20-Hydroxyeicosatetraenoic acid antagonist attenuates the development of malignant hypertension and reverses it once established: a study in Cyp1a1-Ren-2 transgenic rats

. 2018 Oct 31 ; 38 (5) : . [epub] 20180912

Jazyk angličtina Země Anglie, Velká Británie Médium electronic-print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30054426

We hypothesized that vascular actions of 20-hydroxyeicosatetraenoic acid (20-HETE), the product of cytochrome P450 (CYP450)-dependent ω-hydroxylase, potentiate prohypertensive actions of angiotensin II (ANG II) in Cyp1a1-Ren-2 transgenic rats, a model of ANG II-dependent malignant hypertension. Therefore, we evaluated the antihypertensive effectiveness of 20-HETE receptor antagonist (AAA) in this model. Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. Treatment with AAA was started either simultaneously with induction of hypertension or 10 days later, during established hypertension. Systolic blood pressure (SBP) was monitored by radiotelemetry, indices of renal and cardiac injury, and kidney ANG II levels were determined. In I3C-induced hypertensive rats, early AAA treatment reduced SBP elevation (to 161 ± 3 compared with 199 ± 3 mmHg in untreated I3C-induced rats), reduced albuminuria, glomerulosclerosis index, and cardiac hypertrophy (P<0.05 in all cases). Untreated I3C-induced rats showed augmented kidney ANG II (405 ± 14 compared with 52 ± 3 fmol/g in non-induced rats, P<0.05) which was markedly lowered by AAA treatment (72 ± 6 fmol/g). Remarkably, in TGR with established hypertension, AAA also decreased SBP (from 187 ± 4 to 158 ± 4 mmHg, P<0.05) and exhibited organoprotective effects in addition to marked suppression of kidney ANG II levels. In conclusion, 20-HETE antagonist attenuated the development and largely reversed the established ANG II-dependent malignant hypertension, likely via suppression of intrarenal ANG II levels. This suggests that intrarenal ANG II activation by 20-HETE is important in the pathophysiology of this hypertension form.

Zobrazit více v PubMed

Poulter N.R., Prabhakaran D. and Culfield M. (2015) Hypertension. Lancet 386, 801–812 10.1016/S0140-6736(14)61468-9 PubMed DOI

Rossignol P., Massy Z.A., Azizi M., Bakris G., Ritz E. and Covic A. (2015) The double challenge of resistant hypertension and chronic kidney disease.. Lancet 386, 1588–1598 10.1016/S0140-6736(15)00418-3 PubMed DOI

Lip G.Y., Beevers M. and Beevers D.G. (1995) Complications and survival of 315 patients with malignant-phase hypertension. J. Hypertens. 13, 915–924 10.1097/00004872-199508000-00013 PubMed DOI

Guerin C., Gonthier R. and Berthoux F.C. (1988) Long-term prognosis in malignant or accelerated hypertension. Nephrol. Dial. Transplant. 3, 33–37 PubMed

Lane D.A., Lip G.Y.H. and Beevers D.G. (2009) Improving survival of malignant hypertension patients over 40 years. Am. J. Hypertens. 22, 1199–1204 10.1038/ajh.2009.153 PubMed DOI

Januszewicz A., Guzik T., Prejbisz A., Mikolajczyk T., Osmenda G. and Januszewicz W. (2016) Malignant hypertension: new aspects of an old clinical entity. Pol. Arch. Med. Wewn. 126, 86–93 PubMed

Cremer A., Amraoui F., Lip G.Y., Morales E., Rubin S., Sequra J. et al. (2016) From malignant hypertension to hypertension-MOD: a modern definition for old but still dangerous emergency. J. Hum. Hypertens. 30, 463–466 10.1038/jhh.2015.112 PubMed DOI

Mancia G., Fagard R., Narkiewicz K., Redán J., Zanchetti A., Böhm M. et al. (2013) Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 31, 1925–1938 10.1097/HJH.0b013e328364ca4c PubMed DOI

Laragh J.H. and Sealey J.E. (1990) Renin system understanding for analysis and treatment of hypertensive patients: a means to quantify the vasoconstrictor elements, diagnose curable renal and adrenal causes, assess risk of cardiovascular morbidity, and find the best-fit drug regimen. In Hypertension: Pathophysiology, Diagnosis and Management (Laragh J.H. and Brenner B.M., eds), pp. 1813–1836, Raven Press Publishers, New York, N.Y.

Laragh J.H. (2001) Laragh’s lessons in pathophysiology and clinical pearls for treating hypertension. Am. J. Hypertens. 14, 186–194 10.1016/S0895-7061(00)01317-0 PubMed DOI

Kincaid-Smith P. (1991) Malignant hypertension. J. Hypertens. 9, 893–899 10.1097/00004872-199110000-00002 PubMed DOI

Fleming S. (2000) Malignant hypertension – the role of the paracrine renin-angiotensin system. J. Pathol. 192, 135–139 10.1002/1096-9896(2000)9999:9999%3c::AID-PATH674%3e3.0.CO;2-Q PubMed DOI

Collidge T.A., Lammie G.A., Fleming S. and Mullins J.J. (2004) The role of the renin-angiotensin system in malignant vascular injury affecting the systemic and cerebral circulations. Prog. Biophys. Mol. Biol. 84, 301–319 10.1016/j.pbiomolbio.2003.11.003 PubMed DOI

Liu X., Bellamy C.O., Bailey M.A., Mullins L.J., Dunbar D.R. and Kenyon C.J. (2009) Angiotensin-converting enzyme is a modifier of hypertensive end organ damage. J. Biol. Chem. 284, 15564–15572 10.1074/jbc.M806584200 PubMed DOI PMC

Hall J.E., Granger J.P. and Hall M.E. (2013) Physiology and pathophysiology of hypertension. In Seldin and Giebisch’s The Kidney Physiology and Pathophysiology, 5th edn (Albpern R.J., Caplan M.J. and Moe O.W., eds), pp. 1319–1352, Academic Press

Capdevila J.H., Wang W. and Falck J.R. (2015) Arachidonic acid monooxygenase: genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat. 120, 40–49 10.1016/j.prostaglandins.2015.05.004 PubMed DOI PMC

Fan F., Ge Y., Lv M., Elliot M.R., Muroya Y., Hirata T. et al. (2016) Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Front. Biosci. 21, 1247–1463 PubMed PMC

Waldman M., Peterson S.J., Arad M. and Hochhauser E. (2016) The role of 20-HETE in cardiovascular diseases and its risk factors. Prostaglandins Other Lipid Mediat. 125, 108–117 10.1016/j.prostaglandins.2016.05.007 PubMed DOI

Imig J.D. (2016) Epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid on endothelial and vascular function. Adv. Pharmocol. 77, 105–141 10.1016/bs.apha.2016.04.003 PubMed DOI PMC

Garcia V. and Schwartzman M.L. (2017) Recent developments on the vascular effects of 20-hydroxyeicosatetraenoic acid. Curr. Opin. Nephrol. Hypertens. 26, 74–82 PubMed

Croft K.D., McGiff J.C., Sanchez-Mendoza A. and Carroll M.A. (2000) Angiotensin II releases 20-HETE from rat renal microvessels. Am. J. Physiol. 279, F544–F551 PubMed

Joly E., Seqqat R., Flamion F., Caron N., Michel A., Imig J.D. et al. (2006) Increased renal vascular reactivity to ANG II after unilateral nephrectomy in the rat involves 20-HETE. Am. J. Physiol. 291, R977–R986 PubMed

Sodhi K., Wu C.C., Cheng J., Gotlinger K., Inoue K., Goli M. et al. (2010) CYP4A2-induced hypertension is 20-hydroxyeicosatetraenoic acid- and angiotensin II-dependent. Hypertension 56, 871–878 10.1161/HYPERTENSIONAHA.110.154559 PubMed DOI PMC

Cheng J., Garcia V., Ding Y., Wu C.C., Thakra K., Falck J.R. et al. (2012) Induction of angiotensin-convertng enzyme and activation of the renin-angiotensin system contribute to 20-hydroxyeicosatetraenoic acid-mediated endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol. 32, 1917–1924 10.1161/ATVBAHA.112.248344 PubMed DOI PMC

Fan F., Sun C.W., Maier K.G., Williams J.M., Pabbidi M.R., Didion S.P. et al. (2013) 20-hydroxyeicosatetraenoic acid contributes to the inhibition of K+ channel activity and vasoconstrictor responses to angiotensin II in rat renal microvessles. PLoS ONE 8, e82482 10.1371/journal.pone.0082482 PubMed DOI PMC

Garcia V., Joseph G., Shkolnik B., Ding Y., Zhang F.F., Gotlinger K. et al. (2015) Angiotensin II receptor blockade or deletion of vascular endothelial ACE does not prevent vascular dysfunction and remodeling in 20-HETE-dependent hypertension. Am. J. Physiol. 309, R71–R78 PubMed PMC

Savas U., Wei S., Hsu M.H., Falck J.R., Guengerich F.P., Capdevilla J.H. et al. (2016) 20-hydroxyeicosatetraenoic acid (HETE)-dependent hypertension in human cytochrome P450 (CYP)4A11 transgenic mice: normalization of blood pressure by sodium restriction, hydrochlothiazide, or blockade of the type 1 angiotensin II receptor. J. Biol. Chem. 291, 16904–16919 10.1074/jbc.M116.732297 PubMed DOI PMC

Garcia V., Shkolik B., Milhau L., Falck J.R. and Schwartzman M.L. (2016) 20-HETE activates the transcription of angiotensin-converting enzyme via nuclear factor-kB translocation and promoter binding. J. Pharmacol. Exp. Ther. 356, 525–533 10.1124/jpet.115.229377 PubMed DOI PMC

Garcia V., Gilani A., Shkolnik B., Pandey V., Zhang F.F., Dakarapu R. et al. (2017) 20-HETE signals through G-protein-coupled receptor GPR75 (Gq) to affect vascular function and trigger hypertension. Circ. Res. 120, 1776–1788 10.1161/CIRCRESAHA.116.310525 PubMed DOI PMC

Kantachuvesiri S., Fleming S., Peters J., Peters B., Brooker G., Lammie A.G. et al. (2001) Controlled hypertension, a transgenic toggle switch reveals differential mechanisms underlying vascular disease. J. Biol. Chem. 276, 36727–36733 10.1074/jbc.M103296200 PubMed DOI

Vaňourková Z., Kramer H.J., Husková Z., Vaněčková I., Opočenský M., Čertíková Chábová V. et al. (2006) AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J. Hypertens. 24, 2465–2472 10.1097/01.hjh.0000251909.00923.22 PubMed DOI

Husková Z., Vaňourková Z., Erbanová M., Thumová M., Opočenský M., Mullins J.J. et al. (2010) Inappropriately high circulating and intrarenal angiotensin II levels during dietary salt loading exacerbate hypertension in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 28, 495–509 10.1097/HJH.0b013e3283345d69 PubMed DOI

Erbanová M., Thumová M., Husková Z., Vaněčková I., Vaňourková Z., Mullins J.J. et al. (2009) Impairment of the autoregulation of renal hemodynamics and of the pressure-natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 27, 575–586 10.1097/HJH.0b013e32831cbd5a PubMed DOI

Sporková A., Jíchová Š, Husková Z., Kopkan L., Nishiyama A., Hwang S.H. et al. (2014) Different mechanisms of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: studies in Cyp1a1-Ren-2 transgenic rats. Clin. Exp. Pharmacol. Physiol. 41, 1003–1013, 10.1111/1440-1681.12310 PubMed DOI PMC

Mitchell K.D., Bagatell S.J., Miller C.S., Mouton C.R., Seth D.M. and Mullins J.J. (2006) Genetic clamping of renin gene expression induces hypertension and elevation of intrarenal angiotensin II levels of graded severity in Cyp1a1-Ren2 transgenic rats. J. Renin Angiotensin Aldosterone Syst. 7, 74–86 PubMed

Williams D.E., Prieto M.C., Mullins J.J., Navar L.G. and Mitchell K.D. (2010) AT1 receptor blockade prevents the increase in blood pressure and the augmentation of intrarenal ANG II levels in hypertensive Cyp1a1-Ren-2 transgenic rats fed a high salt diet. Am. J. Med. Sci. 339, 356–361 10.1097/MAJ.0b013e3181d2b0a8 PubMed DOI PMC

Fleming I. (2014) The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol. Rev. 66, 1106–1140 10.1124/pr.113.007781 PubMed DOI

Whitworth C.E., Fleming S., Kotelevtsev Y., Manson L., Brooker G.A., Cumming A.D. et al. (1995) A genetic model of malignant phase hypertension in rats. Kidney Int. 47, 529–535 10.1038/ki.1995.66 PubMed DOI

Husková Z., Kopkan L., Červenková L., Doleželová Š, Vaňourková Z., Škaroupková P. et al. (2016) Intrarenal alterations of the angiotensin-converting enzyme type 2/angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin. Exp. Pharmacol. Physiol. 43, 438–449 10.1111/1440-1681.12553 PubMed DOI

Jíchová Š, Doleželová Š, Kopkan L., Kompanowska-Jezierska E., Sadowski J. and Červenka L. (2016) Fenofibrate attenuates malignant hypertension by suppression of the renin-angiotensin system: a study in Cyp1a1-Ren-2 transgenic rats. Am. J. Med. Sci. 352, 618–630 10.1016/j.amjms.2016.09.008 PubMed DOI

Gangadhariah M., Luther J.M., Garcia V., Paueksakon P., Zhang M.Z., Hayward S.W. et al. (2015) Hypertension is a major contributor to 20-hydroxyeicosatetraenoic acid-mediated kidney injury in diabetic nephropathy. J. Am. Soc. Nephrol. 26, 597–610 10.1681/ASN.2013090980 PubMed DOI PMC

Kurtz T.W., Griffin K.A., Bidani A.K., Davisson R.L. and Hall J.E. (2005) Recommendations for blood pressure measurements in humans and experimental animals. Part 2: Blood pressure measurements in experimental animals. Hypertension 45, 299–310 10.1161/01.HYP.0000150857.39919.cb PubMed DOI

Honetschlägerová Z., Husková Z., Vaňourková Z., Sporková A., Kramer H.J., Hwang S.H. et al. (2011) Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J. Physiol. 589, 207–219 10.1113/jphysiol.2010.199505 PubMed DOI PMC

Honetschlägerová Z., Sporková A., Kopkan L., Husková Z., Hwang S.H., Hammock B.D. et al. (2011) Inhibition of soluble epoxide hydrolase improves the impaired pressure-natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 29, 1590–1601 10.1097/HJH.0b013e328349062f PubMed DOI PMC

Jíchová Š, Kopkan L., Husková Z., Doleželová Š, Neckář J., Kujal P. et al. (2016) Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 34, 2008–2025 10.1097/HJH.0000000000001029 PubMed DOI PMC

Čertíková Chábová V., Walkowska A., Kompanowska-Jezierska E., Sadowski J., Kujal P., Vernerová Z. et al. (2010) Combined inhibition of 20-hydroxyeicosateraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats. Clin. Sci. 118, 617–632 10.1042/CS20090459 PubMed DOI PMC

Yin FCP, Spurgeon H.A., Rakusan K., Weisfeldt M.L. and Lakatta E.G. (1982) Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am. J. Physiol. 243, H941–H947 PubMed

Husková Z., Kramer H.J., Vaňourková Z. and Červenka L. (2006) Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J. Hypertens. 24, 517–527 10.1097/01.hjh.0000209988.51606.c7 PubMed DOI

Husková Z., Kramer H.J., Thumová M., Vaňourková Z., Burgerová M., Teplan V. et al. (2006) Effects of anesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Pres. Res. 29, 74–83 PubMed

Sporková A., Čertíková Chábová V., Doleželová Š, Jíchová Š, Kopkan L., Vaňourková Z. et al. (2017) Fenofibrate attenuates hypertension in Goldblatt hypertensive rats: role of 20-hydroxyeicosatetraenoic acid in the nonclipped kidney. Am. J. Med. Sci. 353, 568–579 10.1016/j.amjms.2017.04.009 PubMed DOI

Zou A.P., Fleming J.T., Falck J.R., Jacobs E.R., Gebremedhin D., Harder D.R. et al. (1996) 20-HETE is an endogenous inhibitor of the large-conductance Ca2+-activated K+ channel in renal arterioles. Am. J. Physiol. 270, R228–R237 PubMed

Randriamboavonjy V., Kiss L., Falck J.R., Busse R. and Fleming I. (2005) The synthesis of 20-HETE in small porcine coronary arteries antagonizes EDHF-mediated relaxation. Cardiovas. Res. 65, 487–494 10.1016/j.cardiores.2004.10.029 PubMed DOI

Randriamboavonjy V., Busse R. and Fleming I. (2003) 20-HETE-induced contraction of small coronary arteries depends on the activation of Rho-kinase. Hypertension 41, 801–806 10.1161/01.HYP.0000047240.33861.6B PubMed DOI

Kaide J., Wang M.H., Wang J.S., Zhang F., Gopal V.R., Falck J.R. et al. (2003) Transfection of CYP4A1 cDNA increases vascular reactivity in renal interlobar arteries. Am. J. Physiol. 284, F51–F56 PubMed

Imig J.D., Pham B.T., LeBlanc E.A., Reddy K.M., Falck J.R. and Inscho E.W. (2000) Cytochrome P450 and cyclooxygenase metabolites contribute to the endothelin-1 afferent arteriolar vasoconstriction and calcium response. Hypertension 35, 307–312 10.1161/01.HYP.35.1.307 PubMed DOI

Alonso-Galicia M., Maier K.G., Greene A.S., Cowley A.W. and Roman R.J. (2002) Role of 20-hydroxyeicosatetraenoic acid in the renal and vasoconstrictor actions of angiotensin II. Am. J. Physiol. 283, R60–R68 PubMed

Roman R.J. (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185 10.1152/physrev.00021.2001 PubMed DOI

Quigley R., Baum M., Reddy K.M., Griener J.C. and Falck J.R. (2000) Effects of 20-HETE and 19(S)-HETE on rabbit proximal straight tubule volume transport. Am. J. Physiol. 278, F949–F953 PubMed PMC

Yu M., Lopez B., Dos Santos E.A., Falck J.R. and Roman R.J. (2007) Effects of 20-HETE on Na+ transport and Na+-K+-ATPase activity in the thick ascending loop of Henle. Am. J. Physiol. 292, R2400–R2405 PubMed

Fan F. and Roman R.J. (2017) Effect of cytochrome P450 metabolites of arachidonic acid in Nephrology. J. Am. Soc. Nephrol. 28, 2845–2855 10.1681/ASN.2017030252 PubMed DOI PMC

Hoagland K.M., Flasch A.K. and Roman R.J. (2003) Inhibitors of 20-HETE formation promote salt-sensitive hypertension in rats. Hypertension 42, 669–673 10.1161/01.HYP.0000084634.97353.1A PubMed DOI

Williams J.M., Murphy S., Burke M. and Roman R.J. (2010) 20-hydroxyeicosatetraenoic acid: a new target for the treatment of hypertension. J. Cardiovasc. Phamarcol. 56, 336–344 PubMed PMC

Bautista R., Sánchez A., Hernández J., Oyekan A. and Escalante B. (2001) Angiotensin II type AT(2) receptor mRNA expression and renal vasodilatation are increased in renal failure. Hypertension 38, 669–673 10.1161/hy09t1.096186 PubMed DOI

Vera T., Taylor M., Bohman Q., Flasch A., Roman R.J. and Stec D.E. (2005) Fenofibrate prevents the development of angiotensin II-dependent hypertension in mice. Hypertension 45, 730–735 10.1161/01.HYP.0000153317.06072.2e PubMed DOI

Hye Khan M.A., Pavlov T.S., Christain S.V., Neckář J., Staruschenko A. and Gauthier K.M. (2014) Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilatation and sodium channel inhibition. Clin. Sci. 127, 463–474 10.1042/CS20130479 PubMed DOI PMC

Navar L.G., Prieto M.C., Satou R. and Kobori H. (2011) Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr. Opin. Pharmacol. 11, 180–186 10.1016/j.coph.2011.01.009 PubMed DOI PMC

Gonzalez-Villalobos R.A., Janjoulia T., Fletcher N.K., Giani J.F., Nguyen M.T.X. and Riquier-Brison A.D. (2013) The absence of intrarenal ACE protects against hypertension. J. Clin. Invest. 123, 2011–2023 10.1172/JCI65460 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...