Early Renal Vasodilator and Hypotensive Action of Epoxyeicosatrienoic Acid Analog (EET-A) and 20-HETE Receptor Blocker (AAA) in Spontaneously Hypertensive Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33584348
PubMed Central
PMC7876274
DOI
10.3389/fphys.2021.622882
Knihovny.cz E-zdroje
- Klíčová slova
- 20-HETE antagonist, EET analog, epoxyeicosatrienoic acids, hypertension, soluble epoxide hydrolase,
- Publikační typ
- časopisecké články MeSH
Cytochrome P450 (CYP-450) metabolites of arachidonic acid: epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) have established role in regulation of blood pressure (BP) and kidney function. EETs deficiency and increased renal formation of 20-HETE contribute to hypertension in spontaneously hypertensive rats (SHR). We explored the effects of 14,15-EET analog (EET-A) and of 20-HETE receptor blocker (AAA) on BP and kidney function in this model. In anesthetized SHR the responses were determined of mean arterial blood pressure (MABP), total renal (RBF), and cortical (CBF) and inner-medullary blood flows, glomerular filtration rate and renal excretion, to EET-A, 5 mg/kg, infused i.v. for 1 h to rats untreated or after blockade of endogenous EETs degradation with an inhibitor (c-AUCB) of soluble epoxide hydrolase. Also examined were the responses to AAA (10 mg/kg/h), given alone or together with EET-A. EET-A significantly increased RBF and CBF (+30% and 26%, respectively), seen already within first 30 min of infusion. The greatest increases in RBF and CBF (by about 40%) were seen after AAA, similar when given alone or combined with EET-A. MABP decreased after EET-A or AAA but not significantly after the combination thereof. In all groups, RBF, and CBF increases preceded the decrease in MABP. We found that in SHR both EET-A and AAA induced renal vasodilation but, unexpectedly, no additive effect was seen. We suggest that both agents have a definite therapeutic potential and deserve further experimental and clinical testing aimed at introduction of novel antihypertensive therapy.
Center for Experimental Medicine Institute for Clinical and Experimental Medicine Prague Czechia
Department of Biochemistry University of Texas Southwestern Medical Center Dallas TX United States
Department of Pathophysiology 2nd Faculty of Medicine Charles University Prague Czechia
Department of Pharmacology and Toxicology Medical College of Wisconsin Milwaukee WI United States
Zobrazit více v PubMed
Campbell W. B., Imig J. D., Schmitz J. M., Falck J. R. (2018). Drugs in the pipeline series orally active epoxyeicosatrienoic acid analogs. J. Pharmacol. 70 211–224. 10.1097/fjc.0000000000000523 PubMed DOI PMC
Capdevila J. H., Wang W., Falck J. R. (2015). Arachidonic acid monooxygenase: genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat. 120 40–49. 10.1016/j.prostaglandins.2015.05.004 PubMed DOI PMC
Červenka L., Husková Z., Kopkan L., Kikerlová S., Sedláková L., Vaňourková Z., et al. (2018). Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J. Hypertens. 36 1326–1341. 10.1097/hjh.0000000000001708 PubMed DOI PMC
Fan F., Muroya Y., Roman R. J. (2015). Cytochrome P450 eicosanoids in hypertension and renal disease. Curr. Opin. Nephrol. Hypertens. 24 37–46. 10.1097/mnh.0000000000000088 PubMed DOI PMC
Fornage M., Hinojos C. A., Nurowska B. W., Boerwinkle E., Hammock B. D., Morisseau C. H., et al. (2002). Polymorphism in soluble epoxide hydrolase and blood pressure in spontaneously hypertensive rats. Hypertension 40 485–490. 10.1161/01.hyp.0000032278.75806.68 PubMed DOI
Gawryś O., Husková Z., Baranowska I., Walkowska A., Sadowski J., Kikerlová S., et al. (2020). Combined treatment with epoxyeicosatrienoic acid analog and 20-hydroxyeicosatetraenoic acid antagonist provides substantial hypotensive effect in spontaneously hypertensive rats. J. Hypertens. 38 1802–1810. 10.1097/hjh.0000000000002462 PubMed DOI
Hoff U., Bubalo G., Fechner M., Blum M., Zhu Y., Pohlmann A., et al. (2019). A synthetic epoxyeicosatrienoic. Acta Physiol. 227:e13297. PubMed PMC
Honetschlägerová Z., Sporková A., Kopkan L., Husková Z., Hwang S. H., Hammock B. D., et al. (2011). Inhibition of soluble epoxide hydrolase improves the impaired pressure–natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 29 1590–1601. 10.1097/hjh.0b013e328349062f PubMed DOI PMC
Hwang S. H., Tsai H. J., Liu J. Y., Morisseau C., Hammock B. D. (2007). Orally bioavailable potent soluble epoxide hydrolase inhibitors. J. Med. Chem. 50 3825–3840. 10.1021/jm070270t PubMed DOI PMC
Imig J. D. (2012). Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol. Rev. 92 101–130. 10.1152/physrev.00021.2011 PubMed DOI PMC
Imig J. D. (2013). Epoxyeicosatrienoic acids, 20-hydroxyeicosatetraenoic acid and renal microvascular function. Prostagloandins Other Lipid Mediat. 104-105 2–7. 10.1016/j.prostaglandins.2013.01.002 PubMed DOI PMC
Imig J. D. (2015). Epoxyeicosatrienoic acids, hypertension, and kidney injury. Hypertension 65 476–482. 10.1161/hypertensionaha.114.03585 PubMed DOI PMC
Imig J. D. (2019). Epoxyeicosanoids in hypertension. Physiol. Res. 68 695–704. PubMed PMC
Imig J. D., Elmarakby A., Nithipatikom K., Wei S., Capdevila J. H., Tuniki R. V., et al. (2010). Development of epoxyeiocastrienoic acids analogs with in vivo anti-hypertensive actions. Front. Physiol. 1:157. PubMed PMC
Iversen B. M., Sekse I., Ofstad J. (1987). Resetting of renal blood flow autoregulation in spontaneously hypertensive rats. Am. J. Physiol. 252 F480–F486. PubMed
Jiang H., Quilley J., Doumad A. B., Zhu A. G., Falck J. R., Hammock B. D., et al. (2011). Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 300 H1990–H1996. PubMed PMC
Jíchová Š, Kopkan L., Husková Z., Doleželová Š, Neckáø J., Kujal P., et al. (2016). Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 34 2008–2025. 10.1097/hjh.0000000000001029 PubMed DOI PMC
Koeners M. P., Racasan S., Koomans H. A., Joles J. A., Braam B. (2007). Nitric oxide, superoxide and renal blood flow autoregulation in SHR after perinatal L-arginine and antioxidants. Acta Physiol. 190 329–338. 10.1111/j.1748-1761.2007.01702.x PubMed DOI
Koeners M. P., Wesseling S., Ulu A., Sepulveda R. L., Morisseau C., Braam B., et al. (2011). Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am. J. Physiol. Endocrinol. Metab. 300 E619–E682. PubMed PMC
Kujal P., Čertikova Chabova V., Škaroupkova P., Huskova Z., Vernerova Z., Kramer H. J., et al. (2014). Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin. Exp. Pharmacol. Physiol. 41 227–237. 10.1111/1440-1681.12204 PubMed DOI PMC
Mattson D. L. (2003). Importance of the renal medullary circulation in the control of sodium excretion and blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284 R13–R27. PubMed
Neckář J., Kopkan L., Husková Z., Kolář F., Papoušek F., Kramer H. J., et al. (2012). Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin. Sci. 122 513–525. 10.1042/cs20110622 PubMed DOI PMC
Oyekan O. (2005). Differential effects of 20-hydroxyeicosatetraenoic acid on intrarenal blood flow on the rat. J. Pharmacol. Exp. Ther. 313 1289–1295. 10.1124/jpet.104.080218 PubMed DOI
Pomposiello S. I., Quilley J., Carroll M. A., Falck J. R., McGiff J. C. (2003). 5,6-epoxyeicosatrienoic acid mediates the enhanced renal vasodilation to arachidonic acid in the SHR. Hypertension 42 548–554. 10.1161/01.hyp.0000090095.87899.36 PubMed DOI
Roman R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82 131–185. 10.1152/physrev.00021.2001 PubMed DOI
Roman R. J., Fan F. (2018). 20-HETE: hypertension and beyond. Hypertension 72 12–18. 10.1161/hypertensionaha.118.10269 PubMed DOI PMC
Roszkowska-Chojecka M. M., Walkowska A., Gawryś O., Baranowska I., Kalisz M., Litwiniuk A., et al. (2015). Effects of chymostatin, a chymase inhibitor, on blood pressure, plasma and tissue angiotensin II, renal haemodynamics and renal excretion in two models of hypertension in the rat. Exp. Physiol. 100 1093–1095. 10.1113/ep085325 PubMed DOI
Sacerdoti D., Escalante B., Abraham N. G., McGiff J. C., Levere R. D., Schwartzman M. L. (1989). Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science 243 388–390. 10.1126/science.2492116 PubMed DOI
Sedláková L., Kikerlová S., Husková Z., Červenková L., Chábová V., Zicha J., et al. (2018). 20-Hydroxyeicosatetraenoic acid antagonist attenuates the development of malignant hypertension and reverses it once established: a study in Cyp1a1-Ren-2 transgenic rats. Biosci. Rep. 38:BSR20171496. PubMed PMC
Sporková A., Husková Z., Škaroupková P., Rami Reddy N., Falck J. R., Sadowski J., et al. (2017). Vasodilatory responses of renal interlobular arteries to epoxyeicosatrienoic acids analog are not enhanced in Ren-2 transgenic hypertensive rats: evidence against a role of direct vascular effects of epoxyeicosatrienoic acids in progression of experimental heart failure. Physiol. Res. 66 29–39. 10.33549/physiolres.933350 PubMed DOI
Sporková A., Jíchová S., Husková Z., Kopkan L., Nishiyama A., Hwang S. H., et al. (2014). Different mechanisms of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: studies in Cyp1a1-Ren-2 transgenic rats. Clin. Exp. Pharmacol. Physiol. 41 1003–1013. 10.1111/1440-1681.12310 PubMed DOI PMC
Sporková A., Reddy R. N., Falck J. R., Imig J. D., Kopkan L., Sadowski J., et al. (2016). Interlobular arteries from 2-kidney, 1-clip goldblatt hypertensive rats’ exhibit-impaired vasodilator response to epoxyeicosatrienoic acids. Am. J. Med. Sci. 351 513–519. 10.1016/j.amjms.2016.02.030 PubMed DOI PMC
Su P., Kaushal K. M., Kroetz D. L. (1998). Inhibition of renal arachidonic acid omega-hydroxylase activity with ABT reduces blood pressure in the SHR. Am. J. Physiol. 275 R426–R438. PubMed
Walkowska A., Kuczeriszka M., Sadowski J., Olszyński K. H., Dobrowolski L., Červenka L., et al. (2015). High salt intake increases blood pressure in normal rats: putative role of 20-HETE and no evidence on changes in renal vascular reactivity. Kidney Blood Press Res. 40 323–334. 10.1159/000368508 PubMed DOI PMC
Yu Z., Huse L. M., Adler P., Graham L., Ma J., Zeldin D. C., et al. (2000). Increased CYP2J expression and epoxyeicosatrienoic acid formation in spontaneously hypertensive rat kidney. Mol. Pharmacol. 57 1011–1020. PubMed
Zhang C., Booz G. W., Yu Q., He X., Wang S., Fan F. (2018). Conflicting roles of 20-HETE in hypertension and renal end organ damage. Eur. J. Pharmacol. 833 190–200. 10.1016/j.ejphar.2018.06.010 PubMed DOI PMC