Táborský M., Vaňourková Z., Kujal P., Červenka L. Renal sympathetic denervation improves pressure-natriuresis relationship in cardiorenal syndrome: Insight from studies with Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula. Hypertens. Res. 2024;47:998–1016. doi: 10.1038/s41440-024-01583-0. PubMed DOI PMC

Kolesová H., Bartoš M., Hsieh W.C., Olejníčková V., Sedmera D. Novel approaches to study coronary vasculature development in mice. Dev. Dyn. 2018;247:1018–1027. doi: 10.1002/dvdy.24637. PubMed DOI

Kolesová H., Čapek M., Radochová B., Janáček J., Sedmera D. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochem. Cell Biol. 2016;146:141–152. doi: 10.1007/s00418-016-1441-8. PubMed DOI

Sochman J., Peregrin J.H., Pavcnik D., Uchida B.T., Timmermans H.A., Sedmera D., Benada O., Kofronova O., Keller F.S., Rosch J. Reverse endoventricular artificial obturator in tricuspid valve position. Experimental feasibility research study. Physiol. Res. 2014;63:157–165. doi: 10.33549/physiolres.932580. PubMed DOI

Zilla P., Moodley L., Scherman J., Krynauw H., Kortsmit J., Human P., Wolf M.F., Franz T. Remodeling leads to distinctly more intimal hyperplasia in coronary than in infrainguinal vein grafts. J. Vasc. Surg. 2012;55:1734–1741. doi: 10.1016/j.jvs.2011.11.057. PubMed DOI

Chen S.J., Wilson J.M., Muller D.W. Adenovirus-mediated gene transfer of soluble vascular cell adhesion molecule to porcine interposition vein grafts. Circulation. 1994;89:1922–1928. doi: 10.1161/01.cir.89.5.1922. PubMed DOI

Bartels C., Erasmi A., Sayk F., Eggers R., Dendorfer A., Feyerabend T., Eichler W., Sievers H.H. Prophylactic gamma radiation of unaffected vein grafts failed to prevent vein graft disease in a chronic hypercholesterolemic porcine model. Eur. J. Cardiothorac. Surg. 2003;24:92–97. doi: 10.1016/s1010-7940(03)00173-8. PubMed DOI

Jevon M., Ansari T.I., Finch J., Zakkar M., Evans P.C., Shurey S., Sibbons P.D., Hornick P., Haskard D.O., Dorling A. Smooth muscle cells in porcine vein graft intimal hyperplasia are derived from the local vessel wall. Cardiovasc. Pathol. 2011;20:e91–e94. doi: 10.1016/j.carpath.2010.04.003. PubMed DOI

Quint C., Kondo Y., Manson R.J., Lawson J.H., Dardik A., Niklason L.E. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Natl. Acad. Sci. USA. 2011;108:9214–9219. doi: 10.1073/pnas.1019506108. PubMed DOI PMC

Thim T., Hagensen M.K., Hørlyck A., Drouet L., Paaske W.P., Bøtker H.E., Falk E. Oversized vein grafts develop advanced atherosclerosis in hypercholesterolemic minipigs. BMC Cardiovasc. Disord. 2012;12:24. doi: 10.1186/1471-2261-12-24. PubMed DOI PMC

Kibbe M.R., Tzeng E., Gleixner S.L., Watkins S.C., Kovesdi I., Lizonova A., Makaroun M.S., Billiar T.R., Rhee R.Y. Adenovirus-mediated gene transfer of human inducible nitric oxide synthase in porcine vein grafts inhibits intimal hyperplasia. J. Vasc. Surg. 2001;34:156–165. doi: 10.1067/mva.2001.113983. PubMed DOI

El-Kurdi M.S., Hong Y., Stankus J.J., Soletti L., Wagner W.R., Vorp D.A. Transient elastic support for vein grafts using a constricting microfibrillar polymer wrap. Biomaterials. 2008;29:3213–3220. doi: 10.1016/j.biomaterials.2008.04.009. PubMed DOI PMC

Angelini G.D., Bryan A.J., Williams H.M., Soyombo A.A., Williams A., Tovey J., Newby A.C. Time-course of medial and intimal thickening in pig venous arterial grafts: Relationship to endothelial injury and cholesterol accumulation. J. Thorac. Cardiovasc. Surg. 1992;103:1093–1103. doi: 10.1016/S0022-5223(19)34873-1. PubMed DOI

Angelini G.D., Bryan A.J., Williams H.M., Morgan R., Newby A.C. Distention promotes platelet and leukocyte adhesion and reduces short-term patency in pig arteriovenous bypass grafts. J. Thorac. Cardiovasc. Surg. 1990;99:433–439. doi: 10.1016/S0022-5223(19)36973-9. PubMed DOI

Angelini G.D., Izzat M.B., Bryan A.J., Newby A.C. External stenting reduces early medial and neointimal thickening in a pig model of arteriovenous bypass grafting. J. Thorac. Cardiovasc. Surg. 1996;112:79–84. doi: 10.1016/s0022-5223(96)70180-0. PubMed DOI

Isaji T., Hashimoto T., Yamamoto K., Santana J.M., Yatsula B., Hu H., Bai H., Jianming G., Kudze T., Nishibe T., et al. Improving the Outcome of Vein Grafts: Should Vascular Surgeons Turn Veins into Arteries? Ann. Vasc. Dis. 2017;10:8–16. doi: 10.3400/avd.ra.17-00008. PubMed DOI PMC

Conte M.S., Owens C.D., Belkin M., Creager M.A., Edwards K.L., Gasper W.J., Kenagy R.D., LeBoeuf R.C., Sobel M., Clowes A. A single nucleotide polymorphism in the p27(Kip1) gene is associated with primary patency of lower extremity vein bypass grafts. J. Vasc. Surg. 2013;57:1179–1185.E2. doi: 10.1016/j.jvs.2012.11.040. PubMed DOI PMC

Ramachandra A.B., Wang H., Wnorowski A., Schwarz E.L., Pickering J., Heiler J.C., Lucian H.J., Hironaka C.E., Tran N.A., Liu Y., et al. Biodegradable external wrapping promotes favorable adaptation in an ovine vein graft model. Acta Biomater. 2022;151:414–425. doi: 10.1016/j.actbio.2022.08.029. PubMed DOI PMC

Zilla P., Human P., Wolf M., Lichtenberg W., Rafiee N., Bezuidenhout D., Samodien N., Schmidt C., Franz T. Constrictive external nitinol meshes inhibit vein graft intimal hyperplasia in nonhuman primates. J. Thorac. Cardiovasc. Surg. 2008;136:717–725. doi: 10.1016/j.jtcvs.2008.02.068. PubMed DOI

Zilla P., Moodley L., Wolf M.F., Bezuidenhout D., Sirry M.S., Rafiee N., Lichtenberg W., Black M., Franz T. Knitted nitinol represents a new generation of constrictive external vein graft meshes. J. Vasc. Surg. 2011;54:1439–1450. doi: 10.1016/j.jvs.2011.05.023. PubMed DOI

Parsonnet V., Lari A.A., Shah I.H. New Stent For Support of Veins in Arterial GRAFTS. Arch. Surg. 1963;87:696–702. doi: 10.1001/archsurg.1963.01310160158031. PubMed DOI

Batellier J., Wassef M., Merval R., Duriez M., Tedgui A. Protection from atherosclerosis in vein grafts by a rigid external support. Arterioscler. Thromb. 1993;13:379–384. doi: 10.1161/01.atv.13.3.379. PubMed DOI

Izzat M.B., Mehta D., Bryan A.J., Reeves B., Newby A.C., Angelini G.D. Influence of external stent size on early medial and neointimal thickening in a pig model of saphenous vein bypass grafting. Circulation. 1996;94:1741–1745. doi: 10.1161/01.cir.94.7.1741. PubMed DOI

Jeremy J.Y., Dashwood M.R., Mehta D., Izzat M.B., Shukla N., Angelini G.D. Nitric oxide, prostacyclin and cyclic nucleotide formation in externally stented porcine vein grafts. Atherosclerosis. 1998;141:297–305. doi: 10.1016/s0021-9150(98)00183-x. PubMed DOI

Mehta D., George S.J., Jeremy J.Y., Izzat M.B., Southgate K.M., Bryan A.J., Newby A.C., Angelini G.D. External stenting reduces long-term medial and neointimal thickening and platelet derived growth factor expression in a pig model of arteriovenous bypass grafting. Nat. Med. 1998;4:235–239. doi: 10.1038/nm0298-235. PubMed DOI

Caro C., Jeremy J., Watkins N., Bulbulia R., Angelini G., Smith F., Wan S., Yim A., Sherwin S., Peiró J., et al. The geometry of unstented and stented pig common carotid artery bypass grafts. Biorheology. 2002;39:507–512. PubMed

Jeremy J.Y., Bulbulia R., Johnson J.L., Gadsdon P., Vijayan V., Shukla N., Smith F.C., Angelini G.D. A bioabsorbable (polyglactin), nonrestrictive, external sheath inhibits porcine saphenous vein graft thickening. J. Thorac. Cardiovasc. Surg. 2004;127:1766–1772. doi: 10.1016/j.jtcvs.2003.09.054. PubMed DOI

Vijayan V., Shukla N., Johnson J.L., Gadsdon P., Angelini G.D., Smith F.C., Baird R., Jeremy J.Y. Long-term reduction of medial and intimal thickening in porcine saphenous vein grafts with a polyglactin biodegradable external sheath. J. Vasc. Surg. 2004;40:1011–1019. doi: 10.1016/j.jvs.2004.08.047. PubMed DOI

Human P., Franz T., Scherman J., Moodley L., Zilla P. Dimensional analysis of human saphenous vein grafts: Implications for external mesh support. J. Thorac. Cardiovasc. Surg. 2009;137:1101–1108. doi: 10.1016/j.jtcvs.2008.10.040. PubMed DOI

Zilla P., Wolf M., Rafiee N., Moodley L., Bezuidenhout D., Black M., Human P., Franz T. Utilization of shape memory in external vein-graft meshes allows extreme diameter constriction for suppressing intimal hyperplasia: A non-human primate study. J. Vasc. Surg. 2009;49:1532–1542. doi: 10.1016/j.jvs.2009.01.068. PubMed DOI

Franz T., Human P., Dobner S., Reddy B.D., Black M., Ilsley H., Wolf M.F., Bezuidenhout D., Moodley L., Zilla P. Tailored sizes of constrictive external vein meshes for coronary artery bypass surgery. Biomaterials. 2010;31:9301–9309. doi: 10.1016/j.biomaterials.2010.08.054. PubMed DOI

Zilla P., Bezuidenhout D., Human P. Prosthetic vascular grafts: Wrong models, wrong questions and no healing. Biomaterials. 2007;28:5009–5027. doi: 10.1016/j.biomaterials.2007.07.017. PubMed DOI

Ben-Gal Y., Taggart D.P., Williams M.R., Orion E., Uretzky G., Shofti R., Banai S., Yosef L., Bolotin G. Expandable external support device to improve Saphenous Vein Graft Patency after CABG. J. Cardiothorac. Surg. 2013;8:122. doi: 10.1186/1749-8090-8-122. PubMed DOI PMC

Murphy G.J., Newby A.C., Jeremy J.Y., Baumbach A., Angelini G.D. A randomized trial of an external Dacron sheath for the prevention of vein graft disease: The Extent study. J. Thorac. Cardiovasc. Surg. 2007;134:504–505. doi: 10.1016/j.jtcvs.2007.01.092. PubMed DOI

Emery R.W., Solien E., Klima U. Clinical Evaluation of the eSVS Mesh: First-In-Man Trial Outcomes. ASAIO J. 2015;61:178–183. doi: 10.1097/mat.0000000000000187. PubMed DOI

Inderbitzin D.T., Bremerich J., Matt P., Grapow M.T., Eckstein F.S., Reuthebuch O. One-year patency control and risk analysis of eSVS®-mesh-supported coronary saphenous vein grafts. J. Cardiothorac. Surg. 2015;10:108. doi: 10.1186/s13019-015-0293-y. PubMed DOI PMC

Taggart D.P., Ben Gal Y., Lees B., Patel N., Webb C., Rehman S.M., Desouza A., Yadav R., De Robertis F., Dalby M., et al. A Randomized Trial of External Stenting for Saphenous Vein Grafts in Coronary Artery Bypass Grafting. Ann. Thorac. Surg. 2015;99:2039–2045. doi: 10.1016/j.athoracsur.2015.01.060. PubMed DOI

Taggart D.P., Gavrilov Y., Krasopoulos G., Rajakaruna C., Zacharias J., De Silva R., Channon K.M., Gehrig T., Donovan T.J., Friedrich I., et al. External stenting and disease progression in saphenous vein grafts two years after coronary artery bypass grafting: A multicenter randomized trial. J. Thorac. Cardiovasc. Surg. 2022;164:1532–1541.e2. doi: 10.1016/j.jtcvs.2021.03.120. PubMed DOI

Goldstein D.J., Puskas J.D., Alexander J.H., Chang H.L., Gammie J.S., Marks M.E., Iribarne A., Vengrenyuk Y., Raymond S., Taylor B.S., et al. External Support for Saphenous Vein Grafts in Coronary Artery Bypass Surgery: A Randomized Clinical Trial. JAMA Cardiol. 2022;7:808–816. doi: 10.1001/jamacardio.2022.1437. PubMed DOI PMC

Taggart D.P., Webb C.M., Desouza A., Yadav R., Channon K.M., De Robertis F., Di Mario C. Long-term performance of an external stent for saphenous vein grafts: The VEST IV trial. J. Cardiothorac. Surg. 2018;13:117. doi: 10.1186/s13019-018-0803-9. PubMed DOI PMC

Chen H., Wang Z., Si K., Wu X., Ni H., Tang Y., Liu W., Wang Z. External stenting for saphenous vein grafts in coronary artery bypass grafting: A meta-analysis. Eur. J. Clin. Investig. 2023;53:e14046. doi: 10.1111/eci.14046. PubMed DOI

Soletti G.J., Dimagli A., Harik L., Cancelli G., Perezgrovas-Olaria R., Alzghari T., Dell’Aquila M., Leith J., Castagnini S., Lau C., et al. External Stenting for Saphenous Vein Grafts in Coronary Surgery: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023;12:7395. doi: 10.3390/jcm12237395. PubMed DOI PMC

Arvela E., Kauhanen P., Albäck A., Lepäntalo M., Neufang A., Adili F., Schmitz-Rixen T. Initial Experience with a New Method of External Polyester Scaffolding for Infrainguinal Vein Grafts. Eur. J. Vasc. Endovasc. Surg. 2009;38:456–462. doi: 10.1016/j.ejvs.2009.05.015. PubMed DOI

Carella G.S., Stilo F., Benedetto F., David A., Risitano D.C., Buemi M., Spinelli F. Femoro-Distal Bypass with Varicose Veins Covered by Prosthetic Mesh. J. Surg. Res. 2011;168:e189–e194. doi: 10.1016/j.jss.2010.12.024. PubMed DOI

Berard X., Brizzi V., Mayeux S., Sassoust G., Biscay D., Ducasse E., Bordenave L., Corpataux J.M., Midy D. Salvage Treatment for Venous Aneurysm Complicating Vascular Access Arteriovenous Fistula: Use of an Exoprosthesis to Reinforce the Vein after Aneurysmorrhaphy. Eur. J. Vasc. Endovasc. Surg. 2010;40:100–106. doi: 10.1016/j.ejvs.2010.01.021. PubMed DOI

Rokošný S., Baláž P., Wohlfahrt P., Palouš D., Janoušek L. Reinforced Aneurysmorrhaphy for True Aneurysmal Haemodialysis Vascular Access. Eur. J. Vasc. Endovasc. Surg. 2014;47:444–450. doi: 10.1016/j.ejvs.2014.01.010. PubMed DOI

Chemla E., Velazquez C.C., D’Abate F., Ramachandran V., Maytham G. Arteriovenous fistula construction with the VasQ™ external support device: A pilot study. J. Vasc. Access. 2016;17:243–248. doi: 10.5301/jva.5000527. PubMed DOI

Matoussevitch V., Kalmykov E., Shahverdyan R. Novel external stenting for reconstruction of high flow arteriovenous fistula. J. Vasc. Access. 2022;23:864–870. doi: 10.1177/11297298211015508. PubMed DOI

Vaes R.H., Wouda R., van Loon M., van Hoek F., Tordoir J.H., Scheltinga M.R. Effectiveness of surgical banding for high flow in brachial artery-based hemodialysis vascular access. J. Vasc. Surg. 2015;61:762–766. doi: 10.1016/j.jvs.2014.09.034. PubMed DOI

Kuemmerli C., Habrina D., Puchner S., Laminger F., Werzowa J., Roka S. Primary External Stenting of an Autogenous Brachial-Basilic Upper Arm Transposition. Ann. Vasc. Surg. 2020;65:288.e1–288.e4. doi: 10.1016/j.avsg.2019.11.033. PubMed DOI

Dashwood M.R., Loesch A. The saphenous vein as a bypass conduit: The potential role of vascular nerves in graft performance. Curr. Vasc. Pharmacol. 2009;7:47–57. doi: 10.2174/157016109787354132. PubMed DOI

Cooley B.C. Murine Model of Neointimal Formation and Stenosis in Vein Grafts. Arterioscler. Thromb. Vasc. Biol. 2004;24:1180–1185. doi: 10.1161/01.ATV.0000129330.19057.9f. PubMed DOI

Zwolak R.M., Adams M.C., Clowes A.W. Kinetics of vein graft hyperplasia: Association with tangential stress. J. Vasc. Surg. 1987;5:126–136. doi: 10.1016/0741-5214(87)90203-5. PubMed DOI

Wong A.P., Nili N., Jackson Z.S., Qiang B., Leong-Poi H., Jaffe R., Raanani E., Connelly P.W., Sparkes J.D., Strauss B.H. Expansive remodeling in venous bypass grafts: Novel implications for vein graft disease. Atherosclerosis. 2008;196:580–589. doi: 10.1016/j.atherosclerosis.2007.06.029. PubMed DOI

Tian X.D., Zhou N.K., Li B.J., Xiao C.S., Liu X., Liang C.Y., Zhang T., Gao C.Q. Effects and mechanisms of non-restrictive external stent for prevention of vein graft restenosis in a rabbit model. Chin. Med. J. 2010;123:2400–2404. PubMed

You Q., Duan L., Wang F., Du X., Xiao M. Characterization of the inhibition of vein graft intimal hyperplasia by a biodegradable vascular stent. Cell Biochem. Biophys. 2011;59:99–107. doi: 10.1007/s12013-010-9118-8. PubMed DOI

Karayannacos P.E., Hostetler J.R., Bond M.G., Kakos G.S., Williams R.A., Kilman J.W., Vasko J.S. Late failure in vein grafts: Mediating factors in subendothelial fibromuscular hyperplasia. Ann. Surg. 1978;187:183–188. doi: 10.1097/00000658-197802000-00016. PubMed DOI PMC

Barra J.A., Volant A., Leroy J.P., Braesco J., Airiau J., Boschat J., Blanc J.J., Penther P. Constrictive perivenous mesh prosthesis for preservation of vein integrity. Experimental results and application for coronary bypass grafting. J. Thorac. Cardiovasc. Surg. 1986;92:330–336. doi: 10.1016/S0022-5223(19)35786-1. PubMed DOI

Goldstein R.L., McCormack M.C., Mallidi S., Runyan G., Randolph M.A., Austen W.G., Jr., Redmond R.W. Photochemical Tissue Passivation of Arteriovenous Grafts Prevents Long-Term Development of Intimal Hyperplasia in a Swine Model. J. Surg. Res. 2020;253:280–287. doi: 10.1016/j.jss.2020.03.006. PubMed DOI

Nantsios A., Vo T.X., Ruel M. Commentary: External stenting of saphenous vein grafts-reinVESTing to achieve best returns in coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2022;164:1542–1543. doi: 10.1016/j.jtcvs.2021.04.032. PubMed DOI

Zwischenberger B.A., Gaudino M. Commentary: A device solution for the saphenous vein graft’s infamous foible? J. Thorac. Cardiovasc. Surg. 2022;164:1543–1545. doi: 10.1016/j.jtcvs.2021.04.045. PubMed DOI

Conte M.S., Bandyk D.F., Clowes A.W., Moneta G.L., Seely L., Lorenz T.J., Namini H., Hamdan A.D., Roddy S.P., Belkin M., et al. Results of PREVENT III: A multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J. Vasc. Surg. 2006;43:742–751; discussion 751. doi: 10.1016/j.jvs.2005.12.058. PubMed DOI

Alexander J.H., Hafley G., Harrington R.A., Peterson E.D., Ferguson T.B., Jr., Lorenz T.J., Goyal A., Gibson M., Mack M.J., Gennevois D., et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: A randomized controlled trial. JAMA. 2005;294:2446–2454. doi: 10.1001/jama.294.19.2446. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...