Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
HL59699
NHLBI NIH HHS - United States
R01 HL059699
NHLBI NIH HHS - United States
P01 DK038226
NIDDK NIH HHS - United States
F32 NS010499
NINDS NIH HHS - United States
R01 ES002710
NIEHS NIH HHS - United States
DK38226
NIDDK NIH HHS - United States
R01 GM031278
NIGMS NIH HHS - United States
F32 NS009699
NINDS NIH HHS - United States
R37 ES002710
NIEHS NIH HHS - United States
GM31278
NIGMS NIH HHS - United States
P42 ES004699
NIEHS NIH HHS - United States
PubMed
20050826
PubMed Central
PMC2854172
DOI
10.1042/cs20090459
PII: CS20090459
Knihovny.cz E-zdroje
- MeSH
- amidy farmakologie terapeutické užití MeSH
- angiotensin II farmakologie MeSH
- antihypertenziva farmakologie terapeutické užití MeSH
- hypertenze komplikace farmakoterapie patofyziologie MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- kyselina 8,11,14-eikosatrienová analogy a deriváty metabolismus MeSH
- kyseliny hydroxyeikosatetraenové biosyntéza MeSH
- multiorgánové selhání etiologie prevence a kontrola MeSH
- noradrenalin farmakologie MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní MeSH
- preklinické hodnocení léčiv metody MeSH
- renální oběh účinky léků MeSH
- sulfony farmakologie terapeutické užití MeSH
- vazokonstriktory farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 11,12-epoxy-5,8,14-eicosatrienoic acid MeSH Prohlížeč
- 20-hydroxy-5,8,11,14-eicosatetraenoic acid MeSH Prohlížeč
- amidy MeSH
- angiotensin II MeSH
- antihypertenziva MeSH
- DDMS MeSH Prohlížeč
- kyselina 8,11,14-eikosatrienová MeSH
- kyseliny hydroxyeikosatetraenové MeSH
- noradrenalin MeSH
- sulfony MeSH
- vazokonstriktory MeSH
Recent studies have shown that the renal CYP450 (cytochrome P450) metabolites of AA (arachidonic acid), the vasoconstrictor 20-HETE (20-hydroxyeicosatetraenoic acid) and the vasodilator EETs (epoxyeicosatrienoic acids), play an important role in the pathophysiology of AngII (angiotensin II)-dependent forms of hypertension and the associated target organ damage. The present studies were performed in Ren-2 renin transgenic rats (TGR) to evaluate the effects of chronic selective inhibition of 20-HETE formation or elevation of the level of EETs, alone or in combination, on the course of hypertension and hypertension-associated end-organ damage. Both young (30 days of age) prehypertensive TGR and adult (190 days of age) TGR with established hypertension were examined. Normotensive HanSD (Hannover Sprague-Dawley) rats served as controls. The rats were treated with N-methylsulfonyl-12,12-dibromododec-11-enamide to inhibit 20-HETE formation and/or with N-cyclohexyl-N-dodecyl urea to inhibit soluble epoxide hydrolase and prevent degradation of EETs. Inhibition in TGR of 20-HETE formation combined with enhanced bioavailability of EETs attenuated the development of hypertension, cardiac hypertrophy, proteinuria, glomerular hypertrophy and sclerosis as well as renal tubulointerstitial injury. This was also associated with attenuation of the responsiveness of the systemic and renal vascular beds to AngII without modifying their responses to noradrenaline (norepinephrine). Our findings suggest that altered production and/or action of 20-HETE and EETs plays a permissive role in the development of hypertension and hypertension-associated end-organ damage in this model of AngII-dependent hypertension. This information provides a basis for a search for new therapeutic approaches for the treatment of hypertension.
Zobrazit více v PubMed
US Renal Data System: USRDS 2007. Chronic kidney disease. Am J Kidney Dis. 2008;51:S63–S80.
Bakris GL, Ritz E. The message for World Kidney Day 2009: hypertension and kidney disease: a marriage that should be prevented. J Clin Hypertens. 2009;11:144–147. PubMed PMC
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59:251–287. PubMed
Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131–185. PubMed
Campbell WB, Falck JR. Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors. Hypertension. 2007;49:590–596. PubMed
Capdevila JH, Falck JR, Imig JD. Role of the cytochrome P450 arachidonic acid monooxygenases in the control of systemic blood pressure and experimental hypertension. Kidney Int. 2007;72:683–689. PubMed
Alonso-Galicia M, Maier KG, Greene AS, Cowley AW, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid in the renal and vasoconstrictor actions of angiotensin II. Am J Physiol. 2002;283:R60–R68. PubMed
Joly E, Seqqat R, Flamion B, Caron N, Michal A, Imig JD, Kramp R. Increased renal vascular reactivity to angiotensin II after unilateral nephrectomy in the rat involves 20-HETE. Am J Physiol. 2006;291:R977–R986. PubMed
Muthalif MM, Karzoun NA, Gaber L, Khandekar Z, Benter IF, Saeed AF, Parmentier JH, Estes A, Malik KU. Angiotensin II-induced hypertension: contribution of Ras GTPase/mitogen-activated protein kinase and cytochrome P-450 metabolites. Hypertension. 2000;36:604–609. PubMed
Kaergel E, Muller DN, Honeck H, Theuer J, Shagdarsuren E, Mullally A, Luft FC, Schunck WH. P450-dependent arachidonic acid metabolism and angiotensin II-induced renal damage. Hypertension. 2002;40:273–279. PubMed
Čertíková Chábová V, Kramer HJ, Vaněčková I, Vernerová Z, Eis V, Tesař V, Škaroupková P, Thumová M, Schejbalová S, Husková Z, Vaňourková Z, Kolský A, Imig JD, Červenka L. Effects of chronic cytochrome P-450 inhibition on the course of hypertension and end-organ damage in Ren-2 transgenic rats. Vascular Pharmacol. 2007;47:145–159. PubMed
Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harboring the mouse Ren-2 gene. Nature. 1990;344:541–544. PubMed
Čertíková Chábová V, Kramer HJ, Vaněčková I, Thumová M, Škaroupková P, Tesař V, Falck JR, Imig JD, Červenka L. The roles of intrarenal 20-hydroxyeicosatetraenoic and epoxyeicosatrienoic acids in the regulation of renal function in hypertensive Ren-2 transgenic rats. Kidney Blood Press Res. 2007;30:335–346. PubMed
Wang MH, Brand-Schieber E, Zand BA, Nguyen X, Falck JR, Balu N, Schwartzman ML. Cytochrome P-450-derived arachidonic acid metabolism in the rat kidney: characterization of selective inhibitors. J Pharmacol Exp Ther. 1998;284:966–973. PubMed
Morisseau C, Goodrow WH, Dowdy D, Zheng J, Greene JF, Sanborn JR, Hammock BD. Potent urea and carbamate inhibitors of soluble epoxide hydrolase. Proc Nat Acad Sci. 1999;96:8849–8854. PubMed PMC
Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension. 2002;39:690–694. PubMed
Vaněčková I, Kramer HJ, Bäcker A, Schejbalová S, Vernerová Z, Eis V, Opočenský M, Dvořák P, Červenka L. Early-onset endothelin receptor blockade in hypertensive heterozygous Ren-2 rats. Vascular Pharmacol. 2006;45:163–170. PubMed
Opočenský M, Kramer HJ, Bäcker A, Vernerová Z, Eis V, Červenka L, Vaněčková I. Late-onset endothelin-A receptor blockade substantially improves survival rate in homozygous hypertensive Ren-2 rats. Hypertension. 2006;48:965–971. PubMed
Husková Z, Kramer HJ, Vaňourková Z, Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J Hypertens. 2006;24:517–527. PubMed
Husková Z, Kramer HJ, Thumová M, Vaňurková Z, Bürgelová M, Teplan V, Malý J, Červenka L. Effects of anesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Press Res. 2006;29:74–83. PubMed
Vaňourková Z, Kramer HJ, Husková Z, Vaněčková I, Opočenský M, Čertíková Chábová V, Tesař V, Škaroupková P, Thumová M, Dohnalová M, Mullins JJ, Červenka L. AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J Hypertens. 2006;24:2465–2472. PubMed
Sandberg MC, Laborde C. Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17-beta-estradiol in the aging Dahl salt sensitive rat. J Am Soc Nephrol. 2004;15:1546–1556. PubMed
Nakano Y, Hirano T, Uehara K, Nishibayashi S, Hattori K, Aihara M, Yamada Y. New rat model induced by anti-glomerular basement membrane antibody shows sever glomerular adhesion in early stage and quickly progresses to end-stage renal failure. Pathol Int. 2008;58:361–370. PubMed
Weibel ER. Practical Methods for Biological Morphometry. London: Academic Press; 1979. Stereological Methods; pp. 44–46.
Lane PH, Steffes MW, Mauer MS. Estimation of glomerular volume: a comparison of four methods. Kidney Int. 1992;41:1085–1089. PubMed
Jacinto SM, Mullins JJ, Mitchell KD. Enhanced renal vascular responsiveness to angiotensin II in hypertensive ren-2 transgenic rats. Am J Physiol. 1999;276:F315–F322. PubMed
Kopkan L, Kramer HJ, Husková Z, Vaňourková Z, Škaroupková P, Thumová M, Červenka L. The role of intrarenal angiotensin II in the development of hypertension in Ren-2 transgenic rats. J Hypertens. 2005;23:1531–1539. PubMed
Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mRen2)27. Am J Physiol. 1996;270:E919–E929. PubMed
Mitchell KD, Jacinto SM, Mullins JJ. Proximal tubular fluid, kidney, and plasma levels of angiotensin II in hypertensive Ren-2 transgenic rats. Am J Physiol. 1997;273:F246–F253. PubMed
Sarkis A, Lopez B, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in hypertension. Curr Opin Nephrol Hypertens. 2004;13:205–214. PubMed
Zhao X, Pollock DM, Zeldin DC, Imig JD. Salt-sensitive hypertension after exposure to angiotensin is associated with inability to upregulate renal epoxygenases. Hypertension. 2003;42:775–780. PubMed
Jung O, Brandes RP, Kim I-H, Schweda F, Schmidt R, Hammock BD, Busse R, Fleming I. Soluble epoxide hypdrolase is a main effector of angiotensin II-induced hypertension. Hypertension. 2005;45:759–765. PubMed
Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR, Roman RJ. 20-HETE is an endogenous inhibitor of the large-conductance Ca2+-activated K+ channel in renal arterioles. Am J Physiol. 1996;270:R228–R237. PubMed
Gebremedhin D, Lange AR, Narayanan J, Aebly MR, Jacobs ER, Harder DR. Cat cerebral arterial smooth muscle cells express cytochrome P450 4A2 enzyme and produce the vasoconstrictor 20-HETE which enhances L-type Ca2+ current. J Physiol. 1998;507:771–781. PubMed PMC
Randriamboavonjy V, Busse R, Fleming I. 20-HETE-induced contraction of small coronary arteries depends on the activation of Rho-Kinase. Hypertension. 2003;41:801–806. PubMed
Imig JD, Pham BT, LeBlanc EA, Reddy KM, Falck JR, Inscho EW. Cytochrome P450 and cyclooxygenase metabolites contribute to the endothelin-1 afferent arteriolar vasoconstrictor and calcium responses. Hypertension. 2000;35:307–312. PubMed
Oyekan AO, McGiff JC. Cytochrome P-450-derived eicosanoids participates in the renal functional effects of ET-1 in the anaesthetized rat. Am J Physiol. 1998;274:R52–R61. PubMed
Singh H, Schwartzman ML. Renal vascular cytochrome P450-derived eicosanoids in androgen-induced hypertension. Pharmacol Rep. 2008;60:29–37. PubMed
Quigley R, Baum M, Reddy KM, Griener JC, Falck JR. Effects of 20-HETE and 19(S)-HETE on rabbit proximal straight tubule volume transport. Am J Physiol. 2000;278:F949–F953. PubMed PMC
Yu M, Lopez B, Dos Santos EA, Falck JR, Roman RJ. Effects of 20-HETE on Na+-K+-ATPase activity in the thick ascending loop of Henle. Am J Physiol. 2007;292:R2400–R2405. PubMed
Hoagland KM, Flasch AK, Roman RJ. Inhibitors of 20-HETE formation promote salt-sensitive hypertension in rats. Hypertension. 2003;42:669–673. PubMed
Imig JD, Zhao X, Falck JR, Wei S, Capdevila JH. Enhanced renal mircovascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12-epoxyeicosatrienoic acid. J Hypertens. 2001;19:983–992. PubMed
Imig JD, Falck JR, Wei S, Capdevila JH. Epoxygenase metabolites contribute to nitric oxide-independent afferent arteriolar vasodilatation in response to bradykinin. J Vasc Res. 2001;38:247–255. PubMed
Wang D, Borrego-Conde LJ, Falck JR, Sharma KK, Wilcox CS, Umans JG. Contribution of nitric oxide, EDHF, and EETs to endothelium-dependent relaxation in renal afferent arterioles. Kidney Int. 2003;63:2187–2193. PubMed
Kohagure K, Endo Y, Ito O, Arima S, Omata K, Ito S. Endogenous nitric oxide and epoxyeicosatrienoic acids modulate angiotensin II-induced constriction in the rabbit afferent arteriole. Acta Physiol Scand. 2000;168:107–112. PubMed
Madhun ZT, Goldthwait DA, McKay D, Hopfer U, Douglas JG. An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells. J Clin Invest. 1991;88:456–461. PubMed PMC
Sakairi Y, Jacobson HR, Noland DT, Capdevila JH, Falck JR, Breyer MD. 5,6-EET inhibits ion transport in collecting duct by stimulating endogenous prostaglandin synthesis. Am J Physiol. 1995;268:F931–F939. PubMed
Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol. 2005;289:F496–F503. PubMed
Yoshida Y, Kawamura T, Ikoma M, Fogo A, Ichikawa I. Effects of antihypertensive drugs on glomerular morphology. Kidney Int. 1989;36:626–635. PubMed
Dworkin LD, Feiner HD, Parker M, Tolbert E. Effects of nifedipine and enalapril on glomerular structure and function in uninephrectomized SHR. Kidney Int. 1991;39:1112–1117. PubMed
Imig JD, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov. 2009;8:794–805. PubMed PMC
McGiff JC. Cytochrome P-450 metabolism of arachidonic acid. Ann Rev Pharmacol Toxicol. 1991;31:339–169. PubMed
Makita K, Falck JR, Capdevila JH. Cytochrome P450, the arachidonic acid cascade, and hypertension: new vistas for old enzyme system. FASEB. 1996;10:1456–1463. PubMed
Sakuma S, Usa K, Fujimoto Y. 15-hydroperoxyeicosapentaenoic acid, but not eicosapentaenoic acid, shifts arachidonic acid away from cyclooxygenase pathway into acyl-CoA synthetase pathway in rabbit kidney medulla microsomes. ProstaglandinsLeukot Essent Fatty Acids. 2006;75:69–74. PubMed
Spector AA. Arachidonic acid cytochrome P450 epoxygenase pathway. J Lipid Res. 2009;50:S52–S60. PubMed PMC
Zicha J, Kuneš J. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol Rev. 1999;79:1227–1282. PubMed
Muthalif MM, Benter LF, Karzoun N, Fatima S, Harper J, Uddin MR, Malik KU. 20-Hydroxyeicosatetraenoic acid mediates calcium/calmodulin dependent protein kinase II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. Proc Natl Acad Sci USA. 1998;95:12701–12706. PubMed PMC
Parmentier J-H, Muthalif MM, Nishimoto AT, Malik KU. 20-Hydroxyeicosatetraenoic acid mediates angiotensin II-induced phospholipase D activation in vascular smooth muscle cells. Hypertension. 2001;37:623–629. PubMed
Yaghini FA, Zhang C, Parmentier JH, Estes AM, Jafari N, Schaefer SA, Malik KU. Contribution of arachidonic acid metabolites derived via cytochrome P4504A to angiotensin II-induced neointimal growth. Hypertension. 2005;45:1182–1187. PubMed
Camara NO, Martins JO, Landgraf RG, Jancar S. Emerging roles for eicosanoids in renal diseases. Curr Opin Nephrol Hypertens. 2009;18:21–27. PubMed
Research on Experimental Hypertension in Prague (1966-2009)