Effects of Renal Denervation on the Enhanced Renal Vascular Responsiveness to Angiotensin II in High-Output Heart Failure: Angiotensin II Receptor Binding Assessment and Functional Studies in Ren-2 Transgenic Hypertensive Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV 18-02-00053
Ministry of Health
RVO 61388963
Czech Academy of Sciences
PubMed
34944619
PubMed Central
PMC8698780
DOI
10.3390/biomedicines9121803
PII: biomedicines9121803
Knihovny.cz E-zdroje
- Klíčová slova
- ANG II receptors, aorto-caval fistula, heart failure, renal denervation,
- Publikační typ
- časopisecké články MeSH
Detailed mechanism(s) of the beneficial effects of renal denervation (RDN) on the course of heart failure (HF) remain unclear. The study aimed to evaluate renal vascular responsiveness to angiotensin II (ANG II) and to characterize ANG II type 1 (AT1) and type 2 (AT2) receptors in the kidney of Ren-2 transgenic rats (TGR), a model of ANG II-dependent hypertension. HF was induced by volume overload using aorto-caval fistula (ACF). The studies were performed two weeks after RDN (three weeks after the creation of ACF), i.e., when non-denervated ACF TGR enter the decompensation phase of HF whereas those after RDN are still in the compensation phase. We found that ACF TGR showed lower renal blood flow (RBF) and its exaggerated response to intrarenal ANG II (8 ng); RDN further augmented this responsiveness. We found that all ANG II receptors in the kidney cortex were of the AT1 subtype. ANG II receptor binding characteristics in the renal cortex did not significantly differ between experimental groups, hence AT1 alterations are not responsible for renal vascular hyperresponsiveness to ANG II in ACF TGR, denervated or not. In conclusion, maintained renal AT1 receptor binding combined with elevated ANG II levels and renal vascular hyperresponsiveness to ANG II in ACF TGR influence renal hemodynamics and tubular reabsorption and lead to renal dysfunction in the high-output HF model. Since RDN did not attenuate the RBF decrease and enhanced renal vascular responsiveness to ANG II, the beneficial actions of RDN on HF-related mortality are probably not dominantly mediated by renal mechanism(s).
Zobrazit více v PubMed
Rangawwami J., Bhalla V., Blair J.E.A., Chang T.I., Costa S., Lentine K.L., Lerma E.V., Mezeu K., Molitch M., Mullens W., et al. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies. Circulation. 2019;139:e840–e878. PubMed
Yogasundaram H., Chappell M.C., Braam B., Oudit G.Y. Cardiorenal syndrome and heart failure-challenges and opportunities. Can. J. Cardiol. 2019;35:1208–1219. doi: 10.1016/j.cjca.2019.04.002. PubMed DOI PMC
Khayyat-Kholghi M., Oparil S., Davis B.R., Tereshchenko L.G. Worsening kidney function is the major mechanism of heart failure in hypertension. The ALLHAT study. JACC Heart Fail. 2021;9:100–111. doi: 10.1016/j.jchf.2020.09.006. PubMed DOI PMC
Weber M.A., Mahfoud F., Schmieder R.E., Kandzari D.E., Tsioufis K.P., Twonsend R.R., Kario K., Bohm M., Sharp A.S.P., Davies J.E., et al. Renal denervation for treating hypertension: Current scientific and clinical evidence. JACC Cardiovasc. Interv. 2019;12:1095–1105. doi: 10.1016/j.jcin.2019.02.050. PubMed DOI
Schmieder R.E. Renal denervation: Where do we stand and what is the relevance to the nephrologist? Nephrol. Dial. Transplant. 2020 doi: 10.1093/ndt/gfaa237. PubMed DOI
Oluwaseun A., Ralston W.F., Johnson K.C., Ketron L.L., Womack C.R., Ibebuogu U.N. Renal sympathetic denervation: A comprehenshive review. Curr. Probl. Cardiol. 2021;46:100598. PubMed
Schmieder R.E., Mahfoud F., Mancia G., Azizi M., Bohm M., Dimitriadis K., Kario K., Kroon A.A., Lobo M.D., Ott C., et al. European Society of Hypertension position paper on renal denervation 2021. J. Hypertens. 2021;39:1733–1741. doi: 10.1097/HJH.0000000000002933. PubMed DOI
DiBona G.F., Kopp U.C. Neural control of renal function. Physiol. Rev. 1997;77:75–197. doi: 10.1152/physrev.1997.77.1.75. PubMed DOI
Osborn J.W., Tyshynsky R., Vulchanova L. Function of renal nerves in kidney physiology an pathophysiology. Annu. Rev. Physiol. 2021;83:429–450. doi: 10.1146/annurev-physiol-031620-091656. PubMed DOI
Antoine S., Vaidya G., Imam H., Villarreal D. Pathophysiologic mechanisms in heart failure: Role of the sympathetic nervous system. Am. J. Med. Sci. 2017;353:27–30. doi: 10.1016/j.amjms.2016.06.016. PubMed DOI
Florea V.G., Cohn J.N. The autonomic nervous system and heart failure. Circ. Res. 2014;114:1815–1826. doi: 10.1161/CIRCRESAHA.114.302589. PubMed DOI
Sharp T.E., Lefer D.J. Renal denervation to treat heart failure. Annu. Rev. Physiol. 2021;83:39–58. doi: 10.1146/annurev-physiol-031620-093431. PubMed DOI PMC
Rodinova K., Hindermann M., Hilgers K., Ot C., Schmieder R.E., Schiffer M., Amann K., Veelken R., Ditting T. ANG II receptor blockade and renal denervation: Different interventions with comparable effects? Kidney Blood Press Res. 2021;46:331–341. doi: 10.1159/000515616. PubMed DOI
Kresoja K.J., Rommel K.-P., Fengler K., von Roeder M., Besler C., Lucke C., Gutberlet M., Desch S., Thiele H., Bohm M., et al. Renal sympathetic denervation in patients with heart failure with preserved ejection fraction. Circ. Heart Fail. 2021;14:e007421. doi: 10.1161/CIRCHEARTFAILURE.120.007421. PubMed DOI
Fudim M., Sobotka P.A., Piccini J.P., Patel M.R. Renal denervation for patients with heart failure. Making a full circle. Circ. Heart Fail. 2021;14:e008301. doi: 10.1161/CIRCHEARTFAILURE.121.008301. PubMed DOI
Honetschlagerová Z., Škaroupková P., Kikerlová S., Husková Z., Maxová H., Melenovský V., Kompanowska-Jezierska E., Sadowski J., Gawrys O., Kujal P., et al. Effects of renal sympathetic denervation on the course of congestive heart failure combined with chronic kidney disease: Insight from studies with fawn-hooded hypertensive rats with volume overload induced using aorto-caval fistula. Clin. Exp. Hypertens. 2021;43:522–535. doi: 10.1080/10641963.2021.1907398. PubMed DOI
Honetschlagerová Z., Škaroupková P., Kikerlová S., Vaňourková Z., Husková Z., Melenovský V., Kompanowska-Jezierska E., Sadowski J., Červenka L. Renal sympathetic denervation attenuates congestive heart failure in angiotensin II-dependent hypertension: Studies with Ren-2 transgenic hypertensive rats with aortocaval fistula. Kidney Blood Press Res. 2021;46:95–113. doi: 10.1159/000513071. PubMed DOI
Červenka L., Melenovský V., Husková Z., Škaroupková P., Nishiyama A., Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin. Exp. Pharmacol. Physiol. 2015;42:795–807. doi: 10.1111/1440-1681.12419. PubMed DOI
Kala P., Sedláková L., Škaroupková P., Kopkan L., Vaňourková Z., Táborský M., Nishiyama A., Hwang S.H., Hammock B.D., Sadowski J., et al. Effects of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol. Res. 2018;67:401–415. doi: 10.33549/physiolres.933757. PubMed DOI PMC
Kratky V., Kopkan L., Kikerlova S., Huskova Z., Taborsky M., Sadowski J., Kolar F., Cervenka L. The role of renal vascular reactivity in the development of renal dysfunction in compensated and decompensated congestive heart failure. Kidney Blood Press Res. 2018;43:1730–1741. doi: 10.1159/000495391. PubMed DOI
Krátký V., Kikerlová S., Husková Z., Sadowski J., Kolář F., Červenka L. Enhanced renal vascular responsiveness to angiotensin II and norepinephrine: A unique feature of female rats with congestive heart failure. Kidney Blood Press Res. 2019;44:1128–1141. doi: 10.1159/000502379. PubMed DOI
Vacková Š., Kikerlová S., Melenovský V., Kolář F., Imig J.D., Kompanovska-Jezierska E., Sadowski J., Červenka L. Altered renal vascular responsiveness in rats with angiotensin II-dependent hypertension and congestive heart failure. Kidney Blood Press Res. 2019;44:792–809. doi: 10.1159/000501688. PubMed DOI PMC
Ichihara A., Inscho E.W., Imig J.D., Michel R.E., Navar L.G. Role of renal nerves in afferent arteriolar reactivity in angiotensin II-induced hypertension. Hypertension. 1997;29:442–449. doi: 10.1161/01.HYP.29.1.442. PubMed DOI
Osborn J.W., Foss J.D. Renal nerves and long-term control of arterial pressure. Compr. Physiol. 2017;7:263–320. PubMed
Li X.C., Widdop R.E. AT2 receptor mediated vasodilatation is unmasked by AT1 receptor blockade in conscious SHR. Br. J. Pharmacol. 2004;142:821–830. doi: 10.1038/sj.bjp.0705838. PubMed DOI PMC
Carrey R.M. Update on angiotensin AT2 receptors. Curr. Opin. Nehprol. Hypertens. 2017;26:91–96. doi: 10.1097/MNH.0000000000000304. PubMed DOI PMC
Pandey A., Gaikwad A.B. AT2 receptor agonist Compound 21: A silver lining for diabetic nephropathy. Eur. J. Pharmacol. 2017;815:251–257. doi: 10.1016/j.ejphar.2017.09.036. PubMed DOI
Kratky V., Vanourkova Z., Sykora M., Szeiffova Bacova B., Hruskova Z., Kikerlova S., Huskova Z., Kopkan L. AT1 receptor blocker, but not an ACE inhibitor, prevents kidneys form hypoperfusion during congestive heart failure in normotensive and hypertensive rats. Sci. Rep. 2021;11:4271. doi: 10.1038/s41598-021-83906-6. PubMed DOI PMC
Bello-Reuss E., Colindres R.E., Pastoriza-Monuz E., Mueller R.A., Gottschalk C.W. Effect of acute unilateral renal denervation in the rat. J. Clin. Investig. 1975;56:208–217. doi: 10.1172/JCI108069. PubMed DOI PMC
Kline R.L., Mercer P.F. Functional reinnervation and development of supersensitivity to NE after renal denervation in rats. Am. J. Physiol. 1980;238:R353–R358. doi: 10.1152/ajpregu.1980.238.5.R353. PubMed DOI
Krayacich J., Kline R.L., Mercer P.F. Supersensitivity to NE alters renal function of chronically denervated rat kidneys. Am. J. Physiol. 1987;252:F856–F864. doi: 10.1152/ajprenal.1987.252.5.F856. PubMed DOI
Chatziantoniou C., Daniels F.H., Arendhosrt W.J. Exaggerated renal vascular reactivity to angiotensin and tromboxane in young genetically hypertensive rats. Am. J. Physiol. 1990;259:F372–F382. PubMed
Jacinto S.M., Mullins J.J., Mitchell K.D. Enhanced renal vascular responsiveness to angiotensin II in hypertensive ren-2 transgenic rats. Am. J. Physiol. 1999;276:F315–F322. doi: 10.1152/ajprenal.1999.276.2.F315. PubMed DOI
Kopkan L., Kramer H.J., Husková Z., Vaňourková Z., Škaroupková P., Thumová M., Červenka L. The role of intrarenal angiotensin II in the development of hypertension in Ren-2 transgenic rats. J. Hypertens. 2005;23:1531–1539. doi: 10.1097/01.hjh.0000174972.46663.5e. PubMed DOI
Čertíková Chábová V., Walkowska A., Kompanowska-Jezierska E., Sadowski J., Kujal P., Verenrova Z., Vaňourková Z., Kopkan L., Kramer H.J., Falck J.R., et al. Combined inhibition of 20-hydroxyeicosatrienoic acid formation and epoxyeicosatrienoic dgradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats. Clin. Sci. 2010;118:617–632. doi: 10.1042/CS20090459. PubMed DOI PMC
Amiri F., Garcia R. Differential regulation of renal glomerular and preglomerular vascular angiotensin II receptors. Am. J. Physiol. 1996;270:E810–E815. doi: 10.1152/ajpendo.1996.270.5.E810. PubMed DOI
Amiri F., Garcia R. Renal angiotensin II receptor regulation in two-kidney, one-clip hypertensive rats. Effect of ACE inhibition. Hypertension. 1997;30:337–344. doi: 10.1161/01.HYP.30.3.337. PubMed DOI
Chatziantoniou C., Arendshorst W.J. Angiotensin receptor sites in renal vasculature of rats developing genetic hypertension. Am. J. Physiol. 1993;265:F853–F862. doi: 10.1152/ajprenal.1993.265.6.F853. PubMed DOI
Mento P.F., Pica M.E., Hilepo J., Hirsch L., Wilkes B.M. Increased expression of glomerular AT1 receptors in rats with myocardial infarction. Am. J. Physiol. 1998;275:H1247–H1253. doi: 10.1152/ajpheart.1998.275.4.H1247. PubMed DOI
Licea H., Walters M.R., Navar L.G. Renal nuclear angiotensin II receptors in normal and hypertensive rats. Acta Physiol. Hung. 2002;89:427–438. doi: 10.1556/APhysiol.89.2002.4.3. PubMed DOI
Harrison-Bernard L.M., Zhou J., Kobori H., Ohishi M., Navar L.G. Intrarenal AT1 receptor and ACE binding in ANG II-induced hypertensive rats. Am. J. Physiol. 2002;281:F19–F25. doi: 10.1152/ajprenal.0335.2000. PubMed DOI PMC
Oliver-Dussault C., Ascah A., Marcil M., Matas J., Picard S., Pibarot B., Burelle Y., Deschepper C.F. Early predictors of cardiac decompensation in experimental volume overload. Mol. Cell Biochem. 2010;338:271–281. doi: 10.1007/s11010-009-0361-5. PubMed DOI
Abassi Z., Goltsmna I., Karram T., Winaver J., Horrman A. Aortocaval fistula in rat: A unique model of volume-overload congestive heart failure and cardiac hypertrophy. J. Biomed. Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC
Forrester S.J., Booz G.W., Sigmund C.D., Coffman T.M., Kawai T., Rizzo V., Scalia R., Eguchi S. Angiotensin II signal transduction: An updated on mechanisms of physiology and pathophysiology. Physiol. Rev. 2018;98:1627–1738. doi: 10.1152/physrev.00038.2017. PubMed DOI PMC
Navar L.G., Harrison-Bernard L.M., Imig J.D., Cervenka L., Mitchell K.D. Renal responses to AT1 receptor blockade. Am. J. Hypertens. 2000;13:45S–54S. doi: 10.1016/S0895-7061(99)00248-4. PubMed DOI
Pieruzzi F., Abassi Z.A., Keiser H.R. Expression of renin-angiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Circulation. 1995;92:3105–3112. doi: 10.1161/01.CIR.92.10.3105. PubMed DOI
Harrison-Bernard L.M., El-Dahr S.S., O´Leary D.F., Navar L.G. Regulation of angiotensin II type 1 receptor mRNA and protein in angiotensin II-induced hypertension. Hypertension. 1999;33:340–346. doi: 10.1161/01.HYP.33.1.340. PubMed DOI
Červenka L., Horáček V., Vaněčková I., Hubáček J.A., Oliverio M.I., Coffman T.M., Navar L.G. Essentials role of AT1A receptor in the development of 2K1C Hypertension. Hypertension. 2002;40:735–741. doi: 10.1161/01.HYP.0000036452.28493.74. PubMed DOI
Červenka L., Vaněčková I., Malý J., Horáček V., El-Dahr S.S. Genetic inactivation of the B2 receptor mice worsens two-kidney, one-clip hypertension: Role of NO and the AT2 receptor. J. Hypertens. 2003;21:1531–1538. doi: 10.1097/00004872-200308000-00018. PubMed DOI
Červenka L., Vaněčková I., Husková Z., Vaňourková Z., Erbanová M., Thumová M., Škaroupková P., Opočenský M., Malý J., Čertíková Chábová V., et al. Pivotal role of angiotensin II receptor subtype 1A in the development of two-kidney, one-clip hypertension: Study in angiotensin II receptor subtype 1A knockout mice. J. Hypertens. 2008;26:1379–1389. doi: 10.1097/HJH.0b013e3282fe6eaa. PubMed DOI PMC
Clayton S.C., Haack K.K.A., Zucker I.H. Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure. Am. J. Physiol. 2011;300:F31–F39. doi: 10.1152/ajprenal.00088.2010. PubMed DOI PMC
Mendelsohn F.A., Dunbar M., Allen A., Chou S.T., Milan M.A., Aguilera G., Catt K.J. Angiotensin II receptors in the kidney. Fed. Proc. 1986;45:1420–1425. PubMed
Kala P., Miklovič M., Jíchová Š., Škaroupková P., Vaňourková Z., Maxová H., Gawrys O., Kompanowska-Jezierska E., Sadowski J., Imig J.D., et al. Effects of epoxyeicoatrienoci acid-enhancing therapy on the course of congestive heart failure in angiotensin II-dependent rat hypertension: From mRNA analysis towards functional in vivo evaluation. Biomedicines. 2021;9:1053. doi: 10.3390/biomedicines9081053. PubMed DOI PMC
Trendelenburg U. Mechanisms of supersensitivity and subsensitivity to sympathomimetic amines. Pharmacol. Rev. 1966;18:629–640. PubMed
Sadowski J., Portalska E. Denervated and intact kidney responses to norepinephrine infusion in conscious dogs. J. Auton. Nerv. Syst. 1982;6:373–379. doi: 10.1016/0165-1838(82)90008-X. PubMed DOI
Szenasi G., Bencsath P., Takacs L. Supersensitivity of the renal tubule to catecholamines in chronically denervated canine kidney. Pflugers. Arch. 1986;406:57–59. doi: 10.1007/BF00582953. PubMed DOI
Lohmeier T., Reinhart G.A., Mizelle L., Han M., Dean M.M. Renal denervation supersensitivity revisited. Am. J. Physiol. 1998;275:R1239–R1246. doi: 10.1152/ajpregu.1998.275.4.R1239. PubMed DOI
Ramcharda R., Barrett C.J., Guild S.-J., Malpes S. Is the chronically denervated kidney supersensitive to catecholamines? Am. J. Physiol. 2002;282:R603–R610. PubMed
Booth L.C., de Silva R.A.U., Pontes R.B., Yano S.T., Hood S.G., Lankadeva Y.R., Kosaka J., Eikelis N., Lambert G.W., Schlaich M.P., et al. Renal, cardiac, and autonomic effects of cathether-based renal denervation in ovine heart failure. Hypertension. 2021;78:706–715. doi: 10.1161/HYPERTENSIONAHA.120.16054. PubMed DOI
Singh R.R., McArdle Z.M., Booth L.C., May C.N., Moritz K.M., Schlaich M.P., Denton K.M. Increase in bioavailability of nitric oxide after renal denervation improves kidney function in sheep with hypertensive kidney disease. Hypertension. 2021;77:1299–1310. doi: 10.1161/HYPERTENSIONAHA.120.16718. PubMed DOI
Zheng H., Liu X., Katsurada K., Patel K.P. Renal denervation improves sodium excretion in rats with chronic heart failure: Effects on expression of renal ENaC and AQP2. Am. J. Physiol. 2019;317:H958–H968. doi: 10.1152/ajpheart.00299.2019. PubMed DOI PMC
Zheng H., Liu X., Rao U.S., Patel K.P. Increased renal ENaC subunits and sodium retention in rats with chronic heart failure. Am. J. Physiol. 2011;300:F641–F649. doi: 10.1152/ajprenal.00254.2010. PubMed DOI PMC
Zheng H., Liu X., Sharma N.M., Li Y., Pliquett R.U., Patel K.P. Urinary proteolyitic activation of renal epithelial Na+ channels in chronic heart failure. Hypertension. 2016;67:197–205. doi: 10.1161/HYPERTENSIONAHA.115.05838. PubMed DOI PMC
Giebisch G.H. A long affair with renal tubules. Annu Rev. Physiol. 2011;73:1–28. doi: 10.1146/annurev-physiol-012110-142241. PubMed DOI
Wang H.-J., Wang W., Cornish K.G., Rozanski G.J., Zucker I.H. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension. 2014;64:745–755. doi: 10.1161/HYPERTENSIONAHA.114.03699. PubMed DOI PMC
Lopes N.R., Milanez M.I.O., Martins B.S., Veiga C.A., Ferreira G.R., Gomes G.N., Girardi A.C., Carvalho P.M., Noqueira F.N., Campos R.R., et al. Afferent innervation of the ischemic kidney contributes to renal dysfunction in renovascular hypertensive rats. Pfluger. Arch.-Eur. J. Physiol. 2020;472:325–334. doi: 10.1007/s00424-019-02346-4. PubMed DOI
Sata Y., Burke L.S., Eikelis N., Watson A.M.D., Gueguen C., Jackoson K.L., Lambert G.W., Lim K., Denton K.M., Schlaich M.P., et al. Renal deafferentation prevents progression of hypertension and changes to sympathetic reflexes in a rabbit model of chronic kidney disease. Hypertension. 2021;78:1310–1321. doi: 10.1161/HYPERTENSIONAHA.121.17037. PubMed DOI
Foss J.D., Wainford R.D., Engeland W.C., Fink G.D., Osborn J.W. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am. J. Physiol. 2015;308:R112–R122. doi: 10.1152/ajpregu.00427.2014. PubMed DOI PMC
Cheng H.F., Becker B.N., Burns K.D., Harris R.C. Angiotensin II upregulates type-1 angiotensin II receptors in renal proximal tubule. J. Clin. Investig. 1995;95:2012–2019. doi: 10.1172/JCI117886. PubMed DOI PMC
Douglas J.G. Angiotensin receptor subtypes of the kidney cortex. Am. J. Physiol. 1987;253:F1–F7. doi: 10.1152/ajprenal.1987.253.1.F1. PubMed DOI
Mendelsohn F.A.O., Millan M., Quirion R., Aguilera G., Chou S.-T., Catt K.J. Localization of angiotensin II receptors in rat and monkey kidney by in vitro autoradiography. Kidney Int. 1987;31((Suppl. 20)):S40–S44. PubMed
Zhou J., Song K., Harris P.J., Mendelsohn F.A.O. In vitro autoradiography revelas predominantly AT1 angiotensin II receptors in rat kidney. Renal Physiol. Biochem. 1992;15:231–239. PubMed
Miyata N., Park F., Li X.F., Cowley A.W., Jr. Distribution of angiotensin AT1 and AT2 receptors subtypes in the rat kidney. Am. J. Physiol. 1999;277:F437–F446. doi: 10.1152/ajprenal.1999.277.3.F437. PubMed DOI
Husková Z., Kramer H.J., Vaňourková Z., Červenka L. Effect of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J. Hypertens. 2006;24:517–522. doi: 10.1097/01.hjh.0000209988.51606.c7. PubMed DOI
Husková Z., Kramer H.J., Thumová M., Vaňourková Z., Burgelová M., Teplan V., Malý J., Červenka L. Effects of anaesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Press Res. 2006;29:74–83. doi: 10.1159/000092981. PubMed DOI
Mullins J.J., Peters J., Ganten D. Fulminant hypertension in transgenic rats harboring the mouse Ren-2 renin gene. Nature. 1990;344:541–544. doi: 10.1038/344541a0. PubMed DOI
Langheririch M., Lee M.A., Bohm M., Pinto Y.M., Ganten D., Paul M. The hypertensive Ren-2 transgenic rat TGR(mRen2)27 in hypertension research. Characterizatics and functional aspects. Am. J. Hypertens. 1996;9:506–512. doi: 10.1016/0895-7061(95)00400-9. PubMed DOI
Peters J., Hilgers K.F., Maser-Gluth C., Kreutz R. Role of the circulating renin-angiotensin system in the pathogenesis of hypertension in transgenic rats TGR(mRen2)27. Clin. Exp. Hypertens. 1996;18:933–948. doi: 10.3109/10641969609097909. PubMed DOI
Rong P., Campbell D.J., Skinner S.L. Hypertension in the (mRen2)27 rat is not explained by enhanced kinetics of transgenic Ren-2 renin. Hypertension. 2003;42:523–527. doi: 10.1161/01.HYP.0000093383.18302.A7. PubMed DOI
Husková Z., Kramer H.J., Vaňourková Z., Thumová M., Malý J., Opočenský M., Škaroupková P., Vernerová Z., Červenka L. Effects of dietary salt load and salt depletion on the course of hypertension and angiotensin II levels in male and female heterozygous Ren-2 transgenic rats. Kidney Blood Press Res. 2007;30:45–55. doi: 10.1159/000099028. PubMed DOI
Lee M.A., Bohm M., Bader M., Ganten U., Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mRen2)27. Am. J. Physiol. 1996;270:E919–E929. doi: 10.1152/ajpendo.1996.270.6.E919. PubMed DOI
Mitchell K.D., Mullins J.J. ANG II dependence of tubuloglomerular feedback responsiveness in hypertensive ren-2 transgenic rats. Am. J. Physiol. 1995;268:F821–F828. doi: 10.1152/ajprenal.1995.268.5.F821. PubMed DOI
Mitchell K.D., Jacinto S.M., Mullins J.J. Proximal tubular fluid, kidney, and plasma levels of angitotensin II in hypertensive ren-2 transgenic rats. Am. J. Physiol. 1997;273:F246–F253. PubMed
Dube P., Weber K.T. Congestive heart failure: Pathophysiologic consequences of neurohormonal activation and the potential for recovery: Part I. Am. J. Med. Sci. 2011;342:348–351. doi: 10.1097/MAJ.0b013e318232750d. PubMed DOI
Mann D.L., Felker G.M. Mechanisms and models in heart failure. A translation approach. Cir. Res. 2021;128:1435–1450. doi: 10.1161/CIRCRESAHA.121.318158. PubMed DOI PMC
Roger V.L. Epidemiology of heart failure. A contemporary perspective. Cir. Res. 2021;128:1421–1434. doi: 10.1161/CIRCRESAHA.121.318172. PubMed DOI
Wu J., Cheng Z., Zhang M., Zhu P., Gu Y. Impact of aortocaval shunt flow on cardiac and renal function in unilateral nephrectomized rats. Sci. Rep. 2016;6:27493. doi: 10.1038/srep27493. PubMed DOI PMC
Fiksen-Olson M.J., Strick D.M., Hawley H., Romero J.C. Renal effects of angiotensin II inhibition during increases in renal venous pressure. Hypertension. 1992;19((Suppl. II)):II137–II141. doi: 10.1161/01.HYP.19.2_Suppl.II137. PubMed DOI
Mullens W., Abrahams Z., Francis G.S., Sokos G., Taylor D.O., Starling R.C., Young J.B., Tang W.H.W. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 2009;53:589–596. doi: 10.1016/j.jacc.2008.05.068. PubMed DOI PMC
Houser S.R., Margulies K.B., Murphy A.M., Spinale F.G., Francis G.S., Prabhu S.D. Animal models of heart failure: A scientific statement from the American Heart Association. Circ. Res. 2012;111:131–150. doi: 10.1161/RES.0b013e3182582523. PubMed DOI
Riehle C., Bauersachs J. Small animals models of heart failure. Cardiovasc. Res. 2019;115:1838–1849. doi: 10.1093/cvr/cvz161. PubMed DOI PMC