External Support of Autologous Internal Jugular Vein Grafts with FRAME Mesh in a Porcine Carotid Artery Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-02-00068
Agentura Pro Zdravotnický Výzkum České Republiky
LX22NPO5104
Ministry of Education Youth and Sports
PubMed
38927542
PubMed Central
PMC11201386
DOI
10.3390/biomedicines12061335
PII: biomedicines12061335
Knihovny.cz E-zdroje
- Klíčová slova
- autologous vein graft, blood vessel prosthesis, carotid artery, external stent, pig,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Autologous vein grafts are widely used for bypass procedures in cardiovascular surgery. However, these grafts are susceptible to failure due to vein graft disease. Our study aimed to evaluate the impact of the latest-generation FRAME external support on vein graft remodeling in a preclinical model. METHODS: We performed autologous internal jugular vein interposition grafting in porcine carotid arteries for one month. Four grafts were supported with a FRAME mesh, while seven unsupported grafts served as controls. The conduits were examined through flowmetry, angiography, macroscopy, and microscopy. RESULTS: The one-month patency rate of FRAME-supported grafts was 100% (4/4), whereas that of unsupported controls was 43% (3/7, Log-rank p = 0.071). On explant angiography, FRAME grafts exhibited significantly more areas with no or mild stenosis (9/12) compared to control grafts (3/21, p = 0.0009). Blood flow at explantation was higher in the FRAME grafts (145 ± 51 mL/min) than in the controls (46 ± 85 mL/min, p = 0.066). Area and thickness of neo-intimal hyperplasia (NIH) at proximal anastomoses were similar for the FRAME and the control groups: 5.79 ± 1.38 versus 6.94 ± 1.10 mm2, respectively (p = 0.558) and 480 ± 95 vs. 587 ± 52 μm2/μm, respectively (p = 0.401). However, in the midgraft portions, the NIH area and thickness were significantly lower in the FRAME group than in the control group: 3.73 ± 0.64 vs. 6.27 ± 0.64 mm2, respectively (p = 0.022) and 258 ± 49 vs. 518 ± 36 μm2/μm, respectively (p = 0.0002). CONCLUSIONS: In our porcine model, the external mesh FRAME improved the patency of vein-to-carotid artery grafts and protected them from stenosis, particularly in the mid regions. The midgraft neo-intimal hyperplasia was two-fold thinner in the meshed grafts than in the controls.
Zobrazit více v PubMed
de Vries M.R., Simons K.H., Jukema J.W., Braun J., Quax P.H. Vein graft failure: From pathophysiology to clinical outcomes. Nat. Rev. Cardiol. 2016;13:451–470. doi: 10.1038/nrcardio.2016.76. PubMed DOI
Martínez-González B., Reyes-Hernández C.G., Quiroga-Garza A., Rodríguez-Rodríguez V.E., Esparza-Hernández C.N., Elizondo-Omaña R.E., Guzmán-López S. Conduits Used in Coronary Artery Bypass Grafting: A Review of Morphological Studies. Ann. Thorac. Cardiovasc. Surg. 2017;23:55–65. doi: 10.5761/atcs.ra.16-00178. PubMed DOI PMC
Thomas A.C. Animal models for studying vein graft failure and therapeutic interventions. Curr. Opin. Pharmacol. 2012;12:121–126. doi: 10.1016/j.coph.2012.01.002. PubMed DOI
Guida G., Ward A.O., Bruno V.D., George S.J., Caputo M., Angelini G.D., Zakkar M. Saphenous vein graft disease, pathophysiology, prevention, and treatment. A review of the literature. J. Card. Surg. 2020;35:1314–1321. doi: 10.1111/jocs.14542. PubMed DOI
Samano N., Geijer H., Liden M., Fremes S., Bodin L., Souza D. The no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: A randomized trial. J. Thorac. Cardiovasc. Surg. 2015;150:880–888. doi: 10.1016/j.jtcvs.2015.07.027. PubMed DOI
Weltert L.P., Wolf L.G., Garufi L., Scaffa R., Salica A., Ricci A., Irace F.G., Fusca S., D’Aleo S., Chirichilli I., et al. External Stents for Vein Grafts in Coronary Artery Bypass Grafting: Targeting Intimal Hyperplasia. Surg. Technol. Int. 2020;35:197–201. PubMed
Nitecki S., Yosef L., Tozzi M., Shofti R. Inhibition of vein graft remodeling and neo-intimal formation using a cobalt chrome external support. Arch. Clin. Exp. Surg. 2018;7:108–115. doi: 10.5455/aces.20171128090019. DOI
Fashina O., Abbasciano R.G., McQueen L.W., Ladak S., George S.J., Suleiman S., Punjabi P.P., Angelini G.D., Zakkar M. Large animal model of vein grafts intimal hyperplasia: A systematic review. Perfusion. 2023;38:894–930. doi: 10.1177/02676591221091200. PubMed DOI
Gemelli M., Gallo M., Addonizio M., Pahwa S., Van den Eynde J., Trivedi J., Slaughter M.S., Gerosa G. Venous External Support in Coronary Artery Bypass Surgery: A Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2023;48:101687. doi: 10.1016/j.cpcardiol.2023.101687. PubMed DOI
Emmert M.Y., Bonatti J., Caliskan E., Gaudino M., Grabenwöger M., Grapow M.T., Heinisch P.P., Kieser-Prieur T., Kim K.-B., Kiss A., et al. Consensus statement—Graft treatment in cardiovascular bypass graft surgery. Front. Cardiovasc. Med. 2024;11:1285685. doi: 10.3389/fcvm.2024.1285685. PubMed DOI PMC
Hu J., Wan S. External support in preventing vein graft failure. Asian Cardiovasc. Thorac. Ann. 2012;20:615–622. doi: 10.1177/0218492312456980. PubMed DOI
Goldstein D.J. Device profile of the VEST for external support of SVG Coronary artery bypass grafting: Historical development, current status, and future directions. Expert Rev. Med. Devices. 2021;18:921–931. doi: 10.1080/17434440.2021.1960504. PubMed DOI
Soletti G.J., Dell’Aquila M., Harik L., Cancelli G., Alzghari T., Perezgrovas-Olaria R., Dimagli A., An K.R., Leith J., Rossi C.S., et al. The VEST External Support for Saphenous Vein Grafts in Coronary Surgery: A Review of Randomized Clinical Trials. J. Cardiovasc. Dev. Dis. 2023;10:453. doi: 10.3390/jcdd10110453. PubMed DOI PMC
Vigliotti R.C., Montelione N., Franceschi F., Franceschini E., Zardi E., Spinelli F., Stilo F. Externally Supported Extra-anatomical Venous Bypass to Treat Upper Limb Ischemia with Shoulder Prosthetic Infection. Ann. Vasc. Surg. 2020;69:453.e5–453.e10. doi: 10.1016/j.avsg.2020.07.002. PubMed DOI
Ciftci Ü., Marti R., Fahrni J., Gähwiler R., Thalhammer C., Gürke L., Isaak A. External stenting and disease progression in vein grafts 1 year after open surgical repair of popliteal artery aneurysm. J. Vasc. Surg. 2021;74:521–527. doi: 10.1016/j.jvs.2021.01.046. PubMed DOI
Chlupac J., Matejka R., Konarik M., Novotny R., Simunkova Z., Mrazova I., Fabian O., Zapletal M., Pulda Z., Lipensky J.F., et al. Vascular Remodeling of Clinically Used Patches and Decellularized Pericardial Matrices Recellularized with Autologous or Allogeneic Cells in a Porcine Carotid Artery Model. Int. J. Mol. Sci. 2022;23:3310. doi: 10.3390/ijms23063310. PubMed DOI PMC
Góes A.M.O., Chaves R.H.F., Furlaneto I.P., Rodrigues E.M., de Albuquerque F.B.A., Smit J.H.A., de Oliveira C.P., Abib S.C.V. Comparative angiotomographic study of swine vascular anatomy: Contributions to research and training models in vascular and endovascular surgery. J. Vasc. Bras. 2021;20:e20200086. doi: 10.1590/1677-5449.200086. PubMed DOI PMC
FRAME TM External Support for Peripheral Vascular Reconstructions. [(accessed on 27 July 2023)]. Available online: https://www.cardion.cz/file/1466/lb461-rev02-frame-product-page.pdf.
Mrowczynski W., Mugnai D., de Valence S., Tille J.C., Khabiri E., Cikirikcioglu M., Moller M., Walpoth B.H. Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis. J. Vasc. Surg. 2014;59:210–219. doi: 10.1016/j.jvs.2013.03.004. PubMed DOI
Bankhead P., Loughrey M.B., Fernández J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017;7:16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC
Angelini G.D., Lloyd C., Bush R., Johnson J., Newby A.C. An external, oversized, porous polyester stent reduces vein graft neointima formation, cholesterol concentration, and vascular cell adhesion molecule 1 expression in cholesterol-fed pigs. J. Thorac. Cardiovasc. Surg. 2002;124:950–956. doi: 10.1067/mtc.2002.127004. PubMed DOI
Moodley L., Franz T., Human P., Wolf M.F., Bezuidenhout D., Scherman J., Zilla P. Protective constriction of coronary vein grafts with knitted nitinol. Eur. J. Cardio Thorac. Surg. 2013;44:64–71. doi: 10.1093/ejcts/ezs670. PubMed DOI PMC
Rippstein P., Black M.K., Boivin M., Veinot J.P., Ma X., Chen Y.X., Human P., Zilla P., O’Brien E.R. Comparison of processing and sectioning methodologies for arteries containing metallic stents. J. Histochem. Cytochem. 2006;54:673–681. doi: 10.1369/jhc.5A6824.2006. PubMed DOI
Honetschlägerová Z., Husková Z., Kikerlová S., Sadowski J., Kompanowska-Jezierska E., Táborský M., Vaňourková Z., Kujal P., Červenka L. Renal sympathetic denervation improves pressure-natriuresis relationship in cardiorenal syndrome: Insight from studies with Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula. Hypertens. Res. 2024;47:998–1016. doi: 10.1038/s41440-024-01583-0. PubMed DOI PMC
Kolesová H., Bartoš M., Hsieh W.C., Olejníčková V., Sedmera D. Novel approaches to study coronary vasculature development in mice. Dev. Dyn. 2018;247:1018–1027. doi: 10.1002/dvdy.24637. PubMed DOI
Kolesová H., Čapek M., Radochová B., Janáček J., Sedmera D. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochem. Cell Biol. 2016;146:141–152. doi: 10.1007/s00418-016-1441-8. PubMed DOI
Sochman J., Peregrin J.H., Pavcnik D., Uchida B.T., Timmermans H.A., Sedmera D., Benada O., Kofronova O., Keller F.S., Rosch J. Reverse endoventricular artificial obturator in tricuspid valve position. Experimental feasibility research study. Physiol. Res. 2014;63:157–165. doi: 10.33549/physiolres.932580. PubMed DOI
Zilla P., Moodley L., Scherman J., Krynauw H., Kortsmit J., Human P., Wolf M.F., Franz T. Remodeling leads to distinctly more intimal hyperplasia in coronary than in infrainguinal vein grafts. J. Vasc. Surg. 2012;55:1734–1741. doi: 10.1016/j.jvs.2011.11.057. PubMed DOI
Chen S.J., Wilson J.M., Muller D.W. Adenovirus-mediated gene transfer of soluble vascular cell adhesion molecule to porcine interposition vein grafts. Circulation. 1994;89:1922–1928. doi: 10.1161/01.cir.89.5.1922. PubMed DOI
Bartels C., Erasmi A., Sayk F., Eggers R., Dendorfer A., Feyerabend T., Eichler W., Sievers H.H. Prophylactic gamma radiation of unaffected vein grafts failed to prevent vein graft disease in a chronic hypercholesterolemic porcine model. Eur. J. Cardiothorac. Surg. 2003;24:92–97. doi: 10.1016/s1010-7940(03)00173-8. PubMed DOI
Jevon M., Ansari T.I., Finch J., Zakkar M., Evans P.C., Shurey S., Sibbons P.D., Hornick P., Haskard D.O., Dorling A. Smooth muscle cells in porcine vein graft intimal hyperplasia are derived from the local vessel wall. Cardiovasc. Pathol. 2011;20:e91–e94. doi: 10.1016/j.carpath.2010.04.003. PubMed DOI
Quint C., Kondo Y., Manson R.J., Lawson J.H., Dardik A., Niklason L.E. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Natl. Acad. Sci. USA. 2011;108:9214–9219. doi: 10.1073/pnas.1019506108. PubMed DOI PMC
Thim T., Hagensen M.K., Hørlyck A., Drouet L., Paaske W.P., Bøtker H.E., Falk E. Oversized vein grafts develop advanced atherosclerosis in hypercholesterolemic minipigs. BMC Cardiovasc. Disord. 2012;12:24. doi: 10.1186/1471-2261-12-24. PubMed DOI PMC
Kibbe M.R., Tzeng E., Gleixner S.L., Watkins S.C., Kovesdi I., Lizonova A., Makaroun M.S., Billiar T.R., Rhee R.Y. Adenovirus-mediated gene transfer of human inducible nitric oxide synthase in porcine vein grafts inhibits intimal hyperplasia. J. Vasc. Surg. 2001;34:156–165. doi: 10.1067/mva.2001.113983. PubMed DOI
El-Kurdi M.S., Hong Y., Stankus J.J., Soletti L., Wagner W.R., Vorp D.A. Transient elastic support for vein grafts using a constricting microfibrillar polymer wrap. Biomaterials. 2008;29:3213–3220. doi: 10.1016/j.biomaterials.2008.04.009. PubMed DOI PMC
Angelini G.D., Bryan A.J., Williams H.M., Soyombo A.A., Williams A., Tovey J., Newby A.C. Time-course of medial and intimal thickening in pig venous arterial grafts: Relationship to endothelial injury and cholesterol accumulation. J. Thorac. Cardiovasc. Surg. 1992;103:1093–1103. doi: 10.1016/S0022-5223(19)34873-1. PubMed DOI
Angelini G.D., Bryan A.J., Williams H.M., Morgan R., Newby A.C. Distention promotes platelet and leukocyte adhesion and reduces short-term patency in pig arteriovenous bypass grafts. J. Thorac. Cardiovasc. Surg. 1990;99:433–439. doi: 10.1016/S0022-5223(19)36973-9. PubMed DOI
Angelini G.D., Izzat M.B., Bryan A.J., Newby A.C. External stenting reduces early medial and neointimal thickening in a pig model of arteriovenous bypass grafting. J. Thorac. Cardiovasc. Surg. 1996;112:79–84. doi: 10.1016/s0022-5223(96)70180-0. PubMed DOI
Isaji T., Hashimoto T., Yamamoto K., Santana J.M., Yatsula B., Hu H., Bai H., Jianming G., Kudze T., Nishibe T., et al. Improving the Outcome of Vein Grafts: Should Vascular Surgeons Turn Veins into Arteries? Ann. Vasc. Dis. 2017;10:8–16. doi: 10.3400/avd.ra.17-00008. PubMed DOI PMC
Conte M.S., Owens C.D., Belkin M., Creager M.A., Edwards K.L., Gasper W.J., Kenagy R.D., LeBoeuf R.C., Sobel M., Clowes A. A single nucleotide polymorphism in the p27(Kip1) gene is associated with primary patency of lower extremity vein bypass grafts. J. Vasc. Surg. 2013;57:1179–1185.E2. doi: 10.1016/j.jvs.2012.11.040. PubMed DOI PMC
Ramachandra A.B., Wang H., Wnorowski A., Schwarz E.L., Pickering J., Heiler J.C., Lucian H.J., Hironaka C.E., Tran N.A., Liu Y., et al. Biodegradable external wrapping promotes favorable adaptation in an ovine vein graft model. Acta Biomater. 2022;151:414–425. doi: 10.1016/j.actbio.2022.08.029. PubMed DOI PMC
Zilla P., Human P., Wolf M., Lichtenberg W., Rafiee N., Bezuidenhout D., Samodien N., Schmidt C., Franz T. Constrictive external nitinol meshes inhibit vein graft intimal hyperplasia in nonhuman primates. J. Thorac. Cardiovasc. Surg. 2008;136:717–725. doi: 10.1016/j.jtcvs.2008.02.068. PubMed DOI
Zilla P., Moodley L., Wolf M.F., Bezuidenhout D., Sirry M.S., Rafiee N., Lichtenberg W., Black M., Franz T. Knitted nitinol represents a new generation of constrictive external vein graft meshes. J. Vasc. Surg. 2011;54:1439–1450. doi: 10.1016/j.jvs.2011.05.023. PubMed DOI
Parsonnet V., Lari A.A., Shah I.H. New Stent For Support of Veins in Arterial GRAFTS. Arch. Surg. 1963;87:696–702. doi: 10.1001/archsurg.1963.01310160158031. PubMed DOI
Batellier J., Wassef M., Merval R., Duriez M., Tedgui A. Protection from atherosclerosis in vein grafts by a rigid external support. Arterioscler. Thromb. 1993;13:379–384. doi: 10.1161/01.atv.13.3.379. PubMed DOI
Izzat M.B., Mehta D., Bryan A.J., Reeves B., Newby A.C., Angelini G.D. Influence of external stent size on early medial and neointimal thickening in a pig model of saphenous vein bypass grafting. Circulation. 1996;94:1741–1745. doi: 10.1161/01.cir.94.7.1741. PubMed DOI
Jeremy J.Y., Dashwood M.R., Mehta D., Izzat M.B., Shukla N., Angelini G.D. Nitric oxide, prostacyclin and cyclic nucleotide formation in externally stented porcine vein grafts. Atherosclerosis. 1998;141:297–305. doi: 10.1016/s0021-9150(98)00183-x. PubMed DOI
Mehta D., George S.J., Jeremy J.Y., Izzat M.B., Southgate K.M., Bryan A.J., Newby A.C., Angelini G.D. External stenting reduces long-term medial and neointimal thickening and platelet derived growth factor expression in a pig model of arteriovenous bypass grafting. Nat. Med. 1998;4:235–239. doi: 10.1038/nm0298-235. PubMed DOI
Caro C., Jeremy J., Watkins N., Bulbulia R., Angelini G., Smith F., Wan S., Yim A., Sherwin S., Peiró J., et al. The geometry of unstented and stented pig common carotid artery bypass grafts. Biorheology. 2002;39:507–512. PubMed
Jeremy J.Y., Bulbulia R., Johnson J.L., Gadsdon P., Vijayan V., Shukla N., Smith F.C., Angelini G.D. A bioabsorbable (polyglactin), nonrestrictive, external sheath inhibits porcine saphenous vein graft thickening. J. Thorac. Cardiovasc. Surg. 2004;127:1766–1772. doi: 10.1016/j.jtcvs.2003.09.054. PubMed DOI
Vijayan V., Shukla N., Johnson J.L., Gadsdon P., Angelini G.D., Smith F.C., Baird R., Jeremy J.Y. Long-term reduction of medial and intimal thickening in porcine saphenous vein grafts with a polyglactin biodegradable external sheath. J. Vasc. Surg. 2004;40:1011–1019. doi: 10.1016/j.jvs.2004.08.047. PubMed DOI
Human P., Franz T., Scherman J., Moodley L., Zilla P. Dimensional analysis of human saphenous vein grafts: Implications for external mesh support. J. Thorac. Cardiovasc. Surg. 2009;137:1101–1108. doi: 10.1016/j.jtcvs.2008.10.040. PubMed DOI
Zilla P., Wolf M., Rafiee N., Moodley L., Bezuidenhout D., Black M., Human P., Franz T. Utilization of shape memory in external vein-graft meshes allows extreme diameter constriction for suppressing intimal hyperplasia: A non-human primate study. J. Vasc. Surg. 2009;49:1532–1542. doi: 10.1016/j.jvs.2009.01.068. PubMed DOI
Franz T., Human P., Dobner S., Reddy B.D., Black M., Ilsley H., Wolf M.F., Bezuidenhout D., Moodley L., Zilla P. Tailored sizes of constrictive external vein meshes for coronary artery bypass surgery. Biomaterials. 2010;31:9301–9309. doi: 10.1016/j.biomaterials.2010.08.054. PubMed DOI
Zilla P., Bezuidenhout D., Human P. Prosthetic vascular grafts: Wrong models, wrong questions and no healing. Biomaterials. 2007;28:5009–5027. doi: 10.1016/j.biomaterials.2007.07.017. PubMed DOI
Ben-Gal Y., Taggart D.P., Williams M.R., Orion E., Uretzky G., Shofti R., Banai S., Yosef L., Bolotin G. Expandable external support device to improve Saphenous Vein Graft Patency after CABG. J. Cardiothorac. Surg. 2013;8:122. doi: 10.1186/1749-8090-8-122. PubMed DOI PMC
Murphy G.J., Newby A.C., Jeremy J.Y., Baumbach A., Angelini G.D. A randomized trial of an external Dacron sheath for the prevention of vein graft disease: The Extent study. J. Thorac. Cardiovasc. Surg. 2007;134:504–505. doi: 10.1016/j.jtcvs.2007.01.092. PubMed DOI
Emery R.W., Solien E., Klima U. Clinical Evaluation of the eSVS Mesh: First-In-Man Trial Outcomes. ASAIO J. 2015;61:178–183. doi: 10.1097/mat.0000000000000187. PubMed DOI
Inderbitzin D.T., Bremerich J., Matt P., Grapow M.T., Eckstein F.S., Reuthebuch O. One-year patency control and risk analysis of eSVS®-mesh-supported coronary saphenous vein grafts. J. Cardiothorac. Surg. 2015;10:108. doi: 10.1186/s13019-015-0293-y. PubMed DOI PMC
Taggart D.P., Ben Gal Y., Lees B., Patel N., Webb C., Rehman S.M., Desouza A., Yadav R., De Robertis F., Dalby M., et al. A Randomized Trial of External Stenting for Saphenous Vein Grafts in Coronary Artery Bypass Grafting. Ann. Thorac. Surg. 2015;99:2039–2045. doi: 10.1016/j.athoracsur.2015.01.060. PubMed DOI
Taggart D.P., Gavrilov Y., Krasopoulos G., Rajakaruna C., Zacharias J., De Silva R., Channon K.M., Gehrig T., Donovan T.J., Friedrich I., et al. External stenting and disease progression in saphenous vein grafts two years after coronary artery bypass grafting: A multicenter randomized trial. J. Thorac. Cardiovasc. Surg. 2022;164:1532–1541.e2. doi: 10.1016/j.jtcvs.2021.03.120. PubMed DOI
Goldstein D.J., Puskas J.D., Alexander J.H., Chang H.L., Gammie J.S., Marks M.E., Iribarne A., Vengrenyuk Y., Raymond S., Taylor B.S., et al. External Support for Saphenous Vein Grafts in Coronary Artery Bypass Surgery: A Randomized Clinical Trial. JAMA Cardiol. 2022;7:808–816. doi: 10.1001/jamacardio.2022.1437. PubMed DOI PMC
Taggart D.P., Webb C.M., Desouza A., Yadav R., Channon K.M., De Robertis F., Di Mario C. Long-term performance of an external stent for saphenous vein grafts: The VEST IV trial. J. Cardiothorac. Surg. 2018;13:117. doi: 10.1186/s13019-018-0803-9. PubMed DOI PMC
Chen H., Wang Z., Si K., Wu X., Ni H., Tang Y., Liu W., Wang Z. External stenting for saphenous vein grafts in coronary artery bypass grafting: A meta-analysis. Eur. J. Clin. Investig. 2023;53:e14046. doi: 10.1111/eci.14046. PubMed DOI
Soletti G.J., Dimagli A., Harik L., Cancelli G., Perezgrovas-Olaria R., Alzghari T., Dell’Aquila M., Leith J., Castagnini S., Lau C., et al. External Stenting for Saphenous Vein Grafts in Coronary Surgery: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023;12:7395. doi: 10.3390/jcm12237395. PubMed DOI PMC
Arvela E., Kauhanen P., Albäck A., Lepäntalo M., Neufang A., Adili F., Schmitz-Rixen T. Initial Experience with a New Method of External Polyester Scaffolding for Infrainguinal Vein Grafts. Eur. J. Vasc. Endovasc. Surg. 2009;38:456–462. doi: 10.1016/j.ejvs.2009.05.015. PubMed DOI
Carella G.S., Stilo F., Benedetto F., David A., Risitano D.C., Buemi M., Spinelli F. Femoro-Distal Bypass with Varicose Veins Covered by Prosthetic Mesh. J. Surg. Res. 2011;168:e189–e194. doi: 10.1016/j.jss.2010.12.024. PubMed DOI
Berard X., Brizzi V., Mayeux S., Sassoust G., Biscay D., Ducasse E., Bordenave L., Corpataux J.M., Midy D. Salvage Treatment for Venous Aneurysm Complicating Vascular Access Arteriovenous Fistula: Use of an Exoprosthesis to Reinforce the Vein after Aneurysmorrhaphy. Eur. J. Vasc. Endovasc. Surg. 2010;40:100–106. doi: 10.1016/j.ejvs.2010.01.021. PubMed DOI
Rokošný S., Baláž P., Wohlfahrt P., Palouš D., Janoušek L. Reinforced Aneurysmorrhaphy for True Aneurysmal Haemodialysis Vascular Access. Eur. J. Vasc. Endovasc. Surg. 2014;47:444–450. doi: 10.1016/j.ejvs.2014.01.010. PubMed DOI
Chemla E., Velazquez C.C., D’Abate F., Ramachandran V., Maytham G. Arteriovenous fistula construction with the VasQ™ external support device: A pilot study. J. Vasc. Access. 2016;17:243–248. doi: 10.5301/jva.5000527. PubMed DOI
Matoussevitch V., Kalmykov E., Shahverdyan R. Novel external stenting for reconstruction of high flow arteriovenous fistula. J. Vasc. Access. 2022;23:864–870. doi: 10.1177/11297298211015508. PubMed DOI
Vaes R.H., Wouda R., van Loon M., van Hoek F., Tordoir J.H., Scheltinga M.R. Effectiveness of surgical banding for high flow in brachial artery-based hemodialysis vascular access. J. Vasc. Surg. 2015;61:762–766. doi: 10.1016/j.jvs.2014.09.034. PubMed DOI
Kuemmerli C., Habrina D., Puchner S., Laminger F., Werzowa J., Roka S. Primary External Stenting of an Autogenous Brachial-Basilic Upper Arm Transposition. Ann. Vasc. Surg. 2020;65:288.e1–288.e4. doi: 10.1016/j.avsg.2019.11.033. PubMed DOI
Dashwood M.R., Loesch A. The saphenous vein as a bypass conduit: The potential role of vascular nerves in graft performance. Curr. Vasc. Pharmacol. 2009;7:47–57. doi: 10.2174/157016109787354132. PubMed DOI
Cooley B.C. Murine Model of Neointimal Formation and Stenosis in Vein Grafts. Arterioscler. Thromb. Vasc. Biol. 2004;24:1180–1185. doi: 10.1161/01.ATV.0000129330.19057.9f. PubMed DOI
Zwolak R.M., Adams M.C., Clowes A.W. Kinetics of vein graft hyperplasia: Association with tangential stress. J. Vasc. Surg. 1987;5:126–136. doi: 10.1016/0741-5214(87)90203-5. PubMed DOI
Wong A.P., Nili N., Jackson Z.S., Qiang B., Leong-Poi H., Jaffe R., Raanani E., Connelly P.W., Sparkes J.D., Strauss B.H. Expansive remodeling in venous bypass grafts: Novel implications for vein graft disease. Atherosclerosis. 2008;196:580–589. doi: 10.1016/j.atherosclerosis.2007.06.029. PubMed DOI
Tian X.D., Zhou N.K., Li B.J., Xiao C.S., Liu X., Liang C.Y., Zhang T., Gao C.Q. Effects and mechanisms of non-restrictive external stent for prevention of vein graft restenosis in a rabbit model. Chin. Med. J. 2010;123:2400–2404. PubMed
You Q., Duan L., Wang F., Du X., Xiao M. Characterization of the inhibition of vein graft intimal hyperplasia by a biodegradable vascular stent. Cell Biochem. Biophys. 2011;59:99–107. doi: 10.1007/s12013-010-9118-8. PubMed DOI
Karayannacos P.E., Hostetler J.R., Bond M.G., Kakos G.S., Williams R.A., Kilman J.W., Vasko J.S. Late failure in vein grafts: Mediating factors in subendothelial fibromuscular hyperplasia. Ann. Surg. 1978;187:183–188. doi: 10.1097/00000658-197802000-00016. PubMed DOI PMC
Barra J.A., Volant A., Leroy J.P., Braesco J., Airiau J., Boschat J., Blanc J.J., Penther P. Constrictive perivenous mesh prosthesis for preservation of vein integrity. Experimental results and application for coronary bypass grafting. J. Thorac. Cardiovasc. Surg. 1986;92:330–336. doi: 10.1016/S0022-5223(19)35786-1. PubMed DOI
Goldstein R.L., McCormack M.C., Mallidi S., Runyan G., Randolph M.A., Austen W.G., Jr., Redmond R.W. Photochemical Tissue Passivation of Arteriovenous Grafts Prevents Long-Term Development of Intimal Hyperplasia in a Swine Model. J. Surg. Res. 2020;253:280–287. doi: 10.1016/j.jss.2020.03.006. PubMed DOI
Nantsios A., Vo T.X., Ruel M. Commentary: External stenting of saphenous vein grafts-reinVESTing to achieve best returns in coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2022;164:1542–1543. doi: 10.1016/j.jtcvs.2021.04.032. PubMed DOI
Zwischenberger B.A., Gaudino M. Commentary: A device solution for the saphenous vein graft’s infamous foible? J. Thorac. Cardiovasc. Surg. 2022;164:1543–1545. doi: 10.1016/j.jtcvs.2021.04.045. PubMed DOI
Conte M.S., Bandyk D.F., Clowes A.W., Moneta G.L., Seely L., Lorenz T.J., Namini H., Hamdan A.D., Roddy S.P., Belkin M., et al. Results of PREVENT III: A multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J. Vasc. Surg. 2006;43:742–751; discussion 751. doi: 10.1016/j.jvs.2005.12.058. PubMed DOI
Alexander J.H., Hafley G., Harrington R.A., Peterson E.D., Ferguson T.B., Jr., Lorenz T.J., Goyal A., Gibson M., Mack M.J., Gennevois D., et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: A randomized controlled trial. JAMA. 2005;294:2446–2454. doi: 10.1001/jama.294.19.2446. PubMed DOI