Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation

. 2021 Aug 20 ; 9 (8) : . [epub] 20210820

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34440257

Grantová podpora
68121 Univerzita Karlova v Praze
17-28220A Ministerstvo Zdravotnictví Ceské Republiky
I-0011 Welch Foundation

Odkazy

PubMed 34440257
PubMed Central PMC8393645
DOI 10.3390/biomedicines9081053
PII: biomedicines9081053
Knihovny.cz E-zdroje

This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF.

Zobrazit více v PubMed

Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G., Coats A.J., Falk V., González-Juanaatey J.R., Harjola V.-P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016;37:2129–2200. PubMed

Benjamin E.J., Blaha M.J., Chiuve S.E., Cushman M., Das S.R., Deo R., de Ferranti S.D., Floyd J., Fornage M., Gillespie C., et al. Heart disease and stroke statistics—2017 update: A report from the American heart association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485. PubMed DOI PMC

Hein A., Scialla J., Edmonston D., Cooper L.B., DeVore A.D., Mentz R.J. Medical management of heart failure with reduced ejection fraction in patients with advanced renal disease. JACC Heart Fail. 2019;7:371–382. doi: 10.1016/j.jchf.2019.02.009. PubMed DOI PMC

Vaduganathan M., Claggett B.L., Jhund P.S., Cunningham J.W., Ferreira J.P., Zannad F., Packer M., Fonarow G.C., McMurray J.J.V., Solomon S.D. Estimating lifetime benefits of comprehensive disease-modifying pharmacological therapies in patients with heart failure with reduced ejection fraction: A comparative analysis of three randomised controlled trials. Lancet. 2020;396:121–128. doi: 10.1016/S0140-6736(20)30748-0. PubMed DOI

Packer M., Anker S.D., Butler J., Filippatos G., Pocock S.J., Carson P., Januzzi J., Verma S., Tsutsui H., Brueckman M., et al. EMPEROR reduced trial investigators cardiovascular and renal outcomes with empagli-flozin in heart failure. N. Eng. J. Med. 2020;383:1413–1424. doi: 10.1056/NEJMoa2022190. PubMed DOI

Murphy S.P., Ibrahim N.E., Januzzi J.J. Heart failure with reduced ejection fraction. JAMA. 2020;324:488–504. doi: 10.1001/jama.2020.10262. PubMed DOI

Imig J.D. Epoxyeicosanoids in Hypertension. Physiol. Res. 2019;68:695–704. doi: 10.33549/physiolres.934291. PubMed DOI PMC

Elmarakby A.A. Reno-protective mechanisms of epoxyeicosatrienoic acids in cardiovascular disease. Am. J. Physiol. Integr. Comp. Physiol. 2012;302:R321–R330. doi: 10.1152/ajpregu.00606.2011. PubMed DOI

Fan F., Roman R.J. Effect of cytochrome P450 metabolites of arachidonic acid in nephrology. J. Am. Soc. Nephrol. 2017;28:2845–2855. doi: 10.1681/ASN.2017030252. PubMed DOI PMC

Jamieson K.L., Endo T., Darwesh A.M., Samokhvalov V., Seubert J.M. Cytochrome P450-derived eicosanoids and heart function. Pharmacol. Ther. 2017;179:47–83. doi: 10.1016/j.pharmthera.2017.05.005. PubMed DOI

Sporková A., Reddy R.M., Falck J.R., Imig J.D., Kopkan L., Sadowski J., Červenka L. Interlobular arteries from 2-kidney, 1-clip Goldblatt hypertensive ras´ exhibit-impaired vasodilatory response to epoxyeicosatrienoic acids. Am. J. Med. Sci. 2016;351:513–519. doi: 10.1016/j.amjms.2016.02.030. PubMed DOI PMC

Rangawwami J., Bhalla V., Blair J.E.A., Chang T.I., Costa S., Lentine K.L., Lerma E.V., Mezeu K., Molitch M., Mullens W., et al. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies. Circulation. 2019;139:e840–e878. PubMed

Messerli F.H., Rimoldi S.F., Bangalore S. The transition from hypertension to heart failure. JACC Heart Fail. 2017;5:543–551. doi: 10.1016/j.jchf.2017.04.012. PubMed DOI

Dube P., Weber K.T. Congestive heart failure: Pathophysiologic consequences of neurohormonal activation and the potential for recovery: Part I. Am. J. Med. Sci. 2011;342:348–351. doi: 10.1097/MAJ.0b013e318232750d. PubMed DOI

Packer M. The neurohormonal hypothesis: A theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 1992;20:248–254. doi: 10.1016/0735-1097(92)90167-L. PubMed DOI

Pavo N., Prausmüller S., Spinka G., Goliasch G., Bartko P.E., Wurm R., Arfsten H., Strunk G., Poglitsch M., Domenig O., et al. Myocardial angiotensin metabolism in end-stage heart failure. J. Am. Coll. Cardiol. 2021;77:1731–1743. doi: 10.1016/j.jacc.2021.01.052. PubMed DOI

Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol. Rev. 2014;66:1106–1140. doi: 10.1124/pr.113.007781. PubMed DOI

Ma Y.H., Schwartzman M.L., Roman R.J. Altered renal P-450 metabolism of arachidonic acid in Dahl salt-sensitive rats. Am. J. Physiol. Integr. Comp. Physiol. 1994;267:R579–R589. doi: 10.1152/ajpregu.1994.267.2.R579. PubMed DOI

Kaergel E., Muller D.N., Honeck H., Theuer J., Shagdarsuren E., Mullally A., Luft F., Schunck W.-H. P450-dependent arachidonic acid metabolism and angiotensin II–induced renal damage. Hypertens. 2002;40:273–279. doi: 10.1161/01.HYP.0000029240.44253.5E. PubMed DOI

Falck J.R., Kodela R., Manne R., Atcha R., Puli N., Dubasi N. 14,15-Epoxyeicosa-5,8,11-trienoic acid (14,15-EET) surro-gates containing epoxide bioisosteres: Influence upon vascular relaxation and soluble epoxide hydrolase inhibition. J. Med. Chem. 2009;52:5069–5075. doi: 10.1021/jm900634w. PubMed DOI PMC

Imig J.D., Elmarakby A., Nithipatikom K., Wei S., Capdevila J.H., Tuniki V.R., Sangras B., Anjaiah S., Manthati V.L., Reddy D.S., et al. Development of epoxyeicosatrienoic acid analogs with in vivo anti-hypertensive actions. Front. Physiol. 2010;1:157. doi: 10.3389/fphys.2010.00157. PubMed DOI PMC

Hrdlička J., Neckář J., Papoušek F., Husková Z., Kikerlová S., Vaňourková Z., Vernerová Z., Akat F., Vašinová J., Hammock B.D., et al. Epoxyeicosatrienoic acid-based therapy attenuates the progression of postischemic heart failure in normotensive sprague-dawley but not in hypertensive Ren-2 transgenic Rats. Front. Pharmacol. 2019;10:159. doi: 10.3389/fphar.2019.00159. PubMed DOI PMC

Neckář J., Khan M.A.H., Gross G.J., Cyprová M., Hrdlička J., Kvasilová A., Falck J.R., Campbell W.B., Sedláková L., Škutová Š., et al. Epoxyeicosatrienoic acid analog EET-B at-tenuates post-myocardial infarction remodeling in spontaneously hypertensive rats. Clin. Sci. 2019;133:939–951. doi: 10.1042/CS20180728. PubMed DOI PMC

Imig J.D., Khan M.A.H., Burkhan A., Chen G., Adebesin A.M., Falck J.R. Kidney-targeting epoxyeicosatrienoic acid ana-log, EET-F01, reduces inflammation, oxidative stress, and cisplatin-induced nephrotoxicity. Int. J. Mol. Sci. 2021;22:2793. doi: 10.3390/ijms22062793. PubMed DOI PMC

Walkowska A., Červenka L., Imig J.D., Falck J.R., Sadowski J., Kompanowska-Jezierska E. Early Renal Vasodilator and Hypotensive Action of Epoxyeicosatrienoic Acid Analog (EET-A) and 20-HETE Receptor Blocker (AAA) in Spontaneously Hypertensive Rats. Front. Physiol. 2021;12 doi: 10.3389/fphys.2021.622882. PubMed DOI PMC

Garcia R., Diebold S. Simple, rapid, and effective method of producing aorto-caval shunts in the rat. Cardiovasc. Res. 1990;24:430–432. doi: 10.1093/cvr/24.5.430. PubMed DOI

Cohen-Segev R., Francis B., Abu-Saleh N., Awad H., Lazarovich A., Kabala A., Aronson D., Abassi Z. Cardiac and renal distribution of ACE and ACE-2 in rats with heart failure. Acta Histochem. 2014;116:1342–1349. doi: 10.1016/j.acthis.2014.08.006. PubMed DOI

Abassi Z., Goltsman I., Karram T., Winaver J., Hoffman A. Aortocaval Fistula in Rat: A Unique Model of Volume-Overload Congestive Heart Failure and Cardiac Hypertrophy. J. Biomed. Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC

Brower G., Levick S., Janicki J.S. Differential Effects of Prevention and Reversal Treatment with Lisinopril on Left Ventricular Remodelling in a Rat Model of Heart Failure. Hear. Lung Circ. 2015;24:919–924. doi: 10.1016/j.hlc.2015.02.023. PubMed DOI PMC

Kala P., Sedláková L., Škaroupková P., Kopkan L., Vaňourková Z., Táborský M., Nishiyama A., Hwang S.H., Hammock B.D., Sadowski J., et al. Effect of Angiotensin-Converting Enzyme Blockade, Alone or Combined With Blockade of Soluble Epoxide Hydrolase, on the Course of Congestive Heart Failure and Occurrence of Renal Dysfunction in Ren-2 Transgenic Hypertensive Rats With Aorto-Caval Fistula. Physiol. Res. 2017;67:401–415. doi: 10.33549/physiolres.933757. PubMed DOI PMC

Honetschlagerová Z., Gawrys O., Jíchová Š., Škaroupková P., Kikerlová S., Vaňourková Z., Husková Z., Melenovský V., Kom-panowska-Jezierska E., Sadowski J., et al. Renal sympathetic denervation at-tenuates congestive heart failure in angiotensin II-dependent hypertension: Studies with Ren-2 transgenic hypertensive rats with aorto-caval fistula. Kidney Blood Press. Res. 2021;46:95–113. PubMed

Honetschlagerová Z., Škaroupková P., Kikerlová S., Husková Z., Maxová H., Melenovský V., Kompanowska-Jezierska E., Sadowski J., Gawrys O., Kujal P., et al. Effects of renal sympathetic denervation on the course of congestive heart failure combined with chronic kidney disease: Insight from studies with fawn-hooded hypertensive rats with volume overload induced using aorto-caval fistula. Clin. Exp. Hypertens. 2021;43:1–14. doi: 10.1080/10641963.2021.1907398. PubMed DOI

Houser S.R., Margulies K.B., Murphy A.M., Spinale F.G., Francis G.S., Prabhu S.D. Animal models of heart failure: A sci-entific statement from the American Heart Association. Circ. Res. 2012;111:131–150. doi: 10.1161/RES.0b013e3182582523. PubMed DOI

Riehle C., Bauersachs J. Small animal models of heart failure. Cardiovasc. Res. 2019;115:1838–1849. doi: 10.1093/cvr/cvz161. PubMed DOI PMC

Mullins J.J., Peters J.F., Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nat. Cell Biol. 1990;344:541–544. doi: 10.1038/344541a0. PubMed DOI

Husková Z., Kramer H.J., Vaňourková Z., Červenka L. Effects of changes in sodium balance on plasma and kidney angio-tensin II levels in anesthetized and conscious Ren-2 transgenic rats. J. Hypertens. 2006;24:517–527. doi: 10.1097/01.hjh.0000209988.51606.c7. PubMed DOI

Červenka L., Melenovský V., Husková Z., Škaroupková P., Nishiyama A., Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hyperten-sive rats with aorto-caval fistula. Clin. Exp. Pharmacol. Physiol. 2015;42:795–807. doi: 10.1111/1440-1681.12419. PubMed DOI

Jíchová Š., Kopkan L., Husková Z., Doleželová Š., Neckář J., Kujal P., Verenerová Z., Kramer H.J., Sadowski J., Kom-panowska-Jezierska E., et al. Epoxyeicosatrienoic acid analog attenuates the develop-ment of malignant hypertension, but does not reverse it once established: A study in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 2016;34:2008–2025. doi: 10.1097/HJH.0000000000001029. PubMed DOI PMC

Červenka L., Husková Z., Kopkan L., Kikerlová S., Sedláková L., Vaňourková Z., Alánová P., Kolář F., Hammock B.D., Hwang S.H., et al. Two pharmacological epoxyeicosatrienoic ac-id-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angio-tensin II-dependent hypertension. J. Hypertens. 2018;3:1326–1341. doi: 10.1097/HJH.0000000000001708. PubMed DOI PMC

Gawrys O., Husková Z., Baranowska I., Walkowska A., Sadowski Kikerlová S., Vaňourková Z., Honetschlagerová Z., Ška-roupková P., Červenka L., Falck J., et al. Combined treatment with epoxyeicosatrienoic acid an-alog and 20-hydroxyeicosatetraenoic acid antagonist provides substantial hypotensive effect in spontaneously hypertensive rats. J. Hypertens. 2020;38:1802–1810. doi: 10.1097/HJH.0000000000002462. PubMed DOI

Kala P., Červenka L., Škaroupková P., Táborský M., Kompanowska-Jezierska E., Sadowski J. Sex-linked differences in the mor-tality in Ren-2 transgenic hypertensive rats with aorto-caval fistula: Effects of treatment with angiotensin-converting enzyme alone and combined with inhibitor of soluble epoxide hydrolase. Physiol. Res. 2019;68:589–601. doi: 10.33549/physiolres.934094. PubMed DOI

Hillege H.L., Girbes A.R., de Kam P.J., Boomsma F., de Zeeuw D., Charlesworth A., Hampton J.R., van Veldhuisen D.J. Renal func-tion, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102:203–210. doi: 10.1161/01.CIR.102.2.203. PubMed DOI

Schefold J.C., Filippatos G., Hasenfuss G., Anker S.D., von Haehling S. Heart failure and kidney dysfunction: Epidemiolo-gy, mechanisms and management. Nat. Rev. Cardiol. 2016;12:610–623. doi: 10.1038/nrneph.2016.113. PubMed DOI

Khayyat-Kholghi M., Oparil S., Davis B.R., Tereshchenko L.G. Worsening kidney function is the major mechanism of heart fail-ure in hypertension. The ALLHAT study. JACC Heart Fail. 2021;9:100–111. doi: 10.1016/j.jchf.2020.09.006. PubMed DOI PMC

Antoine S., Vaidya G., Imam H., Villarreal D. Pathophysiologic Mechanisms in Heart Failure: Role of the Sympathetic Nervous System. Am. J. Med. Sci. 2017;353:27–30. doi: 10.1016/j.amjms.2016.06.016. PubMed DOI

Sharp T.E., III, Lefer D.J. Renal denervation to treat heart failure. Annu. Rev. Physiol. 2021;83:4.1–4.20. doi: 10.1146/annurev-physiol-031620-093431. PubMed DOI PMC

Roman R.J., Fan F. 20-HETE. Hypertension and beyond. Hypertension. 2018;72:12–18. doi: 10.1161/HYPERTENSIONAHA.118.10269. PubMed DOI PMC

Alsaad A.M.S., Zordoky B., Tse M.M.Y., El-Kadi A.O.S. Role of cytochrome P450–mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab. Rev. 2013;45:173–195. doi: 10.3109/03602532.2012.754460. PubMed DOI

Rocic P., Schwartzman M.L. 20-HETE in the regulation of vascular and cardiac function. Pharmacol. Ther. 2018;192:74–87. doi: 10.1016/j.pharmthera.2018.07.004. PubMed DOI PMC

El-Sherbeni A.A., Aboutabl M.E., Zordoky B.N.M., Anwa-Mohamed A., El-Kadi A.O.S. Determination of the dominant arachidonic acid cytochrome P450 monooxygenase in rat heart, lung, kidney and liver: Protein expression and metabolic kinetics. AAPS J. 2013;15:112–122. doi: 10.1208/s12248-012-9425-7. PubMed DOI PMC

Kratky V., Vanourkova Z., Sykora M., Bacova B.S., Hruskova Z., Kikerlova S., Huskova Z., Kopkan L. AT1 receptor blocker, but not an ACE inhibitor, prevents kidneys from hypoperfusion during congestive heart failure in normotensive and hypertensive rats. Sci. Rep. 2021;11:1–15. doi: 10.1038/s41598-021-83906-6. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quanti-tative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;41:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Bas A., Forsberg G., Hammarstrom S., Hammarstrom M.L. Utility of the housekeeping genes 18S rRNA, beta-actin and glycer-aldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain re-action analysis of gene expression in human T lymphocytes. Scand. J. Immunol. 2004;59:566–573. doi: 10.1111/j.0300-9475.2004.01440.x. PubMed DOI

Jíchová Š., Doleželová Š., Kopkan L., Kompanowska-Jezierska E., Sadowski J., Červenka L. Fenofibrate Attenuates Malignant Hypertension by Suppression of the Renin-angiotensin System: A Study in Cyp1a1-Ren-2 Transgenic Rats. Am. J. Med. Sci. 2016;352:618–630. doi: 10.1016/j.amjms.2016.09.008. PubMed DOI

Husková Z., Kramer H.J., Thumová M., Vaňourková Z., Bürgelová M., Teplan V., Malý J., Červenka L. Effects of anaesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Res. 2006;29:74–83. doi: 10.1159/000092981. PubMed DOI

Husková Z., Kopkan L., Červenková L., Doleželová Š., Vaňourková Z., Škaroupková P., Nishiyama A., Kompanowska-Jezierska E., Sadowski J., Kramer H.J., et al. Intrarenal alterations of the angiotensin-converting enzyme type 2/angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin. Exp. Pharmacol. Physiol. 2016;43:438–449. doi: 10.1111/1440-1681.12553. PubMed DOI

Kala P., Bartušková H., Piťha J., Vaňourková Z., Kikerlová S., Jíchová Š., Melenovský V., Hošková L., Veselka J., Kom-panowska-Jezierska E., et al. Deleterious effects of hyperactivity of the ren-in-angiotensin system and hypertension on the course of chemotherapy-induced heart failure after doxorubicin administra-tion: A study in Ren-2 transgenic rats. Int. J. Mol. Sci. 2020;2:9337. doi: 10.3390/ijms21249337. PubMed DOI PMC

Cohen J., editor. Statistical Power Analysis for Bevavioral Sciences. 2nd ed. Routledge; Oxford, UK: 2013. Some issue in power analysis; pp. 531–542.

Červenka L., Melenovský V., Husková Z., Sporková A., Burgelová M., Škaroupková P., Hwang S.H., Hammock B.D., Imig J.D., Sadowski J. Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the develop-ment of renal dysfunction in rats with volume overload induced by aorto-caval fistula. Physiol. Res. 2015;64:857–873. doi: 10.33549/physiolres.932977. PubMed DOI PMC

Kratky V., Kopkan L., Kikerlova S., Huskova Z., Taborsky M., Sadowski J., Kolar F., Cervenka L. The role of renal vascular reac-tivity in the development of renal dysfunction in compensated and decompensated congestive heart failure. Kidney Blood Press. Res. 2018;43:1730–1741. doi: 10.1159/000495391. PubMed DOI

Yin F.C.P., Spurgeon H.A., Rakusan K., Weisfeldt M.L., Lakatta E.G. Use of tibia length to quantify cardiac hypertrophy: Application in the aging rat. Am. J. Physiol. 1982;243:H941–H947. PubMed

Vaňourková Z., Kramer H.J., Husková Z., Vaněčková I., Opočenský M., Čertíková Chábová V., Tesař V., Škaroupková P., Thu-mová M., Dohnalová M., et al. AT1 receptor blockade is superiod to convetional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J. Hypertens. 2006;24:2465–2472. doi: 10.1097/01.hjh.0000251909.00923.22. PubMed DOI

Hartupee J., Mann D.L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 2017;14:30–38. doi: 10.1038/nrcardio.2016.163. PubMed DOI PMC

Packer M., McMurray J.J. Importance of endogenous compensatory vasoactive peptides in broadening the effects of inhibi-tors of the renin-angiotensin system for the treatment of heart failure. Lancet. 2017;389:1831–1840. doi: 10.1016/S0140-6736(16)30969-2. PubMed DOI

Díaz H.S., Toledo C., Andrade D.C., Marcus N.J., Del Rio R. Neuroinflammation in heart failure: New insights for an old disease. J. Physiol. 2019;598:33–59. doi: 10.1113/JP278864. PubMed DOI

Wang K., Basu R., Poglitsch M., Bakal J.A., Stat P., Oudit G.Y. Elevated angiotensin 1-7/angiotensin II ratio predicts fa-vorable outcomes in patients with heart failure. Circ. Heart Fail. 2020;13:e006939. doi: 10.1161/CIRCHEARTFAILURE.120.006939. PubMed DOI

Vacková Š., Kikerlová S., Melenovsky V., Kolar F., Imig J., Kompanowska-Jezierska E., Sadowski J., Červenka L. Altered Renal Vascular Responsiveness to Vasoactive Agents in Rats with Angiotensin II-Dependent Hypertension and Congestive Heart Failure. Kidney Blood Press. Res. 2019;44:792–809. doi: 10.1159/000501688. PubMed DOI PMC

Melenovsky V., Skaroupkova P., Benes J., Torresova V., Kopkan L., Cervenka L. The Course of Heart Failure Development and Mortality in Rats with Volume Overload due to Aorto-Caval Fistula. Kidney Blood Press. Res. 2012;35:167–173. doi: 10.1159/000331562. PubMed DOI

Oka T., Nishimura H., Ueyama M., Kubota J., Kawamura K. Haemodynamic and neurohormonal changes in spontane-ously hypertensive rats with aorto-caval fistula. Clin. Sci. 1993;84:531–535. doi: 10.1042/cs0840531. PubMed DOI

Lee M.A., Bohm M., Paul M., Bader M., Ganten U., Ganten D. Physiological characterization of the hypertensive trans-genic rat TGR(mREN2)27. Am. J. Physiol. 1996;270:E919–E929. PubMed

Langheinrich M., Lee M.A., Bohm M., Pinto Y.M., Ganten D., Paul M. Hypertensive Ren-2 transgenic rat TGR(mREN2)27 in hypertension research. Characteristic and functional aspects. Am. J. Hypertens. 1996;9:506–512. doi: 10.1016/0895-7061(95)00400-9. PubMed DOI

Lush D.J., King J.A., Fray J.C. Pathophysiology of low renin syndromes: Sites of renal renin secretory impairment and prorenin overexpression. Kidney Int. 1993;43:983–999. doi: 10.1038/ki.1993.140. PubMed DOI

Lai J., Chen C. The Role of Epoxyeicosatrienoic Acids in Cardiac Remodeling. Front. Physiol. 2021;12:642470. doi: 10.3389/fphys.2021.642470. PubMed DOI PMC

Kim G., Uriel N., Burkhoff D. Reverse remodelling and myocardial recovery in heart failure. Nat. Rev. Cardiol. 2018;15:83–96. doi: 10.1038/nrcardio.2017.139. PubMed DOI

Sporková A., Husková Z., Škaroupková P., Reddy R.N., Falck J.R., Sadowski J., Červenka L. Vasodilatory responses of renal interlobular arteries to epoxyeicosatrienoic acids analog are not enhanced in Ren-2 transgenic hypertensive rats: Evi-dence against a role of direct vascular effects of epoxyeicosatrienoic acids in the progression of experimental heart failure. Physiol. Res. 2017;66:29–39. PubMed

Ruzicka M., Yuan B., Harmsen E., Leenen F.H. The renin-angiotensin system and volume overload-induced cardiac hypertrophy in rats. Effects of angiotensin converting enzyme inhibitor versus angiotensin II receptor blocker. Circulation. 1993;87:921–930. doi: 10.1161/01.CIR.87.3.921. PubMed DOI

Ruzicka M., Yuan B., Leenen F.H.H. Effects of enalapril versus losartan on regression of volume overload-induced cardiac hypertrophy in rats. Circulation. 1994;90:484–491. doi: 10.1161/01.CIR.90.1.484. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Soluble Guanylate Cyclase Stimulator, BAY41-8543: A Promising Approach for the Treatment of Chronic Heart Failure Caused by Pressure and Volume Overload

. 2025 Apr ; 13 (2) : e70087.

Transgenic rat with ubiquitous expression of angiotensin-(1-7)-producing fusion protein: a new tool to study the role of protective arm of the renin-angiotensin system in the pathophysiology of cardio-renal diseases

. 2025 Jan ; 48 (1) : 336-352. [epub] 20241113

Long-chain polyunsaturated fatty acid-containing phosphatidylcholines predict survival rate in patients after heart failure

. 2024 Nov 15 ; 10 (21) : e39979. [epub] 20241030

Characterization of a new model of chemotherapy-induced heart failure with reduced ejection fraction and nephrotic syndrome in Ren-2 transgenic rats

. 2024 Nov ; 47 (11) : 3126-3146. [epub] 20240909

Renal denervation improves cardiac function independently of afterload and restores myocardial norepinephrine levels in a rodent heart failure model

. 2024 Oct ; 47 (10) : 2718-2730. [epub] 20240202

The treatment with sGC stimulator improves survival of hypertensive rats in response to volume-overload induced by aorto-caval fistula

. 2023 Dec ; 396 (12) : 3757-3773. [epub] 20230620

Impaired renal autoregulation and pressure-natriuresis: any role in the development of heart failure in normotensive and angiotensin II-dependent hypertensive rats?

. 2023 Oct ; 46 (10) : 2340-2355. [epub] 20230817

Inappropriate activation of the renin-angiotensin system improves cardiac tolerance to ischemia/reperfusion injury in rats with late angiotensin II-dependent hypertension

. 2023 ; 14 () : 1151308. [epub] 20230614

Eicosanoids in human heart failure: pilot study of plasma epoxyeicosatrienoic and dihydroxyeicosatrienoic acid levels

. 2023 ; 19 (2) : 513-517. [epub] 20230206

Endothelin type A receptor blockade attenuates aorto-caval fistula-induced heart failure in rats with angiotensin II-dependent hypertension

. 2023 Jan 01 ; 41 (1) : 99-114. [epub] 20221007

Left ventricular reverse remodelling and its predictors in non-ischaemic cardiomyopathy

. 2022 Aug ; 9 (4) : 2070-2083. [epub] 20220418

Epoxylipids and soluble epoxide hydrolase in heart diseases

. 2022 Jan ; 195 () : 114866. [epub] 20211202

Effects of Renal Denervation on the Enhanced Renal Vascular Responsiveness to Angiotensin II in High-Output Heart Failure: Angiotensin II Receptor Binding Assessment and Functional Studies in Ren-2 Transgenic Hypertensive Rats

. 2021 Nov 30 ; 9 (12) : . [epub] 20211130

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...