• This record comes from PubMed

Inappropriate activation of the renin-angiotensin system improves cardiac tolerance to ischemia/reperfusion injury in rats with late angiotensin II-dependent hypertension

. 2023 ; 14 () : 1151308. [epub] 20230614

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The aim of the study was to clarify the role of the interplay between hypertension and the renin-angiotensin system (RAS) in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury. We hypothesized that in the late phase of hypertension with already developed signs of end-organ damage, inappropriate RAS activation could impair cardiac tolerance to I/R injury. Experiments were performed in male Cyp1a1-Ren-2 transgenic rats with inducible hypertension. The early phase of ANG II-dependent hypertension was induced by 5 days and the late phase by the 13 days dietary indole-3-carbinol (I3C) administration. Noninduced rats served as controls. Echocardiography and pressure-volume analysis were performed, angiotensins' levels were measured and cardiac tolerance to ischemia/reperfusion injury was studied. The infarct size was significantly reduced (by 50%) in 13 days I3C-induced hypertensive rats with marked cardiac hypertrophy, this reduction was abolished by losartan treatment. In the late phase of hypertension there are indications of a failing heart, mainly in reduced preload recruitable stroke work (PRSW), but only nonsignificant trends in worsening of some other parameters, showing that the myocardium is in a compensated phase. The influence of the RAS depends on the balance between the vasoconstrictive and the opposed vasodilatory axis. In the initial stage of hypertension, the vasodilatory axis of the RAS prevails, and with the development of hypertension the vasoconstrictive axis of the RAS becomes stronger. We observed a clear effect of AT1 receptor blockade on maximum pressure in left ventricle, cardiac hypertrophy and ANG II levels. In conclusion, we confirmed improved cardiac tolerance to I/R injury in hypertensive hypertrophied rats and showed that, in the late phase of hypertension, the myocardium is in a compensated phase.

See more in PubMed

Alánová P., Husková Z., Kopkan L., Sporková A., Jíchová Š., Neckář J., et al. (2015). Orally active epoxyeicosatrienoic acid analog does not exhibit antihypertensive and reno- or cardioprotective actions in two-kidney, one-clip Goldblatt hypertensive rats. Vasc. Pharmacol. 73, 45–56. 10.1016/j.vph.2015.08.013 PubMed DOI

Binder C., Poglitsch M., Agibetov A., Duca F., Zotter-Tufaro C., Nitsche C., et al. (2019). Angs (angiotensins) of the alternative renin-angiotensin system predict outcome in patients with heart failure and preserved ejection fraction. Hypertension 74, 285–294. 10.1161/HYPERTENSIONAHA.119.12786 PubMed DOI

Castrop H., Höcherl K., Kurtz A., Schweda F., Todorov V., Wagner C. (2010). Physiology of kidney renin. Physiol. Rev. 90, 607–673. 10.1152/PHYSREV.00011.2009 PubMed DOI

Červenka L., Husková Z., Kopkan L., Kikerlová S., Sedláková L., Vaňourková Z., et al. (2018). Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J. Hypertens. 36, 1326–1341. 10.1097/HJH.0000000000001708 PubMed DOI PMC

Cunningham M. W., Sasser J. M., West C. A., Milani C. J., Baylis C., Mitchell K. D. (2013). Renal nitric oxide synthase and antioxidant preservation in Cyp1a1-Ren-2 transgenic rats with inducible malignant hypertension. Am. J. Hypertens. 26, 1242–1249. 10.1093/ajh/hpt096 PubMed DOI PMC

Elgendy I. Y., Mahtta D., Pepine C. J. (2019). Medical therapy for heart failure caused by ischemic heart disease. Circ. Res. 124, 1520–1535. 10.1161/CIRCRESAHA.118.313568 PubMed DOI PMC

Erbanová M., Thumová M., Husková Z., Vaněčková I., Vaňourková Z., Mullins J. J., et al. (2009). Impairment of the autoregulation of renal hemodynamics and of the pressure-natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 27, 575–586. 10.1097/HJH.0b013e32831cbd5a PubMed DOI

Havlenova T., Skaroupkova P., Miklovic M., Behounek M., Chmel M., Jarkovska D., et al. (2021). Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci. Rep. 11, 17136. 10.1038/S41598-021-96618-8 PubMed DOI PMC

Honetschlägerová Z., Husková Z., Vaňourková Z., Sporková A., Kramer H. J., Hwang S. H., et al. (2011a). Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J. Physiol. J. Physiol. 589, 207–219. 10.1113/jphysiol.2010.199505 PubMed DOI PMC

Honetschlägerová Z., Husková Z., Vaňourková Z., Vaňourková V., Sporková A., Kramer H. J., et al. (2011b). Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J. Physiol. J. Physiol. 589, 207–219. 10.1113/jphysiol.2010.199505 PubMed DOI PMC

Hrdlička J., Neckář J., Papoušek F., Husková Z., Kikerlová S., Vaňourková Z., et al. (2019). Epoxyeicosatrienoic acid-based therapy attenuates the progression of postischemic heart failure in normotensive sprague-dawley but not in hypertensive ren-2 transgenic rats. Front. Pharmacol. 10, 159. 10.3389/fphar.2019.00159 PubMed DOI PMC

Husková Z., Kikerlová S., Sadowski J., Alánová P., Sedláková L., Papoušek F., et al. (2021). Increased endogenous activity of the renin-angiotensin system reduces infarct size in the rats with early angiotensin II-dependent hypertension which survive the acute ischemia/reperfusion injury. Front. Pharmacol. 12, 679060. 10.3389/fphar.2021.679060 PubMed DOI PMC

Husková Z., Kopkan L., Červenková L., Doleželová Š., Vaňourková Z., Škaroupková P., et al. (2016). Intrarenal alterations of the angiotensin-converting enzyme type 2/angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin. Exp. Pharmacol. Physiol. 43, 438–449. 10.1111/1440-1681.12553 PubMed DOI

Husková Z., Kramer H. J., Thumová M., Vaňourková Z., Bürgelová M., Teplan V., et al. (2006). Effects of anesthesia on plasma and kidney ANG II levels in normotensive and ANG II-dependent hypertensive rats. Kidney Blood Press. Res. 29 (2), 74–83. 10.1159/000092981 PubMed DOI

Husková Z., Vaňourková Z., Erbanová M., Thumová M., Opočenský M., Mullins J. J., et al. (2010). Inappropriately high circulating and intrarenal angiotensin II levels during dietary salt loading exacerbate hypertension in Cyp1a1-Ren-2 transgenic rats. J. Hypertens. 28, 495–509. 10.1097/HJH.0b013e3283345d69 PubMed DOI

Jíchová Š., Kopkan L., Husková Z., Doleželová Š., Neckář J., Kujal P., et al. (2016). Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: A study in cyp1a1-ren-2 transgenic rats. J. Hypertens. 34, 2008–2025. 10.1097/HJH.0000000000001029 PubMed DOI PMC

Kala P., Bartušková H., Pit’ha J., Vaňourková Z., Kikerlová S., Jíchová Š., et al. (2020). Deleterious effects of hyperactivity of the renin-angiotensin system and hypertension on the course of chemotherapy-induced heart failure after doxorubicin administration: A study in ren-2 transgenic rat. Int. J. Mol. Sci. 21 (24), 9337. 10.3390/IJMS21249337 PubMed DOI PMC

Kala P., Gawrys O., Miklovič M., Vaňourková Z., Škaroupková P., Jíchová Š., et al. (2023). Endothelin type A receptor blockade attenuates aorto-caval fistula-induced heart failure in rats with angiotensin II-dependent hypertension. J. Hypertens. 41, 99–114. 10.1097/HJH.0000000000003307 PubMed DOI PMC

Kala P., Miklovič M., Jíchová Š., Škaroupková P., Vaňourková Z., Maxová H., et al. (2021). Effects of epoxyeicosatrienoic acid-enhancing therapy on the course of congestive heart failure in angiotensin ii-dependent rat hypertension: From mrna analysis towards functional in vivo evaluation. Biomedicines 9, 1053. 10.3390/biomedicines9081053 PubMed DOI PMC

Kantachuvesiri S., Fleming S., Peters J., Peters B., Brooker G., Lammie A. G., et al. (2001). Controlled hypertension, a transgenic toggle switch reveals differential mechanisms underlying vascular disease. J. Biol. Chem. 276, 36727–36733. 10.1074/jbc.M103296200 PubMed DOI

Kawai T., Forrester S. J., O’Brien S., Baggett A., Rizzo V., Eguchi S. (2017). AT1 receptor signaling pathways in the cardiovascular system. Pharmacol. Res. 125, 4–13. 10.1016/J.PHRS.2017.05.008 PubMed DOI PMC

Kleinbongard P., Amanakis G., Skyschally A., Heusch G. (2018). Reflection of cardioprotection by remote ischemic perconditioning in attenuated ST-segment elevation during ongoing coronary occlusion in pigs: Evidence for cardioprotection from ischemic injury. Circulation Res. 122 (8), 1102–1108. 10.1161/CIRCRESAHA.118.312784 PubMed DOI

Kurtz A. (2012). Control of renin synthesis and secretion. Am. J. Hypertens. 25, 839–847. 10.1038/AJH.2011.246 PubMed DOI

Magder S. (2018). The meaning of blood pressure. Crit. Care 22, 257. 10.1186/S13054-018-2171-1 PubMed DOI PMC

Mallet R. T., Olivencia-Yurvati A. H., Bünger R. (2018). Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application. Exp. Biol. Med. 243 (2), 198–210. 10.1177/1535370217743919 PubMed DOI PMC

Massera D., McClelland R. L., Ambale-Venkatesh B., Gomes A. S., Hundley W. G., Kawel-Boehm N., et al. (2019). Prevalence of unexplained left ventricular hypertrophy by cardiac magnetic resonance imaging in MESA. J. Am. Heart Assoc. 8, e012250. 10.1161/JAHA.119.012250 PubMed DOI PMC

Mercure C., Yogi A., Callera G. E., Aranha A. B., Bader M., Ferreira A. J., et al. (2008). Angiotensin(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ. Res. 103, 1319–1326. 10.1161/CIRCRESAHA.108.184911 PubMed DOI

Navar L. G., Lewis L., Hymel A., Braam B., Mitchell K. D. (1994). Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats. J. Am. Soc. Nephrol. JASN 5 (4), 1153–1158. 10.1681/ASN.V541153 PubMed DOI

Neckář J., Alánová P., Olejníčková V., Papoušek F., Hejnová L., Šilhavý J., et al. (2021). Excess ischemic tachyarrhythmias trigger protection against myocardial infarction in hypertensive rats. Clin. Sci. 135, 2143–2163. 10.1042/CS20210648 PubMed DOI

Neckár J., Kopkan L., Husková Z., Kolár ek, Papous ek, Kramer H. J., et al. (2012). Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. Clin. Sci. 122, 513–525. 10.1042/CS20110622 PubMed DOI PMC

Oudit G. Y., Wang K., Basu R., Poglitsch M., Bakal J. A. (2020). Circulation: Heart failure elevated angiotensin 1-7/angiotensin II ratio predicts favorable outcomes in patients with heart failure. Circ. Heart Fail 13(7), e006939. 10.1161/CIRCHEARTFAILURE.120.006939 PubMed DOI

Patel V. B., Zhong J. C., Grant M. B., Oudit G. Y. (2016). Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ. Res. 118, 1313–1326. 10.1161/CIRCRESAHA.116.307708 PubMed DOI PMC

Peters B., Grisk O., Becher B., Wanka H., Kuttler B., Lüdemann J., et al. (2008). Dose-dependent titration of prorenin and blood pressure in Cyp1a1ren-2 transgenic rats: Absence of prorenin-induced glomerulosclerosis. J. Hypertens. 26, 102–109. 10.1097/HJH.0b013e3282f0ab66 PubMed DOI

Peters B. S., Dornaika R., Hosten N., Hadlich S., Mullins J. J., Peters J., et al. (2012). Regression of cardiac hypertrophy in cyp1a1ren-2 transgenic rats. J. Magn. Reson. Imaging 36, 373–378. 10.1002/jmri.23661 PubMed DOI

Peters J., Schlüter T., Riegel T., Peters B. S., Beineke A., Maschke U., et al. (2009). Lack of cardiac fibrosis in a new model of high prorenin hyperaldosteronism. Am. J. Physiol. - Hear. Circ. Physiol. 297, H1845–H1852. 10.1152/ajpheart.01135.2008 PubMed DOI PMC

Reudelhuber T. L. (2006). A place in our hearts for the lowly angiotensin 1-7 peptide? Hypertension 47, 811–815. 10.1161/01.HYP.0000209020.69734.73 PubMed DOI

Sanada S., Komuro I., Kitakaze M. (2011). Pathophysiology of myocardial reperfusion injury: Preconditioning, postconditioning, and translational aspects of protective measures. Am. J. Physiol. Hear. Circ. Physiol. 301, 1723–1741. 10.1152/ajpheart.00553.2011 PubMed DOI

Schmidt M. R., Smerup M., Konstantinov I. E., Shimizu M., Li J., Cheung M., et al. (2007). Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: First demonstration of remote ischemic perconditioning. Am. J. Physiology. Heart Circulatory Physiology 292 (4), H1883–H1890. 10.1152/AJPHEART.00617.2006 PubMed DOI

Sedláková L., Kikerlová S., Husková Z., Červenková L., Chábová V. Č., Zicha J., et al. (2018). 20-Hydroxyeicosatetraenoic acid antagonist attenuates the development of malignant hypertension and reverses it once established: A study in cyp1a1-ren-2 transgenic rats. Biosci. Rep. 38. 10.1042/BSR20171496 PubMed DOI PMC

Šnorek M., Hodyc D., Šedivý V., Ďurišová J., Skoumalová A., Wilhelm J., et al. (2012). Short-term fasting reduces the extent of myocardial infarction and incidence of reperfusion arrhythmias in rats. Physiological Res. 61 (6), 567–574. 10.33549/PHYSIOLRES.932338 PubMed DOI

Souza Á. P. S., Sobrinho D. B. S., Almeida J. F. Q., Alves G. M. M., Macedo L. M., Porto J. E., et al. (2013). Angiotensin II type 1 receptor blockade restores angiotensin-(1-7)-induced coronary vasodilation in hypertrophic rat hearts. Clin. Sci. (Lond). 125, 449–459. 10.1042/CS20120519 PubMed DOI

Sporková A., Jíchová Š., Husková Z., Kopkan L., Nishiyama A., Hwang S. H., et al. (2014). Different mechanisms of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: Studies in Cyp1a1-Ren-2 transgenic rats. Clin. Exp. Pharmacol. Physiol. 41, 1003–1013. 10.1111/1440-1681.12310 PubMed DOI PMC

Stewart J. A., Lazartigues E., Lucchesi P. A. (2008). The angiotensin converting enzyme 2/ang-(1-7) axis in the heart: A role for MAS communication? Circ. Res. 103, 1197–1199. 10.1161/CIRCRESAHA.108.189068 PubMed DOI PMC

Tallant E. A., Ferrario C. M., Gallagher P. E. (2006). Cardioprotective role for angiotensin-(1-7) and angiotensin converting enzyme 2 in the heart. Future Cardiol. 2, 335–342. 10.2217/14796678.2.3.335 PubMed DOI

Teng R. J., Ye Y. Z., Parks D. A., Beckman J. S. (2002). Urate produced during hypoxia protects heart proteins from peroxynitrite-mediated protein nitration. Free Radic. Biol. Med. 33 (9), 1243–1249. 10.1016/S0891-5849(02)01020-1 PubMed DOI

Tsao C. W., Aday A. W., Almarzooq Z. I., Alonso A., Beaton A. Z., Bittencourt M. S., et al. (2022). Heart disease and stroke statistics-2022 update: A report from the American heart association. Circulation 145, e153–e639. 10.1161/CIR.0000000000001052 PubMed DOI

Walker M. J. A., Curtis M. J., Hearse D. J., Campbell R. W. F., Janse M. J., Yellon D. M., et al. (1988). The lambeth conventions: Guidelines for the study of arrhythmias in ischaemia, infarction, and reperfusion. Cardiovasc. Res. 22, 447–455. 10.1093/cvr/22.7.447 PubMed DOI

Wang J., He W., Guo L., Zhang Y., Li H., Han S., et al. (2017). The ACE2-Ang (1-7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction. Mol. Med. Rep. 16, 1973–1981. 10.3892/MMR.2017.6848 PubMed DOI PMC

Wang K., Basu R., Poglitsch M., Bakal J. A., Oudit G. Y. (2020). Elevated angiotensin 1-7/angiotensin II ratio predicts favorable outcomes in patients with heart failure. Circ. Heart Fail. 13 (7), e006939. 10.1161/CIRCHEARTFAILURE.120.006939 PubMed DOI

Yu J., Wu Y., Zhang Y., Zhang L., Ma Q., Luo X. (2018). Role of ACE2-Ang (1-7)-Mas receptor axis in heart failure with preserved ejection fraction with hypertension. Zhong Nan Da Xue Xue Bao. Yi Xue Ban. 43, 738–746. 10.11817/J.ISSN.1672-7347.2018.07.007 PubMed DOI

Yu Y., Yu Y., Zhang Y., Zhang Z., An W., Zhao X. (2018). Treatment with D-β-hydroxybutyrate protects heart from ischemia/reperfusion injury in mice. Eur. J. Pharmacol. 829, 121–128. 10.1016/J.EJPHAR.2018.04.019 PubMed DOI

Zhang J., Wang Y. T., Miller J. H., Day M. M., Munger J. C., Brookes P. S. (2018). Accumulation of succinate in cardiac ischemia primarily occurs via canonical krebs cycle activity. Cell. Rep. 23 (9), 2617–2628. 10.1016/J.CELREP.2018.04.104 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...