Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HL059699
NHLBI NIH HHS - United States
P01 DK038226
NIDDK NIH HHS - United States
F32 NS010499
NINDS NIH HHS - United States
P42 ES004699
NIEHS NIH HHS - United States
DK 38226
NIDDK NIH HHS - United States
F32 NS009699
NINDS NIH HHS - United States
R01 ES02710
NIEHS NIH HHS - United States
R01 ES002710
NIEHS NIH HHS - United States
HL 59699
NHLBI NIH HHS - United States
PubMed
22324471
PubMed Central
PMC3528350
DOI
10.1042/cs20110622
PII: CS20110622
Knihovny.cz E-zdroje
- MeSH
- angiotensin II fyziologie MeSH
- antihypertenziva farmakologie MeSH
- benzoáty farmakologie MeSH
- epoxid hydrolasy antagonisté a inhibitory MeSH
- hypertenze farmakoterapie genetika metabolismus MeSH
- ikosanoidy metabolismus moč MeSH
- infarkt myokardu farmakoterapie patologie MeSH
- kardiotonika farmakologie MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- močovina analogy a deriváty farmakologie MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní MeSH
- srdeční arytmie farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- 4-(4-(3-adamantan-1-ylureido)cyclohexyloxy)benzoic acid MeSH Prohlížeč
- angiotensin II MeSH
- antihypertenziva MeSH
- benzoáty MeSH
- epoxid hydrolasy MeSH
- ikosanoidy MeSH
- kardiotonika MeSH
- močovina MeSH
The present study was undertaken to evaluate the effects of chronic treatment with c-AUCB {cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid}, a novel inhibitor of sEH (soluble epoxide hydrolase), which is responsible for the conversion of biologically active EETs (epoxyeicosatrienoic acids) into biologically inactive DHETEs (dihydroxyeicosatrienoic acids), on BP (blood pressure) and myocardial infarct size in male heterozygous TGR (Ren-2 renin transgenic rats) with established hypertension. Normotensive HanSD (Hannover Sprague-Dawley) rats served as controls. Myocardial ischaemia was induced by coronary artery occlusion. Systolic BP was measured in conscious animals by tail plethysmography. c-AUCB was administrated in drinking water. Renal and myocardial concentrations of EETs and DHETEs served as markers of internal production of epoxygenase metabolites. Chronic treatment with c-AUCB, which resulted in significant increases in the availability of biologically active epoxygenase metabolites in TGR (assessed as the ratio of EETs to DHETEs), was accompanied by a significant reduction in BP and a significantly reduced infarct size in TGR as compared with untreated TGR. The cardioprotective action of c-AUCB treatment was completely prevented by acute administration of a selective EETs antagonist [14,15-epoxyeicosa-5(Z)-enoic acid], supporting the notion that the improved cardiac ischaemic tolerance conferred by sEH inhibition is mediated by EETs actions at the cellular level. These findings indicate that chronic inhibition of sEH exhibits antihypertensive and cardioprotective actions in this transgenic model of angiotensin II-dependent hypertension.
Zobrazit více v PubMed
Lloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation. 2010;121:1768–1777. PubMed
Prisant LM. Hypertensive heart disease. J Clin Hypertens. 2005;7:231–238. PubMed PMC
Ostadal B. The past, the present and the future of experimental research on myocardial ischemia and protection. Pharmacol Rep. 2009;61:3–12. PubMed
Lavu M, Bhushan S, Lefer DJ. Hydrogen sulfide-mediated cardioprotection: mechanisms and therapeutic potential. Clin Sci. 2010;120:19–29. PubMed
Besik J, Szarszoi O, Kunes J, Netuka I, Maly J, Kolar F, Pirk J, Ostadal B. Tolerance to acute ischemia in adult male and female spontaneously hypertensive rats. Physiol Res. 2007;56:267–274. PubMed
Csonka C, Kupai K, Kocsis GF, Novak G, Fekete V, Bencsik P, Csont T, Ferdinandy P. Measurement of myocardial infarct size in preclinical studies. J Pharmacol Toxicol Methods. 2010;61:163–170. PubMed
Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 2007;59:418–458. PubMed
Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J, Jr, Braunwald E. Factors influencing infarct size following experimental coronary artery occlusions. Circulation. 1971;43:67–82. PubMed
Nithipatikom K, Gross GJ. Epoxyeicosatrienoic acids: novel mediators of cardioprotection. J Cardiovasc Pharmacol Ther. 2010;15:112–119. PubMed
Fleming I, Busse R. Endothelium-derived epoxyeicosatrienoic acids and vascular function. Hypertension. 2006;47:629–633. PubMed
Imig JD, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discover. 2009;8:794–805. PubMed PMC
Sudhahar V, Shaws S, Imig JD. Epoxyeicosatrienoic acid analogs and vascular function. Curr Med Chem. 2010;17:1181–1190. PubMed PMC
Certikova Chabova V, Kramer HJ, Vaneckova I, Thumova M, Skaroupkova P, Tesar V, Falck JR, Imig JD, Cervenka L. The roles of intrarenal 20- hydroxyeicosatetroenoic and epoxyeicosaetraenoic acids in the regulation of renal function in hypertensive Ren-2 transgenic rats. Kidney Blood Press Res. 2007;30:335–346. PubMed
Certikova Chabova V, Walkovska A, Kompanowska-Jezierska E, Sadowski J, Kujal P, Vernerova Z, Vanourkova Z, Kopkan L, Kramer HJ, Falck JR, Imig JD, Hammock BD, Vaneckova I, Cervenka L. Combined inhibition of 20-hydroxyeicosatetrenoic acid formation and epoxyeicosaetraenoic degradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats. Clin Sci. 2010;118:617–632. PubMed PMC
Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harboring the mouse Ren-2 gene. Nature. 1990;344:541–544. PubMed
Gross GJ, Gauthier KM, Moore JM, Falck JR, Hammock BD, Campbell WB, Nithipatikom K. Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. Am J Physiol Heart Circ Physiol. 2008;294:H2838–H2844. PubMed PMC
Gross GJ, Baker JE, Hsu A, Wu HE, Falck JR, Nithipatikom K. Evidence for a role of opioids in epoxyeicosatrienoic acid-induced cardioprotection in rat hearts. Am J Physiol Heart Circ Physiol. 2010;298:H2201–H2207. PubMed PMC
Seubert JM, Sinal CJ, Graves J, DeGraff LM, Bradbury JA, Lee CR, Goralski K, Carey MA, Luria A, Newman JW, Hamm JR, Roberts H, Rockman HA, Murphy E, Zeldin DC. Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circ Res. 2006;99:442–450. PubMed PMC
Bathu SN, Lee SB, Qadhi RS, Chaudhary KR, El-Sikhry H, Kodela R, Falck JR, Seubert JM. Cardioprotective effect of a dual acting epoxyeicosatrienoic acid analoque towards ischaemia reperfusion injury. Br J Pharmacol. 2011;162:897–907. PubMed PMC
Hwang SH, Tsai HJ, Liu JY, Morisseau C, Hammock BD. Orally bioavailable potent soluble epoxide hydrolase inhibitors. J Med Chem. 2007;50:3825–3840. PubMed PMC
Honetschlagerova Z, Huskova Z, Vanourkova Z, Sporkova A, Kramer HJ, Hwang SH, Tsai HJ, Hammock BD, Imig JD, Cervenka L, Kopkan L. Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J Physiol. 2011;589:207–219. PubMed PMC
Kujal P, Certikova Chabova V, Vernerova Z, Walkowska A, Kompanowska-Jezierska E, Vanourkova Z, Huskova Z, Opocensky M, Skaroupkova P, Schejbalova S, Kramer HJ, Rakusan D, Maly J, Netuka I, Vanecková I, Kopkan L, Cervenka L. Similar renoprotection after renin-angiotensin-dependent and –independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmacol Physiol. 2010;37:1159–1169. PubMed
Walkowska A, Skaroupkova P, Huskova Z, Vanourkova Z, Certiková Chabova V, Tesar V, Kramer HJ, Falck JR, Imig JD, Kompanowska-Jezierska E, Sadowski J, Cervenka L. Intrarenal cytochrome P-450 metabolites of arachidonic acid in the regulation of the nonclipped kidney function in two-kidney, one-clip Goldblatt hypertensive rats. J Hypertens. 2010;28:582–593. PubMed PMC
Neckar J, Papousek F, Novakova O, Ostadal B, Kolar F. Cardioprotective effects of chronic hypoxia and preconditioning are not additive. Basic Res Cardiol. 2002;97:161–167. PubMed
Curtis MJ, Walker MJ. Quantification of arrhythmias using systems: an examination of seven scores in an in vivo model of regional myocardial ischaemia. Cardiovasc Res. 1988;22:656–665. PubMed
Asemu G, Neckar J, Szarszoi O, Papousek F, Ostadal B, Kolar F. Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol Res. 2000;49:597–606. PubMed
Imig JD. Targeting epoxides for organ damage in hypertension. J Cardiovasc Pharmacol. 2010;56:329–335. PubMed PMC
Williams JM, Murphy S, Burke M, Roman RJ. 20-hydroxyeicosatetraenoic acid: a new target for the treatment of hypertension. J Cardiovasc Pharmacol. 2010;56:336–344. PubMed PMC
Melenovsky V, Benes J, Skaroupkova P, Sedmera D, Strnad H, Kolar M, Vlcek C, Petrak J, Benes J, Jr., Papousek F, Oliarnyk O, Kazdova L, Cervenka L. Metabolic charactrization of volume overload heart failure due to aorto-caval fistula in rats. Mol Cell Biochem. 2011;354:83–96. PubMed
Neckar J, Silhavy J, Zidek V, Landa V, Mlejnek P, Simakova M, Seidman JG, Seidman C, Kazdova L, Klevstig M, Novak F, Vecka M, Papousek F, Houstek J, Drahota Z, Kurtz TW, Kolar F, Pravenec M. CD36 overexpression predisposes to arrhythmias but reduces infarct size in spontaneously hypertensive rats: gene expression profile analysis. Physiol. Genomics. 2011 in press. PubMed PMC
Rakusan K, Cicutti N, Kolar F. Effect of anemia on cardiac function, microvascular structure, and capillary hematocrit in rat hearts. Am J Physiol Heart Circ Physiol. 2001;280:H1407–H1414. PubMed
Madhun ZT, Goldthwait DA, McKay D, Hopfer U, Douglas JG. An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells. J. Clin. Invest. 1991;88:456–461. PubMed PMC
Sakairi Y, Jacobson HR, Noland DT, Capdevila JH, Falck JR, Breyer MD. 5,6-EET inhibits ion transport in collecting duct by stimulating endogenous prostaglandin synthesis. Am J Physiol Renal Physiol. 1995;268:F931–F939. PubMed
Imig JD, Zhao X, Falck JR, Wei S, Capdevila JH. Enhanced renal microvascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12- epoxyeicosatrienoic acid. J Hypertens. 2001;19:983–992. PubMed
Cooley DA, Reul GJ, Wukasch DC. Ischemic contracture of the heart: “stone heart”. Am J Cardiol. 1972;29:575–577. PubMed
Anderson PG, Bishop SP, Dignerness SB. Transmural progression of morphological changes during ischemia and reperfusion in the normal and hypertrophied heart. Am J Pathol. 1987;129:152–167. PubMed PMC
Minor T, Isselhard W, Sturz J. Recovery of healthy and hypertrophied hearts after global ischemia and gradual reperfusion. Ann Cardiol Angeiol. 1994;43:395–399. PubMed
Snoeckx LH, van der Vusse GJ, Coumans WA, Willemsen PH, van der Nagel T, Reneman RS. Myocardial function in normal and spontaneously hypertensive rats during reperfusion after a period of global ischaemia. Cardiovasc Res. 1986;20:67–75. PubMed
Mozaffari MS, Schaffer SW. Effect of hypertension and hypertension-glucose intolerance on myocardial ischemic injury. Hypertension. 2003;42:1042–1049. PubMed
Saupe KW, Lim CC, Ingwall JS, Apstein CS, Eberli FR. Comparision of hearts with 2 types of pressure-overload left ventricular hypertrophy. Hypertension. 2000;35:1167–1172. PubMed
Chaudhary KR, Abukhashim M, Hwang SH, Hammock BD, Seubert JM. Inhibition of soluble epoxide hydrolase by trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyl-oxy]-benzoic acid is protective against ischemia-reperfusion injury. J Cardiovasc Pharmacol. 2010;55:67–73. PubMed PMC
Gross ER, Nithipatikom K, Hsu AK, Peart JN, Falck JR, Campbell WB, Gross GJ. Cytochrome P450 ω-hydroxylase inhibition reduces infarct size during reperfusion via the sarcolemmal KATP channel. J Mol Cell Cardiol. 2004;37:1245–1249. PubMed
Nithipatikom K, Endsley MP, Moore JM, Isbell MA, Falck JR, Campbell WB, Gross GJ. Effects of selective inhibition of cytochrome P-450 ω-hydroxylases and ischemic preconditioning in myocardial protection. Am J Physiol Heart Circ Physiol. 2006;290:H500–H505. PubMed
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences
Epoxylipids and soluble epoxide hydrolase in heart diseases