Renal sympathetic denervation improves pressure-natriuresis relationship in cardiorenal syndrome: insight from studies with Ren-2 transgenic hypertensive rats with volume overload induced using aorto-caval fistula
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38302775
PubMed Central
PMC10994851
DOI
10.1038/s41440-024-01583-0
PII: 10.1038/s41440-024-01583-0
Knihovny.cz E-zdroje
- Klíčová slova
- Ren-2 transgenic hypertensive rat, Renal autoregulation, Renal blood flow, Volume-overload heart failure, sodium excretion,
- MeSH
- hodnoty glomerulární filtrace MeSH
- hypertenze * MeSH
- kardiorenální syndrom * MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- ledviny MeSH
- natriuréza MeSH
- píštěle * MeSH
- potkani transgenní MeSH
- renální oběh MeSH
- srdeční selhání * MeSH
- sympatektomie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The aim was to evaluate the effects of renal denervation (RDN) on autoregulation of renal hemodynamics and the pressure-natriuresis relationship in Ren-2 transgenic rats (TGR) with aorto-caval fistula (ACF)-induced heart failure (HF). RDN was performed one week after creation of ACF or sham-operation. Animals were prepared for evaluation of autoregulatory capacity of renal blood flow (RBF) and glomerular filtration rate (GFR), and of the pressure-natriuresis characteristics after stepwise changes in renal arterial pressure (RAP) induced by aortic clamping. Their basal values of blood pressure and renal function were significantly lower than with innervated sham-operated TGR (p < 0.05 in all cases): mean arterial pressure (MAP) (115 ± 2 vs. 160 ± 3 mmHg), RBF (6.91 ± 0.33 vs. 10.87 ± 0.38 ml.min-1.g-1), urine flow (UF) (11.3 ± 1.79 vs. 43.17 ± 3.24 µl.min-1.g-1) and absolute sodium excretion (UNaV) (1.08 ± 0.27 vs, 6.38 ± 0.76 µmol.min-1.g-1). After denervation ACF TGR showed improved autoregulation of RBF: at lowest RAP level (80 mmHg) the value was higher than in innervated ACF TGR (6.92 ± 0.26 vs. 4.54 ± 0.22 ml.min-1.g-1, p < 0.05). Also, the pressure-natriuresis relationship was markedly improved after RDN: at the RAP of 80 mmHg UF equaled 4.31 ± 0.99 vs. 0.26 ± 0.09 µl.min-1.g-1 recorded in innervated ACF TGR, UNaV was 0.31 ± 0.05 vs. 0.04 ± 0.01 µmol min-1.g-1 (p < 0.05 in all cases). In conclusion, in our model of hypertensive rat with ACF-induced HF, RDN improved autoregulatory capacity of RBF and the pressure-natriuresis relationship when measured at the stage of HF decompensation.
Zobrazit více v PubMed
Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118:3272–87. doi: 10.1093/cvr/cvac013. PubMed DOI
Rangawwami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies. A scientific statement from the American Heart Association. Circulation. 2019;139:e840–e878. PubMed
McDonagh TS, Metra M, Adamo A, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Patel KP, Katsurada K, Zheng H. Cardiorenal Syndrome: The role of neural connections between the heart and the kidneys. Circ Res. 2022;130:1601–17. doi: 10.1161/CIRCRESAHA.122.319989. PubMed DOI PMC
McCullough PA, Amin A, Pantalone KM, Ronco C. Cardiorenal Nexus: A Review with focus on combined chronic heart and kidney failure, and insights from recent clinical trials. J Am Heart Assoc. 2022;11:e024139. doi: 10.1161/JAHA.121.024139. PubMed DOI PMC
Mullens W, Martens P, Testani JM, Tang WHW, Skouri H, Verbrugge FH, et al. Renal effects of guideline-directed medical therapies in heart failure: a consensus document from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2022;24:603–19. doi: 10.1002/ejhf.2471. PubMed DOI
Raby K, Rocco M, Oparil S, Gilbert ON, Upadhya B. Heart failure primary prevention: What does SPRINT Add?: Recent advances in hypertension. Hypertension. 2021;77:1804–14. doi: 10.1161/HYPERTENSIONAHA.121.16503. PubMed DOI PMC
Díez J, Butler J. Growing heart failure burden of hypertensive heart disease: a call to action. Hypertension. 2023;80:13–21. doi: 10.1161/HYPERTENSIONAHA.122.19373. PubMed DOI
Burnier M, Damianaki A. Hypertension as cardiovascular risk factor in chronic kidney disease. Circ Res. 2023;132:1050–63. doi: 10.1161/CIRCRESAHA.122.321762. PubMed DOI
Maeda D, Dotare T, Matsue Y, Teramoto K, Sunayama T, Tromp J, et al. Blood pressure in heart failure management and prevention. Hypertens Res. 2023;46:817–33. doi: 10.1038/s41440-022-01158-x. PubMed DOI
Hillege HL, Nitsch D, Pfeffer MA, Swedberg K, McMurray JJV, Yusuf S, et al. Renal function as a predictor of outcome in broad spectrum of patients with heart failure. Circulation. 2006;113:671–8. doi: 10.1161/CIRCULATIONAHA.105.580506. PubMed DOI
Mullens W, Damman K, Testani JM, Martens P, Mueller C, Lassus J, et al. Evaluation of kidney function throughout the heart failure trajectory – a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22:584–603. doi: 10.1002/ejhf.1697. PubMed DOI
Khayyat-Kholghi M, Oparil S, Davis BR, Tereshchenko LG. Worsening kidney function is the major mechanism of heart failure in hypertension. The ALLHAT study. J Am Coll Cardiol HF. 2021;9:100–11. PubMed PMC
Barger AC, Muldowney FP, Liebowitz MR. Role of the kidney in the pathogenesis of congestive heart failure. Circulation. 1959;20:273–85. doi: 10.1161/01.CIR.20.2.273. PubMed DOI
Hostetter TH, Pfeffer JM, Pfeffer MA, Dworkin LD, Braunwald E, Brenner BM. Cardiorenal hemodynamics and sodium excretion in rats with myocardial infarction. Am J Physiol. 1983;245:H98–H103. PubMed
Ichikawa I, Pfeffer JM, Pfeffer MA, Hostetter TH, Brenner BM. Role of angiotensin II in the altered renal function of congestive heart failure. Circ Res. 1984;55:669–75. doi: 10.1161/01.RES.55.5.669. PubMed DOI
Stanton RC, Brenner BM. Role of kidney in congestive heart failure. Acta Med Scand. 1986;707:21–25. doi: 10.1111/j.0954-6820.1986.tb18110.x. PubMed DOI
Navas JP, Martinez-Maldonado M. Pathophysiology of edema in congestive heart failure. Heart Dis Stroke. 1993;2:325–9. PubMed
Rasool A, Palevsky PM. Treatment of edematous disorders with diuretics. Am J Med Sci. 2000;319:25–37. doi: 10.1097/00000441-200001000-00003. PubMed DOI
Johns EJ, Kopp UC, DiBona GF. Neural control of renal function. Compr Physiol. 2011;1:731–67. doi: 10.1002/cphy.c100043. PubMed DOI
Osborn JW, Tyshynsky R, Vulchanova L. Function of renal nerves in kidney physiology and pathophysiology. Annu Rev Physiol. 2021;83:429–50. doi: 10.1146/annurev-physiol-031620-091656. PubMed DOI
Antoine S, Vaidya G, Imam H, Villarreal D. Pathophysiologic mechanisms in heart failure: role of the sympathetic nervous system. Am J Med Sci. 2017;353:27–30. doi: 10.1016/j.amjms.2016.06.016. PubMed DOI
Roubsanthisuk W, Kunanon S, Chattranukulchai P, Panchavinnin P, Wongpraparut N, Chaipromprasit J, et al. 2022 Renal denervation therapy for the treatment of hypertension: a statement from the Thai Hypertension Society. Hypertens Res. 2023;46:898–912. doi: 10.1038/s41440-022-01133-6. PubMed DOI PMC
Sesa-Ashton G, Nolde JM, Muente I, Carnagarin R, Lee R, Macefield VG, et al. Catheter-based renal denervation: 9-year follow-up data on safety and blood pressure reduction in patients with resistant hypertension. Hypertension. 2023;80:811–9. doi: 10.1161/HYPERTENSIONAHA.122.20853. PubMed DOI
Barbato E, Azizi M, Schmieder RE, Lauder L, Böhm M, Brouwers S, et al. Renal denervation in the management of hypertension in adults. A clinical consensus statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI) Eur Heart J. 2023;44:1313–30. doi: 10.1093/eurheartj/ehad054. PubMed DOI
Katsurada K, Shinohara K, Aoki J, Nanto S, Kario K. Renal denervation: basic and clinical evidence. Hypertens Res. 2022;45:198–209. doi: 10.1038/s41440-021-00827-7. PubMed DOI
Mahfoud F, Mancia G, Schmieder RE, Ruilope L, Narkiewicz K, Schlaich M, et al. Cardiovascular risk reduction after renal denervation according to time in therapeutic systolic blood pressure range. J Am Coll Cardiol. 2022;80:1871–80. doi: 10.1016/j.jacc.2022.08.802. PubMed DOI
Sharp TE, 3rd, Lefer DJ. Renal denervation to treat heart failure. Annu Rev Physiol. 2021;83:39–58. doi: 10.1146/annurev-physiol-031620-093431. PubMed DOI PMC
Schmieder RE. Renal denervation: where do we stand and what is the relevance to the nephrologist? Nephrol Dial Transplant. 2022;37:638–44. doi: 10.1093/ndt/gfaa237. PubMed DOI
Abassi Z, Goltsman I, Karram T, Winaver J, Hoffman A. Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. J Biomed Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC
Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin Exp Pharmacol Physiol. 2015;42:795–807. doi: 10.1111/1440-1681.12419. PubMed DOI
Kala P, Sedláková L, Škaroupková P, Kopkan L, Vaňourková Z, Táborský M, et al. Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol Res. 2018;67:401–15. PubMed PMC
Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990;344:541–4. doi: 10.1038/344541a0. PubMed DOI
Kopkan L, Kramer HJ, Huskova Z, Vaňourková Z, Škaroupková P, Thumová M, et al. The role of intrarenal angiotensin II in the development of hypertension in Ren-2 transgenic rats. J. Hypertens. 2005;23:1531–9. doi: 10.1097/01.hjh.0000174972.46663.5e. PubMed DOI
Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992;20:248–54. doi: 10.1016/0735-1097(92)90167-L. PubMed DOI
Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017;14:30–38. doi: 10.1038/nrcardio.2016.163. PubMed DOI PMC
Mann DL, Felker GM. Mechanisms and models in heart failure: a translational approach. Circ Res. 2021;128:1435–50. doi: 10.1161/CIRCRESAHA.121.318158. PubMed DOI PMC
Vacková Š, Kikerlová S, Melenovský V, Kolář F, Imig JD, Kompanovska-Jezierska E, et al. Altered renal vascular responsiveness in rats with angiotensin II-dependent hypertension and congestive heart failure. Kidney Blood Press Res. 2019;44:792–809. doi: 10.1159/000501688. PubMed DOI PMC
Honetschlagerová Z, Škaroupková P, Kikerlová S, Vaňourková Z, Husková Z, Melenovský V, et al. Renal sympathetic denervation attenuates congestive heart failure in angiotensin II-dependent hypertension: studies with Ren-2 transgenic hypertensive rats with aorto-caval fistula. Kidney Blood Press Res. 2021;46:95–113. doi: 10.1159/000513071. PubMed DOI
Honetschlägerová Z, Sadowski J, Kompanowska-Jezierska E, Táborský M, Červenka L. Impaired renal autoregulation and pressure-natriuresis: any role in the development of heart failure in normotensive and angiotensin II-dependent hypertensive rats? Hypertens Res. 2023;46:2340–55. doi: 10.1038/s41440-023-01401-z. PubMed DOI PMC
Carlstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95:405–11. doi: 10.1152/physrev.00042.2012. PubMed DOI PMC
Roman RJ, Cowley AW., Jr Characterization of a new model for the study of pressure-natriuresis in the rat. Am J Physiol. 1985;248:F190–F198. PubMed
Wang CT, Chin SY, Navar LG. Impairment of pressure-natriuresis and renal autoregulation in ANG II-infused hypertensive rats. Am J Physiol. 2000;279:F319–F325. PubMed
Erbanová M, Thumová M, Husková Z, Vaněčková I, Vaňourková Z, Mullins JJ, et al. Impairment of the autoregulation of renal hemodynamics and of the pressure-natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2009;27:575–86. doi: 10.1097/HJH.0b013e32831cbd5a. PubMed DOI
Sporková A, Kopkan L, Vacarbová Š, Husková Z, Hwang SH, Hammock BD, et al. Role of cytochrome P-450 metabolites in the regulation of renal function and blood pressure 2-kidney, 1-clip hypertensive rats. Am J Physiol. 2011;300:R1468–R1475. PubMed PMC
Honetschlägerová Z, Sporková A, Kopkan L, Husková Z, Hwang SH, Hammock BD, et al. Inhibition of soluble epoxide hydrolase improves the impaired pressure-natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J Hypertens. 2011;29:1590–601. doi: 10.1097/HJH.0b013e328349062f. PubMed DOI PMC
Varcabová Š, Husková Z, Kramer HJ, Hwang HS, Hammock BD, Imig JD, et al. Antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats is mediated by suppression of the intrarenal renin-angiotensin system. Clin Exp Pharmacol Physiol. 2013;40:273–81. doi: 10.1111/1440-1681.12018. PubMed DOI PMC
Roman RJ, Cowley AW., Jr Abnormal pressure-diuresis-natriuresis response in spontaneously hypertensive rats. Am J Physiol. 1985;248:F199–F205. PubMed
Roman RJ. Abnormal renal hemodynamics and pressure-natriuresis relationship in Dahl salt-sensitive rats. Am J Physiol. 1986;251:F57–F65. PubMed
Miao CY, Liu KL, Benzoni D, Sassard J. Acute pressure-natriuresis function shows early impairment in Lyon hypertensive rats. J Hypertens. 2005;23:1225–31. doi: 10.1097/01.hjh.0000170386.84450.e3. PubMed DOI
Ploth DW, Roy RN, Huang WC, Navar LG. Impaired renal blood flow and cortical pressure autoregulation in contralateral kidneys of Goldblatt hypertensive rats. Hypertension. 1981;3:67–74. doi: 10.1161/01.HYP.3.1.67. PubMed DOI
Van der Mark, Kline RL. Altered pressure natriuresis in chronic angiotensin II hypertension in rats. Am J Physiol. 1994;266:F739–F748. PubMed
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DC. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;2:94–99. doi: 10.4103/0976-500X.72351. PubMed DOI PMC
Bello-Reuss E, Colindres RE, Pastoriza-Monuz E, Mueller RA, Gottschalk CW. Effect of acute unilateral renal denervation in the rat. J Clin Invest. 1975;56:208–17. doi: 10.1172/JCI108069. PubMed DOI PMC
Kline RL, Mercer PF. Functional reinnervation and development of supersensitivity to NE after renal denervation in rats. Am J Physiol. 1980;238:R353–R358. PubMed
Krayacich J, Kline RL, Mercer PF. Supersensitivity to NE alters renal function of chronically denervated rat kidneys. Am J Physiol. 1987;252:F856–F864. PubMed
Honetschlagerová Z, Škaroupková P, Kikerlová S, Husková Z, Maxová H, Melenovský V, et al. Effects of renal sympathetic denervation on the course of congestive heart failure combined with chronic kidney disease: insight from studies with fawn-hooded hypertensive rats with volume overload-induced using aorto-caval fistula. Clin Exp Hypertens. 2021;43:522–35. doi: 10.1080/10641963.2021.1907398. PubMed DOI
Kratky V, Kopkan L, Kikerlova S, Huskova Z, Taborsky M, Sadowski J, et al. The role of renal vascular reactivity in the development of renal dysfunction in compensated and decompensated congestive heart failure. Kidney Blood Press Res. 2018;43:1730–41. doi: 10.1159/000495391. PubMed DOI
Červenka L, Wang C-T, Navar LG. Effects of acute AT1 receptor blockade by candesartan on arterial pressure and renal function in rats. Am J Physiol. 1998;274:F940–F945. PubMed
Obayashi M, Yano M, Kohno M, Kobayashi S, Tanigawa T, Hironaka K, et al. Dose-dependent effect of ANG II-receptor antagonist on myocyte remodeling in rat cardiac hypertrophy. Am J Physiol. 1997;273:H1824–H1831. PubMed
Pokorný M, Mrázová I, Šochman J, Melenovský V, Malý J, Pirk J, et al. Isovolumic loading of the failing heart by intraventricular placement of a spring expander attenuates cardiac atrophy after heterotopic heart transplantation. Biosci Rep. 2018;38:BSR20180371. doi: 10.1042/BSR20180371. PubMed DOI PMC
Kala P, Vaňourková Z, Škaroupková P, Kompanowska-Jezierska E, Sadowski J, Walkowska A, et al. Endothelin type A receptor blockade increases renoprotection in congestive heart failure combined with chronic kidney disease: Studies in 5/6 nephrectomized rats with aorto-caval fistula. Biomed Pharmacother. 2023;158:114157. doi: 10.1016/j.biopha.2022.114157. PubMed DOI
Gawrys O, Husková Z, Škaroupková P, Honetschlägerová Z, Vaňourková Z, Kikerlová S, et al. The treatment with sGC stimulator improves survival of hypertensive rats in response to volume-overload induced by aorto-caval fistula. Naunyn Schmiedebergs Arch Pharmacol. 2023;396:3757–73. doi: 10.1007/s00210-023-02561-y. PubMed DOI PMC
Semple SJ, de Wardener HE. Effect of increased renal venous pressure on circulatory autoregulation of isolated dog dineys. Circ Res. 1959;7:643–8. doi: 10.1161/01.RES.7.4.643. PubMed DOI
Lippoldt A, Gross V, Bohlender J, Ganten U, Luft FC. Lifelong angiotensin-converting enzyme inhibition, pressure natriuresis, and renin-angiotensin system gene expression in transgenic (mRen-2)27 rats. J Am Soc Nephrol. 1996;7:2119–29. doi: 10.1681/ASN.V7102119. PubMed DOI
Springate J, Van Liew J, Ganten D. Enalapril and pressure-diuresis in hypertensive rats transgenic for mouse renin gene. Kidney Blood Press Res. 1997;20:1–5. doi: 10.1159/000174116. PubMed DOI
Yoshida M, Satoh S. Role of renal nerves on pressure natriuresis in spontaneously hypertensive rats. Am J Physiol. 1991;260:F81–85. PubMed
Navar LG, Evan AP, Rosivall L. Microcirculation of the Kidneys. In: The Physiology and Pharmacology of the Microcirculation, Mortillaro NA editor. Academic Press, 1983, pp 397–488. ISBN 9780125083010Xx.
Greger R. Introduction to renal function, renal blood flow and the formation of the urine. In: Comprehensive Human Physiology. From cellular mechanisms to integration, Greger R and Windhorst E editors. Springer, 1996, pp 1469-87. ISBN 3-540-58109-X.
Giebish G, Windhager E. Glomerular filtration rate and renal blood flow. In: Medical Physiology, 2nd edition, Boron WF and Boulpaep EL editors. Saunders Elsevier, 2009, pp 767-81. ISBN 978-1-4160-3115-4.
Honetschlägerová Z, Hejnová L, Novotný J, Marek A, Červenka L. Effects of renal denervation on the enhanced renal vascular responsiveness to angiotensin II in high-output heart failure: angiotensin ii receptor binding assessment and functional studies in Ren-2 transgenic hypertensive rats. Biomedicines. 2021;9:1803. doi: 10.3390/biomedicines9121803. PubMed DOI PMC
Mitchell KD, Navar LG Intrarenal actions of angiotensin II in the pathogenesis of experimental hypertension. In: Laragh JH, Brenner BM, editors. Hypertension: pathophysiology, diagnosis and management. New York, NY, Raven Press, Publishers, 1990; pp. 1437-52.
Hall JE, Brans MV, Henegar JR. Angiotensin II and long-term arterial pressure regulation: the overriding dominance of the kidney. J Am Soc Nephrol. 1999;10:S258–S265. PubMed
Numabe A, Hishikimi T, Komatsu K, Frohlich ED. Intrarenal hemodynamics in low- and high-output cardiac failure in rats. Am J Med Sci. 1994;308:331–7. doi: 10.1097/00000441-199412000-00004. PubMed DOI
Carmines PK, Perry MD, Hazelrig JB, Navar LG. Effects of preglomerular and postglomerular vascular resistance alterations on filtration fraction. Kidney Int Suppl. 1987;20:S229–32. PubMed
Heller J, Horácek V. The effect of two different calcium antagonists on the glomerular haemodynamics in the dog. Pflugers Arch. 1990;415:751–5. doi: 10.1007/BF02584016. PubMed DOI
Heller J, Horácek V. Glomerular haemodynamics during renal artery clamping and haemorrhage in the dog. Exp Physiol. 1997;82:935–42. doi: 10.1113/expphysiol.1997.sp004074. PubMed DOI
Brower GL, Janicki JS. Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol. 2001;280:H674–H683. PubMed
Wang X, Ren B, Liu S, Sentex E, Tappia PS, Dhalla NS. Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. J Appl Physiol. 2003;94:752–63. doi: 10.1152/japplphysiol.00248.2002. PubMed DOI
Oliver-Dussault C, Ascah A, Marcil M, Matas J, Picard S, Pibarot B, et al. Early predictors of cardiac decompensation in experimental volume overload. Mol Cell Biochem. 2010;338:271–81. doi: 10.1007/s11010-009-0361-5. PubMed DOI
Hutchinson KR, Guggilam A, Cismowski MJ, Galantowics ML, West TA, Stewart JA, et al. Temporal pattern of left ventricle structural and functional remodeling following reversal of volume overload heart failure. J App Physiol. 2011;111:1778–88. doi: 10.1152/japplphysiol.00691.2011. PubMed DOI PMC
Linzbach AJ. Heart failure from the point of view of quantitative anatomy. Am J Cardiol. 1960;5:370–82. doi: 10.1016/0002-9149(60)90084-9. PubMed DOI
Ikeda S, Shinohara K, Kashihara S, Matsumoto S, Yoshida D, Nakashima R, et al. Contribution of afferent renal nerve signals to acute and chronic blood pressure regulation in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2023;46:268–79. doi: 10.1038/s41440-022-01091-z. PubMed DOI
Cao W, Yang Z, Liu X, Ren S, Su H, Yang B, et al. A kidney-brain neural circuit drives progressive kidney damage and heart failure. Signal Transduct Target Ther. 2023;8:184. doi: 10.1038/s41392-023-01402-x. PubMed DOI PMC
Cobo Marcos M, de la Espriella R, Gayán Ordás J. Sex differences in Cardiorenal Syndrome: Insights from CARDIOREN Registry. Curr Heart Fail Rep. 2023;20:157–67. doi: 10.1007/s11897-023-00598-x. PubMed DOI
Clayton JA, Gaugh MD. Sex as a biological variable in cardiovascular diseases: JACC Focus Seminar 1/7. J Am Coll Cardiol. 2022;79:1388–97. doi: 10.1016/j.jacc.2021.10.050. PubMed DOI