Early Renal Vasodilator and Hypotensive Action of Epoxyeicosatrienoic Acid Analog (EET-A) and 20-HETE Receptor Blocker (AAA) in Spontaneously Hypertensive Rats

. 2021 ; 12 () : 622882. [epub] 20210128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33584348

Cytochrome P450 (CYP-450) metabolites of arachidonic acid: epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) have established role in regulation of blood pressure (BP) and kidney function. EETs deficiency and increased renal formation of 20-HETE contribute to hypertension in spontaneously hypertensive rats (SHR). We explored the effects of 14,15-EET analog (EET-A) and of 20-HETE receptor blocker (AAA) on BP and kidney function in this model. In anesthetized SHR the responses were determined of mean arterial blood pressure (MABP), total renal (RBF), and cortical (CBF) and inner-medullary blood flows, glomerular filtration rate and renal excretion, to EET-A, 5 mg/kg, infused i.v. for 1 h to rats untreated or after blockade of endogenous EETs degradation with an inhibitor (c-AUCB) of soluble epoxide hydrolase. Also examined were the responses to AAA (10 mg/kg/h), given alone or together with EET-A. EET-A significantly increased RBF and CBF (+30% and 26%, respectively), seen already within first 30 min of infusion. The greatest increases in RBF and CBF (by about 40%) were seen after AAA, similar when given alone or combined with EET-A. MABP decreased after EET-A or AAA but not significantly after the combination thereof. In all groups, RBF, and CBF increases preceded the decrease in MABP. We found that in SHR both EET-A and AAA induced renal vasodilation but, unexpectedly, no additive effect was seen. We suggest that both agents have a definite therapeutic potential and deserve further experimental and clinical testing aimed at introduction of novel antihypertensive therapy.

Zobrazit více v PubMed

Campbell W. B., Imig J. D., Schmitz J. M., Falck J. R. (2018). Drugs in the pipeline series orally active epoxyeicosatrienoic acid analogs. J. Pharmacol. 70 211–224. 10.1097/fjc.0000000000000523 PubMed DOI PMC

Capdevila J. H., Wang W., Falck J. R. (2015). Arachidonic acid monooxygenase: genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat. 120 40–49. 10.1016/j.prostaglandins.2015.05.004 PubMed DOI PMC

Červenka L., Husková Z., Kopkan L., Kikerlová S., Sedláková L., Vaňourková Z., et al. (2018). Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J. Hypertens. 36 1326–1341. 10.1097/hjh.0000000000001708 PubMed DOI PMC

Fan F., Muroya Y., Roman R. J. (2015). Cytochrome P450 eicosanoids in hypertension and renal disease. Curr. Opin. Nephrol. Hypertens. 24 37–46. 10.1097/mnh.0000000000000088 PubMed DOI PMC

Fornage M., Hinojos C. A., Nurowska B. W., Boerwinkle E., Hammock B. D., Morisseau C. H., et al. (2002). Polymorphism in soluble epoxide hydrolase and blood pressure in spontaneously hypertensive rats. Hypertension 40 485–490. 10.1161/01.hyp.0000032278.75806.68 PubMed DOI

Gawryś O., Husková Z., Baranowska I., Walkowska A., Sadowski J., Kikerlová S., et al. (2020). Combined treatment with epoxyeicosatrienoic acid analog and 20-hydroxyeicosatetraenoic acid antagonist provides substantial hypotensive effect in spontaneously hypertensive rats. J. Hypertens. 38 1802–1810. 10.1097/hjh.0000000000002462 PubMed DOI

Hoff U., Bubalo G., Fechner M., Blum M., Zhu Y., Pohlmann A., et al. (2019). A synthetic epoxyeicosatrienoic. Acta Physiol. 227:e13297. PubMed PMC

Honetschlägerová Z., Sporková A., Kopkan L., Husková Z., Hwang S. H., Hammock B. D., et al. (2011). Inhibition of soluble epoxide hydrolase improves the impaired pressure–natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 29 1590–1601. 10.1097/hjh.0b013e328349062f PubMed DOI PMC

Hwang S. H., Tsai H. J., Liu J. Y., Morisseau C., Hammock B. D. (2007). Orally bioavailable potent soluble epoxide hydrolase inhibitors. J. Med. Chem. 50 3825–3840. 10.1021/jm070270t PubMed DOI PMC

Imig J. D. (2012). Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol. Rev. 92 101–130. 10.1152/physrev.00021.2011 PubMed DOI PMC

Imig J. D. (2013). Epoxyeicosatrienoic acids, 20-hydroxyeicosatetraenoic acid and renal microvascular function. Prostagloandins Other Lipid Mediat. 104-105 2–7. 10.1016/j.prostaglandins.2013.01.002 PubMed DOI PMC

Imig J. D. (2015). Epoxyeicosatrienoic acids, hypertension, and kidney injury. Hypertension 65 476–482. 10.1161/hypertensionaha.114.03585 PubMed DOI PMC

Imig J. D. (2019). Epoxyeicosanoids in hypertension. Physiol. Res. 68 695–704. PubMed PMC

Imig J. D., Elmarakby A., Nithipatikom K., Wei S., Capdevila J. H., Tuniki R. V., et al. (2010). Development of epoxyeiocastrienoic acids analogs with in vivo anti-hypertensive actions. Front. Physiol. 1:157. PubMed PMC

Iversen B. M., Sekse I., Ofstad J. (1987). Resetting of renal blood flow autoregulation in spontaneously hypertensive rats. Am. J. Physiol. 252 F480–F486. PubMed

Jiang H., Quilley J., Doumad A. B., Zhu A. G., Falck J. R., Hammock B. D., et al. (2011). Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 300 H1990–H1996. PubMed PMC

Jíchová Š, Kopkan L., Husková Z., Doleželová Š, Neckáø J., Kujal P., et al. (2016). Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 34 2008–2025. 10.1097/hjh.0000000000001029 PubMed DOI PMC

Koeners M. P., Racasan S., Koomans H. A., Joles J. A., Braam B. (2007). Nitric oxide, superoxide and renal blood flow autoregulation in SHR after perinatal L-arginine and antioxidants. Acta Physiol. 190 329–338. 10.1111/j.1748-1761.2007.01702.x PubMed DOI

Koeners M. P., Wesseling S., Ulu A., Sepulveda R. L., Morisseau C., Braam B., et al. (2011). Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am. J. Physiol. Endocrinol. Metab. 300 E619–E682. PubMed PMC

Kujal P., Čertikova Chabova V., Škaroupkova P., Huskova Z., Vernerova Z., Kramer H. J., et al. (2014). Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin. Exp. Pharmacol. Physiol. 41 227–237. 10.1111/1440-1681.12204 PubMed DOI PMC

Mattson D. L. (2003). Importance of the renal medullary circulation in the control of sodium excretion and blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284 R13–R27. PubMed

Neckář J., Kopkan L., Husková Z., Kolář F., Papoušek F., Kramer H. J., et al. (2012). Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin. Sci. 122 513–525. 10.1042/cs20110622 PubMed DOI PMC

Oyekan O. (2005). Differential effects of 20-hydroxyeicosatetraenoic acid on intrarenal blood flow on the rat. J. Pharmacol. Exp. Ther. 313 1289–1295. 10.1124/jpet.104.080218 PubMed DOI

Pomposiello S. I., Quilley J., Carroll M. A., Falck J. R., McGiff J. C. (2003). 5,6-epoxyeicosatrienoic acid mediates the enhanced renal vasodilation to arachidonic acid in the SHR. Hypertension 42 548–554. 10.1161/01.hyp.0000090095.87899.36 PubMed DOI

Roman R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82 131–185. 10.1152/physrev.00021.2001 PubMed DOI

Roman R. J., Fan F. (2018). 20-HETE: hypertension and beyond. Hypertension 72 12–18. 10.1161/hypertensionaha.118.10269 PubMed DOI PMC

Roszkowska-Chojecka M. M., Walkowska A., Gawryś O., Baranowska I., Kalisz M., Litwiniuk A., et al. (2015). Effects of chymostatin, a chymase inhibitor, on blood pressure, plasma and tissue angiotensin II, renal haemodynamics and renal excretion in two models of hypertension in the rat. Exp. Physiol. 100 1093–1095. 10.1113/ep085325 PubMed DOI

Sacerdoti D., Escalante B., Abraham N. G., McGiff J. C., Levere R. D., Schwartzman M. L. (1989). Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science 243 388–390. 10.1126/science.2492116 PubMed DOI

Sedláková L., Kikerlová S., Husková Z., Červenková L., Chábová V., Zicha J., et al. (2018). 20-Hydroxyeicosatetraenoic acid antagonist attenuates the development of malignant hypertension and reverses it once established: a study in Cyp1a1-Ren-2 transgenic rats. Biosci. Rep. 38:BSR20171496. PubMed PMC

Sporková A., Husková Z., Škaroupková P., Rami Reddy N., Falck J. R., Sadowski J., et al. (2017). Vasodilatory responses of renal interlobular arteries to epoxyeicosatrienoic acids analog are not enhanced in Ren-2 transgenic hypertensive rats: evidence against a role of direct vascular effects of epoxyeicosatrienoic acids in progression of experimental heart failure. Physiol. Res. 66 29–39. 10.33549/physiolres.933350 PubMed DOI

Sporková A., Jíchová S., Husková Z., Kopkan L., Nishiyama A., Hwang S. H., et al. (2014). Different mechanisms of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: studies in Cyp1a1-Ren-2 transgenic rats. Clin. Exp. Pharmacol. Physiol. 41 1003–1013. 10.1111/1440-1681.12310 PubMed DOI PMC

Sporková A., Reddy R. N., Falck J. R., Imig J. D., Kopkan L., Sadowski J., et al. (2016). Interlobular arteries from 2-kidney, 1-clip goldblatt hypertensive rats’ exhibit-impaired vasodilator response to epoxyeicosatrienoic acids. Am. J. Med. Sci. 351 513–519. 10.1016/j.amjms.2016.02.030 PubMed DOI PMC

Su P., Kaushal K. M., Kroetz D. L. (1998). Inhibition of renal arachidonic acid omega-hydroxylase activity with ABT reduces blood pressure in the SHR. Am. J. Physiol. 275 R426–R438. PubMed

Walkowska A., Kuczeriszka M., Sadowski J., Olszyński K. H., Dobrowolski L., Červenka L., et al. (2015). High salt intake increases blood pressure in normal rats: putative role of 20-HETE and no evidence on changes in renal vascular reactivity. Kidney Blood Press Res. 40 323–334. 10.1159/000368508 PubMed DOI PMC

Yu Z., Huse L. M., Adler P., Graham L., Ma J., Zeldin D. C., et al. (2000). Increased CYP2J expression and epoxyeicosatrienoic acid formation in spontaneously hypertensive rat kidney. Mol. Pharmacol. 57 1011–1020. PubMed

Zhang C., Booz G. W., Yu Q., He X., Wang S., Fan F. (2018). Conflicting roles of 20-HETE in hypertension and renal end organ damage. Eur. J. Pharmacol. 833 190–200. 10.1016/j.ejphar.2018.06.010 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...