Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
68121
Univerzita Karlova v Praze
17-28220A
Ministerstvo Zdravotnictví Ceské Republiky
I-0011
Welch Foundation
PubMed
34440257
PubMed Central
PMC8393645
DOI
10.3390/biomedicines9081053
PII: biomedicines9081053
Knihovny.cz E-zdroje
- Klíčová slova
- Ren-2 transgenic rats, angiotensin-converting enzyme inhibitor, aorto-caval fistula, congestive heart failure, cytochrome P-450, epoxyeicosatrienoic acids, hypertension, renin-angiotensin system, volume-overload heart failure,
- Publikační typ
- časopisecké články MeSH
This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF.
Department of Biochemistry University of Texas Southwestern Medical Center Dallas TX 75390 USA
Drug Discovery Center Medical College of Wisconsin Wauwatosa WI 53226 USA
Zobrazit více v PubMed
Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G., Coats A.J., Falk V., González-Juanaatey J.R., Harjola V.-P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016;37:2129–2200. PubMed
Benjamin E.J., Blaha M.J., Chiuve S.E., Cushman M., Das S.R., Deo R., de Ferranti S.D., Floyd J., Fornage M., Gillespie C., et al. Heart disease and stroke statistics—2017 update: A report from the American heart association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485. PubMed DOI PMC
Hein A., Scialla J., Edmonston D., Cooper L.B., DeVore A.D., Mentz R.J. Medical management of heart failure with reduced ejection fraction in patients with advanced renal disease. JACC Heart Fail. 2019;7:371–382. doi: 10.1016/j.jchf.2019.02.009. PubMed DOI PMC
Vaduganathan M., Claggett B.L., Jhund P.S., Cunningham J.W., Ferreira J.P., Zannad F., Packer M., Fonarow G.C., McMurray J.J.V., Solomon S.D. Estimating lifetime benefits of comprehensive disease-modifying pharmacological therapies in patients with heart failure with reduced ejection fraction: A comparative analysis of three randomised controlled trials. Lancet. 2020;396:121–128. doi: 10.1016/S0140-6736(20)30748-0. PubMed DOI
Packer M., Anker S.D., Butler J., Filippatos G., Pocock S.J., Carson P., Januzzi J., Verma S., Tsutsui H., Brueckman M., et al. EMPEROR reduced trial investigators cardiovascular and renal outcomes with empagli-flozin in heart failure. N. Eng. J. Med. 2020;383:1413–1424. doi: 10.1056/NEJMoa2022190. PubMed DOI
Murphy S.P., Ibrahim N.E., Januzzi J.J. Heart failure with reduced ejection fraction. JAMA. 2020;324:488–504. doi: 10.1001/jama.2020.10262. PubMed DOI
Imig J.D. Epoxyeicosanoids in Hypertension. Physiol. Res. 2019;68:695–704. doi: 10.33549/physiolres.934291. PubMed DOI PMC
Elmarakby A.A. Reno-protective mechanisms of epoxyeicosatrienoic acids in cardiovascular disease. Am. J. Physiol. Integr. Comp. Physiol. 2012;302:R321–R330. doi: 10.1152/ajpregu.00606.2011. PubMed DOI
Fan F., Roman R.J. Effect of cytochrome P450 metabolites of arachidonic acid in nephrology. J. Am. Soc. Nephrol. 2017;28:2845–2855. doi: 10.1681/ASN.2017030252. PubMed DOI PMC
Jamieson K.L., Endo T., Darwesh A.M., Samokhvalov V., Seubert J.M. Cytochrome P450-derived eicosanoids and heart function. Pharmacol. Ther. 2017;179:47–83. doi: 10.1016/j.pharmthera.2017.05.005. PubMed DOI
Sporková A., Reddy R.M., Falck J.R., Imig J.D., Kopkan L., Sadowski J., Červenka L. Interlobular arteries from 2-kidney, 1-clip Goldblatt hypertensive ras´ exhibit-impaired vasodilatory response to epoxyeicosatrienoic acids. Am. J. Med. Sci. 2016;351:513–519. doi: 10.1016/j.amjms.2016.02.030. PubMed DOI PMC
Rangawwami J., Bhalla V., Blair J.E.A., Chang T.I., Costa S., Lentine K.L., Lerma E.V., Mezeu K., Molitch M., Mullens W., et al. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies. Circulation. 2019;139:e840–e878. PubMed
Messerli F.H., Rimoldi S.F., Bangalore S. The transition from hypertension to heart failure. JACC Heart Fail. 2017;5:543–551. doi: 10.1016/j.jchf.2017.04.012. PubMed DOI
Dube P., Weber K.T. Congestive heart failure: Pathophysiologic consequences of neurohormonal activation and the potential for recovery: Part I. Am. J. Med. Sci. 2011;342:348–351. doi: 10.1097/MAJ.0b013e318232750d. PubMed DOI
Packer M. The neurohormonal hypothesis: A theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 1992;20:248–254. doi: 10.1016/0735-1097(92)90167-L. PubMed DOI
Pavo N., Prausmüller S., Spinka G., Goliasch G., Bartko P.E., Wurm R., Arfsten H., Strunk G., Poglitsch M., Domenig O., et al. Myocardial angiotensin metabolism in end-stage heart failure. J. Am. Coll. Cardiol. 2021;77:1731–1743. doi: 10.1016/j.jacc.2021.01.052. PubMed DOI
Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol. Rev. 2014;66:1106–1140. doi: 10.1124/pr.113.007781. PubMed DOI
Ma Y.H., Schwartzman M.L., Roman R.J. Altered renal P-450 metabolism of arachidonic acid in Dahl salt-sensitive rats. Am. J. Physiol. Integr. Comp. Physiol. 1994;267:R579–R589. doi: 10.1152/ajpregu.1994.267.2.R579. PubMed DOI
Kaergel E., Muller D.N., Honeck H., Theuer J., Shagdarsuren E., Mullally A., Luft F., Schunck W.-H. P450-dependent arachidonic acid metabolism and angiotensin II–induced renal damage. Hypertens. 2002;40:273–279. doi: 10.1161/01.HYP.0000029240.44253.5E. PubMed DOI
Falck J.R., Kodela R., Manne R., Atcha R., Puli N., Dubasi N. 14,15-Epoxyeicosa-5,8,11-trienoic acid (14,15-EET) surro-gates containing epoxide bioisosteres: Influence upon vascular relaxation and soluble epoxide hydrolase inhibition. J. Med. Chem. 2009;52:5069–5075. doi: 10.1021/jm900634w. PubMed DOI PMC
Imig J.D., Elmarakby A., Nithipatikom K., Wei S., Capdevila J.H., Tuniki V.R., Sangras B., Anjaiah S., Manthati V.L., Reddy D.S., et al. Development of epoxyeicosatrienoic acid analogs with in vivo anti-hypertensive actions. Front. Physiol. 2010;1:157. doi: 10.3389/fphys.2010.00157. PubMed DOI PMC
Hrdlička J., Neckář J., Papoušek F., Husková Z., Kikerlová S., Vaňourková Z., Vernerová Z., Akat F., Vašinová J., Hammock B.D., et al. Epoxyeicosatrienoic acid-based therapy attenuates the progression of postischemic heart failure in normotensive sprague-dawley but not in hypertensive Ren-2 transgenic Rats. Front. Pharmacol. 2019;10:159. doi: 10.3389/fphar.2019.00159. PubMed DOI PMC
Neckář J., Khan M.A.H., Gross G.J., Cyprová M., Hrdlička J., Kvasilová A., Falck J.R., Campbell W.B., Sedláková L., Škutová Š., et al. Epoxyeicosatrienoic acid analog EET-B at-tenuates post-myocardial infarction remodeling in spontaneously hypertensive rats. Clin. Sci. 2019;133:939–951. doi: 10.1042/CS20180728. PubMed DOI PMC
Imig J.D., Khan M.A.H., Burkhan A., Chen G., Adebesin A.M., Falck J.R. Kidney-targeting epoxyeicosatrienoic acid ana-log, EET-F01, reduces inflammation, oxidative stress, and cisplatin-induced nephrotoxicity. Int. J. Mol. Sci. 2021;22:2793. doi: 10.3390/ijms22062793. PubMed DOI PMC
Walkowska A., Červenka L., Imig J.D., Falck J.R., Sadowski J., Kompanowska-Jezierska E. Early Renal Vasodilator and Hypotensive Action of Epoxyeicosatrienoic Acid Analog (EET-A) and 20-HETE Receptor Blocker (AAA) in Spontaneously Hypertensive Rats. Front. Physiol. 2021;12 doi: 10.3389/fphys.2021.622882. PubMed DOI PMC
Garcia R., Diebold S. Simple, rapid, and effective method of producing aorto-caval shunts in the rat. Cardiovasc. Res. 1990;24:430–432. doi: 10.1093/cvr/24.5.430. PubMed DOI
Cohen-Segev R., Francis B., Abu-Saleh N., Awad H., Lazarovich A., Kabala A., Aronson D., Abassi Z. Cardiac and renal distribution of ACE and ACE-2 in rats with heart failure. Acta Histochem. 2014;116:1342–1349. doi: 10.1016/j.acthis.2014.08.006. PubMed DOI
Abassi Z., Goltsman I., Karram T., Winaver J., Hoffman A. Aortocaval Fistula in Rat: A Unique Model of Volume-Overload Congestive Heart Failure and Cardiac Hypertrophy. J. Biomed. Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC
Brower G., Levick S., Janicki J.S. Differential Effects of Prevention and Reversal Treatment with Lisinopril on Left Ventricular Remodelling in a Rat Model of Heart Failure. Hear. Lung Circ. 2015;24:919–924. doi: 10.1016/j.hlc.2015.02.023. PubMed DOI PMC
Kala P., Sedláková L., Škaroupková P., Kopkan L., Vaňourková Z., Táborský M., Nishiyama A., Hwang S.H., Hammock B.D., Sadowski J., et al. Effect of Angiotensin-Converting Enzyme Blockade, Alone or Combined With Blockade of Soluble Epoxide Hydrolase, on the Course of Congestive Heart Failure and Occurrence of Renal Dysfunction in Ren-2 Transgenic Hypertensive Rats With Aorto-Caval Fistula. Physiol. Res. 2017;67:401–415. doi: 10.33549/physiolres.933757. PubMed DOI PMC
Honetschlagerová Z., Gawrys O., Jíchová Š., Škaroupková P., Kikerlová S., Vaňourková Z., Husková Z., Melenovský V., Kom-panowska-Jezierska E., Sadowski J., et al. Renal sympathetic denervation at-tenuates congestive heart failure in angiotensin II-dependent hypertension: Studies with Ren-2 transgenic hypertensive rats with aorto-caval fistula. Kidney Blood Press. Res. 2021;46:95–113. PubMed
Honetschlagerová Z., Škaroupková P., Kikerlová S., Husková Z., Maxová H., Melenovský V., Kompanowska-Jezierska E., Sadowski J., Gawrys O., Kujal P., et al. Effects of renal sympathetic denervation on the course of congestive heart failure combined with chronic kidney disease: Insight from studies with fawn-hooded hypertensive rats with volume overload induced using aorto-caval fistula. Clin. Exp. Hypertens. 2021;43:1–14. doi: 10.1080/10641963.2021.1907398. PubMed DOI
Houser S.R., Margulies K.B., Murphy A.M., Spinale F.G., Francis G.S., Prabhu S.D. Animal models of heart failure: A sci-entific statement from the American Heart Association. Circ. Res. 2012;111:131–150. doi: 10.1161/RES.0b013e3182582523. PubMed DOI
Riehle C., Bauersachs J. Small animal models of heart failure. Cardiovasc. Res. 2019;115:1838–1849. doi: 10.1093/cvr/cvz161. PubMed DOI PMC
Mullins J.J., Peters J.F., Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nat. Cell Biol. 1990;344:541–544. doi: 10.1038/344541a0. PubMed DOI
Husková Z., Kramer H.J., Vaňourková Z., Červenka L. Effects of changes in sodium balance on plasma and kidney angio-tensin II levels in anesthetized and conscious Ren-2 transgenic rats. J. Hypertens. 2006;24:517–527. doi: 10.1097/01.hjh.0000209988.51606.c7. PubMed DOI
Červenka L., Melenovský V., Husková Z., Škaroupková P., Nishiyama A., Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hyperten-sive rats with aorto-caval fistula. Clin. Exp. Pharmacol. Physiol. 2015;42:795–807. doi: 10.1111/1440-1681.12419. PubMed DOI
Jíchová Š., Kopkan L., Husková Z., Doleželová Š., Neckář J., Kujal P., Verenerová Z., Kramer H.J., Sadowski J., Kom-panowska-Jezierska E., et al. Epoxyeicosatrienoic acid analog attenuates the develop-ment of malignant hypertension, but does not reverse it once established: A study in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 2016;34:2008–2025. doi: 10.1097/HJH.0000000000001029. PubMed DOI PMC
Červenka L., Husková Z., Kopkan L., Kikerlová S., Sedláková L., Vaňourková Z., Alánová P., Kolář F., Hammock B.D., Hwang S.H., et al. Two pharmacological epoxyeicosatrienoic ac-id-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angio-tensin II-dependent hypertension. J. Hypertens. 2018;3:1326–1341. doi: 10.1097/HJH.0000000000001708. PubMed DOI PMC
Gawrys O., Husková Z., Baranowska I., Walkowska A., Sadowski Kikerlová S., Vaňourková Z., Honetschlagerová Z., Ška-roupková P., Červenka L., Falck J., et al. Combined treatment with epoxyeicosatrienoic acid an-alog and 20-hydroxyeicosatetraenoic acid antagonist provides substantial hypotensive effect in spontaneously hypertensive rats. J. Hypertens. 2020;38:1802–1810. doi: 10.1097/HJH.0000000000002462. PubMed DOI
Kala P., Červenka L., Škaroupková P., Táborský M., Kompanowska-Jezierska E., Sadowski J. Sex-linked differences in the mor-tality in Ren-2 transgenic hypertensive rats with aorto-caval fistula: Effects of treatment with angiotensin-converting enzyme alone and combined with inhibitor of soluble epoxide hydrolase. Physiol. Res. 2019;68:589–601. doi: 10.33549/physiolres.934094. PubMed DOI
Hillege H.L., Girbes A.R., de Kam P.J., Boomsma F., de Zeeuw D., Charlesworth A., Hampton J.R., van Veldhuisen D.J. Renal func-tion, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102:203–210. doi: 10.1161/01.CIR.102.2.203. PubMed DOI
Schefold J.C., Filippatos G., Hasenfuss G., Anker S.D., von Haehling S. Heart failure and kidney dysfunction: Epidemiolo-gy, mechanisms and management. Nat. Rev. Cardiol. 2016;12:610–623. doi: 10.1038/nrneph.2016.113. PubMed DOI
Khayyat-Kholghi M., Oparil S., Davis B.R., Tereshchenko L.G. Worsening kidney function is the major mechanism of heart fail-ure in hypertension. The ALLHAT study. JACC Heart Fail. 2021;9:100–111. doi: 10.1016/j.jchf.2020.09.006. PubMed DOI PMC
Antoine S., Vaidya G., Imam H., Villarreal D. Pathophysiologic Mechanisms in Heart Failure: Role of the Sympathetic Nervous System. Am. J. Med. Sci. 2017;353:27–30. doi: 10.1016/j.amjms.2016.06.016. PubMed DOI
Sharp T.E., III, Lefer D.J. Renal denervation to treat heart failure. Annu. Rev. Physiol. 2021;83:4.1–4.20. doi: 10.1146/annurev-physiol-031620-093431. PubMed DOI PMC
Roman R.J., Fan F. 20-HETE. Hypertension and beyond. Hypertension. 2018;72:12–18. doi: 10.1161/HYPERTENSIONAHA.118.10269. PubMed DOI PMC
Alsaad A.M.S., Zordoky B., Tse M.M.Y., El-Kadi A.O.S. Role of cytochrome P450–mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab. Rev. 2013;45:173–195. doi: 10.3109/03602532.2012.754460. PubMed DOI
Rocic P., Schwartzman M.L. 20-HETE in the regulation of vascular and cardiac function. Pharmacol. Ther. 2018;192:74–87. doi: 10.1016/j.pharmthera.2018.07.004. PubMed DOI PMC
El-Sherbeni A.A., Aboutabl M.E., Zordoky B.N.M., Anwa-Mohamed A., El-Kadi A.O.S. Determination of the dominant arachidonic acid cytochrome P450 monooxygenase in rat heart, lung, kidney and liver: Protein expression and metabolic kinetics. AAPS J. 2013;15:112–122. doi: 10.1208/s12248-012-9425-7. PubMed DOI PMC
Kratky V., Vanourkova Z., Sykora M., Bacova B.S., Hruskova Z., Kikerlova S., Huskova Z., Kopkan L. AT1 receptor blocker, but not an ACE inhibitor, prevents kidneys from hypoperfusion during congestive heart failure in normotensive and hypertensive rats. Sci. Rep. 2021;11:1–15. doi: 10.1038/s41598-021-83906-6. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quanti-tative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;41:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Bas A., Forsberg G., Hammarstrom S., Hammarstrom M.L. Utility of the housekeeping genes 18S rRNA, beta-actin and glycer-aldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain re-action analysis of gene expression in human T lymphocytes. Scand. J. Immunol. 2004;59:566–573. doi: 10.1111/j.0300-9475.2004.01440.x. PubMed DOI
Jíchová Š., Doleželová Š., Kopkan L., Kompanowska-Jezierska E., Sadowski J., Červenka L. Fenofibrate Attenuates Malignant Hypertension by Suppression of the Renin-angiotensin System: A Study in Cyp1a1-Ren-2 Transgenic Rats. Am. J. Med. Sci. 2016;352:618–630. doi: 10.1016/j.amjms.2016.09.008. PubMed DOI
Husková Z., Kramer H.J., Thumová M., Vaňourková Z., Bürgelová M., Teplan V., Malý J., Červenka L. Effects of anaesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Res. 2006;29:74–83. doi: 10.1159/000092981. PubMed DOI
Husková Z., Kopkan L., Červenková L., Doleželová Š., Vaňourková Z., Škaroupková P., Nishiyama A., Kompanowska-Jezierska E., Sadowski J., Kramer H.J., et al. Intrarenal alterations of the angiotensin-converting enzyme type 2/angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin. Exp. Pharmacol. Physiol. 2016;43:438–449. doi: 10.1111/1440-1681.12553. PubMed DOI
Kala P., Bartušková H., Piťha J., Vaňourková Z., Kikerlová S., Jíchová Š., Melenovský V., Hošková L., Veselka J., Kom-panowska-Jezierska E., et al. Deleterious effects of hyperactivity of the ren-in-angiotensin system and hypertension on the course of chemotherapy-induced heart failure after doxorubicin administra-tion: A study in Ren-2 transgenic rats. Int. J. Mol. Sci. 2020;2:9337. doi: 10.3390/ijms21249337. PubMed DOI PMC
Cohen J., editor. Statistical Power Analysis for Bevavioral Sciences. 2nd ed. Routledge; Oxford, UK: 2013. Some issue in power analysis; pp. 531–542.
Červenka L., Melenovský V., Husková Z., Sporková A., Burgelová M., Škaroupková P., Hwang S.H., Hammock B.D., Imig J.D., Sadowski J. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the develop-ment of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol. Res. 2015;64:857–873. doi: 10.33549/physiolres.932977. PubMed DOI PMC
Kratky V., Kopkan L., Kikerlova S., Huskova Z., Taborsky M., Sadowski J., Kolar F., Cervenka L. The role of renal vascular reac-tivity in the development of renal dysfunction in compensated and decompensated congestive heart failure. Kidney Blood Press. Res. 2018;43:1730–1741. doi: 10.1159/000495391. PubMed DOI
Yin F.C.P., Spurgeon H.A., Rakusan K., Weisfeldt M.L., Lakatta E.G. Use of tibia length to quantify cardiac hypertrophy: Application in the aging rat. Am. J. Physiol. 1982;243:H941–H947. PubMed
Vaňourková Z., Kramer H.J., Husková Z., Vaněčková I., Opočenský M., Čertíková Chábová V., Tesař V., Škaroupková P., Thu-mová M., Dohnalová M., et al. AT1 receptor blockade is superiod to convetional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J. Hypertens. 2006;24:2465–2472. doi: 10.1097/01.hjh.0000251909.00923.22. PubMed DOI
Hartupee J., Mann D.L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 2017;14:30–38. doi: 10.1038/nrcardio.2016.163. PubMed DOI PMC
Packer M., McMurray J.J. Importance of endogenous compensatory vasoactive peptides in broadening the effects of inhibi-tors of the renin-angiotensin system for the treatment of heart failure. Lancet. 2017;389:1831–1840. doi: 10.1016/S0140-6736(16)30969-2. PubMed DOI
Díaz H.S., Toledo C., Andrade D.C., Marcus N.J., Del Rio R. Neuroinflammation in heart failure: New insights for an old disease. J. Physiol. 2019;598:33–59. doi: 10.1113/JP278864. PubMed DOI
Wang K., Basu R., Poglitsch M., Bakal J.A., Stat P., Oudit G.Y. Elevated angiotensin 1-7/angiotensin II ratio predicts fa-vorable outcomes in patients with heart failure. Circ. Heart Fail. 2020;13:e006939. doi: 10.1161/CIRCHEARTFAILURE.120.006939. PubMed DOI
Vacková Š., Kikerlová S., Melenovsky V., Kolar F., Imig J., Kompanowska-Jezierska E., Sadowski J., Červenka L. Altered Renal Vascular Responsiveness to Vasoactive Agents in Rats with Angiotensin II-Dependent Hypertension and Congestive Heart Failure. Kidney Blood Press. Res. 2019;44:792–809. doi: 10.1159/000501688. PubMed DOI PMC
Melenovsky V., Skaroupkova P., Benes J., Torresova V., Kopkan L., Cervenka L. The Course of Heart Failure Development and Mortality in Rats with Volume Overload due to Aorto-Caval Fistula. Kidney Blood Press. Res. 2012;35:167–173. doi: 10.1159/000331562. PubMed DOI
Oka T., Nishimura H., Ueyama M., Kubota J., Kawamura K. Haemodynamic and neurohormonal changes in spontane-ously hypertensive rats with aorto-caval fistula. Clin. Sci. 1993;84:531–535. doi: 10.1042/cs0840531. PubMed DOI
Lee M.A., Bohm M., Paul M., Bader M., Ganten U., Ganten D. Physiological characterization of the hypertensive trans-genic rat TGR(mREN2)27. Am. J. Physiol. 1996;270:E919–E929. PubMed
Langheinrich M., Lee M.A., Bohm M., Pinto Y.M., Ganten D., Paul M. Hypertensive Ren-2 transgenic rat TGR(mREN2)27 in hypertension research. Characteristic and functional aspects. Am. J. Hypertens. 1996;9:506–512. doi: 10.1016/0895-7061(95)00400-9. PubMed DOI
Lush D.J., King J.A., Fray J.C. Pathophysiology of low renin syndromes: Sites of renal renin secretory impairment and prorenin overexpression. Kidney Int. 1993;43:983–999. doi: 10.1038/ki.1993.140. PubMed DOI
Lai J., Chen C. The Role of Epoxyeicosatrienoic Acids in Cardiac Remodeling. Front. Physiol. 2021;12:642470. doi: 10.3389/fphys.2021.642470. PubMed DOI PMC
Kim G., Uriel N., Burkhoff D. Reverse remodelling and myocardial recovery in heart failure. Nat. Rev. Cardiol. 2018;15:83–96. doi: 10.1038/nrcardio.2017.139. PubMed DOI
Sporková A., Husková Z., Škaroupková P., Reddy R.N., Falck J.R., Sadowski J., Červenka L. Vasodilatory responses of renal interlobular arteries to epoxyeicosatrienoic acids analog are not enhanced in Ren-2 transgenic hypertensive rats: Evi-dence against a role of direct vascular effects of epoxyeicosatrienoic acids in the progression of experimental heart failure. Physiol. Res. 2017;66:29–39. PubMed
Ruzicka M., Yuan B., Harmsen E., Leenen F.H. The renin-angiotensin system and volume overload-induced cardiac hypertrophy in rats. Effects of angiotensin converting enzyme inhibitor versus angiotensin II receptor blocker. Circulation. 1993;87:921–930. doi: 10.1161/01.CIR.87.3.921. PubMed DOI
Ruzicka M., Yuan B., Leenen F.H.H. Effects of enalapril versus losartan on regression of volume overload-induced cardiac hypertrophy in rats. Circulation. 1994;90:484–491. doi: 10.1161/01.CIR.90.1.484. PubMed DOI
Left ventricular reverse remodelling and its predictors in non-ischaemic cardiomyopathy
Epoxylipids and soluble epoxide hydrolase in heart diseases